Free Radicals Induced Oxidative Stress at a Molecular Level: The Current Status, Challenges and Perspectives of Computational Chemistry Based Protocols
DOI:
https://doi.org/10.29356/jmcs.v59i4.81Palabras clave:
antioxidants, free radical scavenging, kinetics, mecha-nism of reaction, trends in activity.Resumen
Oxidative stress is frequently caused by an excess of free radicals and has been associated with a wide variety of health disor-ders. Therefore, finding strategies for scavenging free radicals has be-come an active area of research. This review summarizes, from a physicochemical perspective, relevant strategies to fight oxidative stress via antioxidants, including prevention, deactivation of oxidants, and repair of damaged targets. Different reaction mechanisms in-volved in the chemical protection exerted by antioxidants are dis-cussed, as well as their relative importance depending on several aspects. Some of them are the polarity of the environment, the pH of aqueous phase, and the chemical nature of the reacting radicals. Data that can currently be obtained from computational, quantum, chemis-try, protocols are detailed and their reliability is analyzed. Viable crite-ria to identify optimal antioxidants using such protocols are provided. Current challenges and future directions in this area of research are discussed. A large set of antioxidants are compared and their trends in activity, based on kinetic data, is provided.Descargas
Citas
Sayre, L. M.; Perry, G.; Smith, M. A. Chem. Res. Toxicol. 2008, 21, 172-188. DOI: https://doi.org/10.1021/tx700210j
Pacher, P.; Beckman, J. S.; Liaudet, L. Physiol. Rev. 2007, 87, 315-424. DOI: https://doi.org/10.1152/physrev.00029.2006
Genestra, M. Cell. Signal. 2007, 19, 1807-1819. DOI: https://doi.org/10.1016/j.cellsig.2007.04.009
Valko, M., et al. Int. J. Biochem. Cell Biol. 2007, 39, 44-84. DOI: https://doi.org/10.1016/j.biocel.2006.07.001
Valko, M., et al. Chem. Biol. Interact. 2006, 160, 1-40. DOI: https://doi.org/10.1016/j.cbi.2005.12.009
Pham-Huy, L. A.; He, H.; Pham-Huy, C. Int. J. Biomed. Sci. 2008, 4, 89-96. DOI: https://doi.org/10.59566/IJBS.2008.4089
Droge, W. Physiol. Rev. 2002, 82, 47-95. DOI: https://doi.org/10.1152/physrev.00018.2001
Young, I. S.; Woodside, J. V. J. Clin. Pathol. 2001, 54, 176-186. DOI: https://doi.org/10.1136/jcp.54.3.176
Halliwell, B. Biochem. Soc. Trans. 2007, 35, 1147-1150. DOI: https://doi.org/10.1042/BST0351147
Kaminskyy, V. O.; Zhivotovsky, B. Antioxid. Redox Signal. 2014, 21, 86-102. DOI: https://doi.org/10.1089/ars.2013.5746
Yin, H.; Zhu, M. Free Radic. Res. 2012, 46, 959-974. DOI: https://doi.org/10.3109/10715762.2012.676642
Griffiths, H. R., et al. Biochem. Soc. Trans. 2011, 39, 1273-1278. DOI: https://doi.org/10.1042/BST0391273
Schetter, A. J.; Heegaard, N. H. H.; Harris, C. C. Carcinogenesis. 2009, 31, 37-49. DOI: https://doi.org/10.1093/carcin/bgp272
Giannapas, M.; Karnis, L.; Dailianis, S. Comp. Biochem. Physi-ol. C Toxicol. Pharmacol. 2012, 55, 182-189. DOI: https://doi.org/10.1016/j.cbpc.2011.08.001
Lantow, M., et al. Radiat. Res. 2006, 165, 88-94. DOI: https://doi.org/10.1667/RR3476.1
Ren, Y., et al. Int. J. Neurosci. 2015, 125, 555-565. DOI: https://doi.org/10.3109/00207454.2014.959121
Niatsetskaya, Z. V., et al. J. Neurosci. 2012, 32, 3235-3244. DOI: https://doi.org/10.1523/JNEUROSCI.6303-11.2012
Maeda, H. Cancer Sci. 2013, 104, 779-789. DOI: https://doi.org/10.1111/cas.12152
Guha, M., et al. J. Pineal Res. 2007, 43, 372-381. DOI: https://doi.org/10.1111/j.1600-079X.2007.00488.x
De Luca, C., et al. Toxicol. Ind. Health. 2009, 25, 259-267. DOI: https://doi.org/10.1177/0748233709103032
Morales-Alamo, D.; Calbet, J. A. L. Free Radic. Res. 2014, 48, 30-42. DOI: https://doi.org/10.3109/10715762.2013.825043
Benameur, L., et al. Bio-Med. Mater. Eng. 2015, 25, S41-S46. DOI: https://doi.org/10.3233/BME-141247
Shiraiwa, M.; Selzle, K.; Pöschl, U. Free Radic. Res. 2012, 46, 927-939. DOI: https://doi.org/10.3109/10715762.2012.663084
Valencia-Islas, N.; Zambrano, A.; Rojas, J. L. J. Chem. Ecol. 2007, 33, 1619-1634. DOI: https://doi.org/10.1007/s10886-007-9330-1
Kami?ski, P.; Kurhalyuk, N.; Szady-Grad, M. Polish J. Environ. Studies. 2007, 16, 555-562.
Vejerano, E.; Lomnicki, S.; Dellinger, B. J. Environ. Monit. 2012, 14, 2803-2806. DOI: https://doi.org/10.1039/c2em30545c
Robinson, E. A.; Johnson, J. D. Mini Rev. Org. Chem. 2011, 8, 401-411. DOI: https://doi.org/10.2174/157019311797440362
Wang, Y., et al. Tobacco Sci. Technol. 2014, 47, 47-53. DOI: https://doi.org/10.1016/j.neubiorev.2014.07.014
Michail, K., et al. Chem. Res. Toxicol. 2013, 26, 1872-1883. DOI: https://doi.org/10.1021/tx4002463
Aleryani, S. L.; Aleryani, R. A.; Al-Akwa, A. A. Drug Test Anal. 2011, 3, 548-551. DOI: https://doi.org/10.1002/dta.224
Narwaley, M., et al. Chem. Res. Toxicol. 2011, 24, 1031-1039. DOI: https://doi.org/10.1021/tx200016h
Karadayian, A. G., et al. Neuroscience. 2015, 304, 47-59. DOI: https://doi.org/10.1016/j.neuroscience.2015.07.012
Albano, E. Proc. Nutr. Soc. 2006, 65, 278-290. DOI: https://doi.org/10.1079/PNS2006496
Spitz, D. R.; Hauer-Jensen, M. Antioxid. Redox Signal. 2014, 20, 1407-1409. DOI: https://doi.org/10.1089/ars.2013.5769
Rancan, F., et al. Skin Res. Technol. 2014, 20, 182-193. DOI: https://doi.org/10.1111/srt.12104
Burlaka, A., et al. Exp. Oncol. 2013, 35, 219-225. DOI: https://doi.org/10.3109/0142159X.2012.737966
Marnett, L. J. Carcinogenesis. 1987, 8, 1365-1373. DOI: https://doi.org/10.1093/carcin/8.10.1365
Pryor, W. A. Annu. Rev. Physiol. 1986, VOL. 48, 657-667. DOI: https://doi.org/10.1146/annurev.ph.48.030186.003301
León-Carmona, J. R.; Galano, A. J. Phys. Chem. B. 2011, 115, 4538-4546. DOI: https://doi.org/10.1021/jp201383y
Galano, A. J. Phys. Chem. B. 2007, 111, 12898-12908. DOI: https://doi.org/10.1021/jp074358u
Martínez, A.; Vargas, R.; Galano, A. J. Phys. Chem. B. 2009, 113, 12113-12120. DOI: https://doi.org/10.1021/jp903958h
Martínez, A.; Vargas, R.; Galano, A. Theor. Chem. Acc. 2010, 127, 595-603. DOI: https://doi.org/10.1007/s00214-010-0753-3
Martínez, A.; Galano, A. Journal of Physical Chemistry C. 2010, 114, 8184-8191. DOI: https://doi.org/10.1021/jp100168q
Brunelli, L.; Crow, J. P.; Beckman, J. S. Arch. Biochem. Biophys. 1995, 316, 327-334. DOI: https://doi.org/10.1006/abbi.1995.1044
Squadrito, G. L.; Pryor, W. A. Free Radical Biology and Medi-cine. 1998, 25, 392-403. DOI: https://doi.org/10.1016/S0891-5849(98)00095-1
Radi, R., et al. Free Radical Biology and Medicine. 2001, 30, 463-488. DOI: https://doi.org/10.1016/S0891-5849(00)00373-7
Douki, T.; Cadet, J. Free Radical Research. 1996, 24, 369-380. DOI: https://doi.org/10.3109/10715769609088035
Wiseman, H.; Halliwell, B. Biochem. J. 1996, 313, 17-29. DOI: https://doi.org/10.1042/bj3130017
Koppal, T., et al. J. Neurochem. 1999, 72, 310-317. DOI: https://doi.org/10.1046/j.1471-4159.1999.0720310.x
Forni, L. G., et al. Chemico-Biological Interactions. 1983, 45, 171-177. DOI: https://doi.org/10.1016/0009-2797(83)90066-2
Prütz, W. A., et al. Arch. Biochem. Biophys. 1985, 243, 125-134. DOI: https://doi.org/10.1016/0003-9861(85)90780-5
Abedinzadeh, Z. Can. J. Physiol. Pharmacol. 2001, 79, 166-170. DOI: https://doi.org/10.1139/cjpp-79-2-166
Giles, G. I.; Tasker, K. M.; Jacob, C. Free Radic. Biol. Med. 2001, 31, 1279-1283. DOI: https://doi.org/10.1016/S0891-5849(01)00710-9
Giles, G. I.; Tasker, K. M.; Jacob, C. Gen. Physiol. Biophys. 2002, 21, 65-72.
Mishanina, T. V.; Libiad, M.; Banerjee, R. Nat. Chem. Biol. 2015, 11, 457-464. DOI: https://doi.org/10.1038/nchembio.1834
Wenska, G., et al. J. Phys. Chem. B. 2008, 112, 10045-10053. DOI: https://doi.org/10.1021/jp8041928
Glass, R. S., et al. Tetrahedron Lett. 1992, 33, 1721-1724. DOI: https://doi.org/10.1016/S0040-4039(00)91715-5
Asmus, K. D. Methods Enzymol. 1990, 186, 168-180. DOI: https://doi.org/10.1016/0076-6879(90)86107-7
Bonifa?i?, M.; Asmus, K. D. J. Org. Chem. 1986, 51, 1216-1222. DOI: https://doi.org/10.1021/jo00358a011
Göbl, M.; Bonifa?i?, M.; Asmus, K. D. J. Am. Chem. Soc. 1984, 106, 5984-5988. DOI: https://doi.org/10.1021/ja00332a039
Fourré, I.; Silvi, B. Heteroat. Chem. 2007, 18, 135-160. DOI: https://doi.org/10.1002/hc.20325
McKee, M. L. J. Phys. Chem. 1992, 96, 1675-1679. DOI: https://doi.org/10.1021/j100183a033
Brunelle, P.; Rauk, A. J. Phys. Chem. A. 2004, 108, 11032-11041. DOI: https://doi.org/10.1021/jp046626j
Schöneich, C., et al. J. Am. Chem. Soc. 2003, 125, 13700-13713. DOI: https://doi.org/10.1021/ja036733b
Wiberg, K. B.; Petersson, G. A. J. Phys. Chem. A. 2014, 118, 2353-2359. DOI: https://doi.org/10.1021/jp500035m
Gerschman, R., et al. Science. 1954, 119, 623-626. DOI: https://doi.org/10.1126/science.119.3097.623
MacNee, W. Eur. J. Pharmacol. 2001, 429, 195-207. DOI: https://doi.org/10.1016/S0014-2999(01)01320-6
Caramori, G.; Papi, A. Thorax. 2004, 59, 170-173. DOI: https://doi.org/10.1136/thorax.2002.002477
Guo, R. F.; Ward, P. A. Antioxid. Redox Signal. 2007, 9, 1991-2002. DOI: https://doi.org/10.1089/ars.2007.1785
Hoshino, Y.; Mishima, M. Antioxid. Redox Signal. 2008, 10, 701-704. DOI: https://doi.org/10.1089/ars.2007.1961
Shadab, M., et al. J. Clin. Diagnostic Res. 2014, 8, BC11-BC13.
Zhao, W., et al. J. Surg. Res. 2014, 187, 542-552. DOI: https://doi.org/10.1016/j.jss.2013.10.033
Ghasemzadeh, N., et al. Hypertension. 2014, 63, 1270-1275. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.113.02360
Cheresh, P., et al. Biochim. Biophys. Acta. 2013, 1832, 1028-1040. DOI: https://doi.org/10.1016/j.bbadis.2012.11.021
Pandey, R., et al. J. Clin. Diagn. Res. 2013, 7, 580-588.
Lanzetti, M., et al. Free Radic. Biol. Med. 2012, 53, 1993-2001. DOI: https://doi.org/10.1016/j.freeradbiomed.2012.09.015
Zuo, L., et al. Frontiers in Biology. 2012, 7, 506-513. DOI: https://doi.org/10.1007/s11515-012-1251-x
Kratzer, E., et al. Am. J. Respir. Cell Mol. Biol. 2012, 47, 688-697. DOI: https://doi.org/10.1165/rcmb.2012-0161OC
Galle, J. Nephrol. Dial. Transplant. 2001, 16, 2135-2137. DOI: https://doi.org/10.1093/ndt/16.11.2135
Yang, S. K., et al. Ren. Fail. 2014, 36, 313-320. DOI: https://doi.org/10.3109/0886022X.2013.846867
Aruna, G.; Ambika Devi, K. Int. J. Pharma Bio Sci. 2014, 5, B127-B133.
Araujo, A. M., et al. Am. J. Trop. Med. Hyg. 2014, 90, 719-723.
Sung, C. C., et al. Oxid. Med. Cell. Longev. 2013, 2013, 301982.
Small, D. M., et al. Nephron Exp. Nephrol. 2013, 122, 123-130. DOI: https://doi.org/10.1159/000350726
Ozbek, E. Int. J. Nephrol. 2012, 2012, 465897. DOI: https://doi.org/10.1155/2012/465897
Massy, Z. A.; Stenvinkel, P.; Drueke, T. B. Semin. Dial. 2009, 22, 405-408. DOI: https://doi.org/10.1111/j.1525-139X.2009.00590.x
Beatty, S., et al. Surv. Ophthalmol. 2000, 45, 115-134. DOI: https://doi.org/10.1016/S0039-6257(00)00140-5
Rosenstein, R. E., et al. J. Pineal Res. 2010, 49, 1-13. DOI: https://doi.org/10.1093/ntr/ntq207
Uchino, Y., et al. Cornea. 2012, 31, S63-S67. DOI: https://doi.org/10.1097/ICO.0b013e31826a5de1
Kaur, J., et al. J. Clin. Diagn. Res. 2012, 6, 1629-1632.
Wakamatsu, T. H., et al. Mol. Vis. 2010, 16, 2465-2475.
Dogru, M., et al. Cornea. 2009, 28, S70-S74. DOI: https://doi.org/10.1097/ICO.0b013e3181ae8689
Dong, A., et al. J. Cell. Physiol. 2009, 219, 544-552. DOI: https://doi.org/10.1002/jcp.21698
Mahajan, A.; Tandon, V. R. J. Indian Rheumatol. Assoc. 2004, 12, 139-142.
Veselinovic, M., et al. Mol. Cell. Biochem. 2014, 391, 225-232. DOI: https://doi.org/10.1007/s11010-014-2006-6
Kundu, S., et al. Free Radical Res. 2012, 46, 1482-1489. DOI: https://doi.org/10.3109/10715762.2012.727991
Wruck, C. J., et al. Ann. Rheum. Dis. 2011, 70, 844-850.
Vasanthi, P.; Nalini, G.; Rajasekhar, G. Int. J. Rheum. Dis. 2009, 12, 29-33. DOI: https://doi.org/10.1111/j.1756-185X.2009.01375.x
Myatt, L. J. Physiol. 2006, 572, 25-30. DOI: https://doi.org/10.1113/jphysiol.2006.104968
Braekke, K.; Harsem, N. K.; Staff, A. C. Pediatr. Res. 2006, 60, 560-564. DOI: https://doi.org/10.1203/01.pdr.0000242299.01219.6a
Biri, A., et al. Gynecol. Obstet. Invest. 2007, 64, 187-192. DOI: https://doi.org/10.1159/000106488
Hracsko, Z., et al. Redox Rep. 2008, 13, 11-16. DOI: https://doi.org/10.1179/135100008X259097
Gitto, E., et al. J. Pineal Res. 2009, 46, 128-139. DOI: https://doi.org/10.1111/j.1600-079X.2008.00649.x
Mert, I., et al. J. Obstet. Gynaecol. Res. 2012, 38, 658-664. DOI: https://doi.org/10.1111/j.1447-0756.2011.01771.x
Valko, M., et al. Mol. Cell. Biochem. 2004, 266, 37-56. DOI: https://doi.org/10.1023/B:MCBI.0000049134.69131.89
Boyd, N. F.; McGuire, V. Free Radic. Biol. Med. 1991, 10, 185-190. DOI: https://doi.org/10.1016/0891-5849(91)90074-D
Nelson, R. L. Free Radic. Biol. Med. 1992, 12, 161-168. DOI: https://doi.org/10.1016/0891-5849(92)90010-E
Knekt, P., et al. Int. J. Cancer. 1994, 56, 379-382. DOI: https://doi.org/10.1002/ijc.2910560315
Omenn, G. S., et al. N. Engl. J. Med. 1996, 334, 1150-1155. DOI: https://doi.org/10.1056/NEJM199605023341802
Willcox, J. K.; Ash, S. L.; Catignani, G. L. Crit. Rev. Food Sci. Nutr. 2004, 44, 275-295. DOI: https://doi.org/10.1080/10408690490468489
Wang, J., et al. Oncol. Lett. 2014, 7, 1159-1164. DOI: https://doi.org/10.1109/LCSYS.2022.3231628
Granados-Principal, S., et al. Biochem. Pharmacol. 2014, 90, 25-33. DOI: https://doi.org/10.1016/j.bcp.2014.04.001
Tekiner-Gulbas, B.; Westwell, A. D.; Suzen, S. Curr. Med. Chem. 2013, 20, 4451-4459. DOI: https://doi.org/10.2174/09298673113203690142
Sayre, L. M.; Smith, M. A.; Perry, G. Curr. Med. Chem. 2001, 8, 721-738. DOI: https://doi.org/10.2174/0929867013372922
Butterfield, D. A., et al. Biochem. Biophys. Res. Commun. 1994, 200, 710-715. DOI: https://doi.org/10.1006/bbrc.1994.1508
Hensley, K., et al. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 3270-3274. DOI: https://doi.org/10.1073/pnas.91.8.3270
Butterfield, D. A., et al. Life Sci. 1996, 58, 217-228. DOI: https://doi.org/10.1007/978-3-663-05759-8_12
Butterfield, D. A. Chem. Res. Toxicol. 1997, 10, 495-506. DOI: https://doi.org/10.1021/tx960130e
Mattson, M. P. Nature. 2004, 430, 631-639. DOI: https://doi.org/10.1038/nature02621
Christen, Y. Am. J. Clin. Nutr. 2000, 71, 621S-629S. DOI: https://doi.org/10.1093/ajcn/71.2.621s
Halliwell, B. Drugs Aging. 2001, 18, 685-716. DOI: https://doi.org/10.2165/00002512-200118090-00004
Butterfield, D. A. Free Radic. Res. 2002, 36, 1307-1313. DOI: https://doi.org/10.1080/1071576021000049890
Cruz-Sanchez, F. F., et al. J. Neurol. Sci. 2010, 299, 163-167. DOI: https://doi.org/10.1016/j.jns.2010.08.029
Bonda, D. J., et al. Neuropharmacology. 2010, 59, 290-294. DOI: https://doi.org/10.1016/j.neuropharm.2010.04.005
Cai, Z.; Zhao, B.; Ratka, A. Neuromolecular Med. 2011, 13, 223-250. DOI: https://doi.org/10.1007/s12017-011-8155-9
Chen, Z.; Zhong, C. Neurosci. Bull. 2014, 30, 271-281. DOI: https://doi.org/10.1007/s12264-013-1423-y
Eskici, G.; Axelsen, P. H. Biochemistry. 2012, 51, 6289-6311. DOI: https://doi.org/10.1021/bi3006169
López, N., et al. J. Alzheimers Dis. 2013, 33, 823-829. DOI: https://doi.org/10.3233/JAD-2012-121528
Meraz-Ríos, M. A., et al. Oxid. Med. Cell. Longev. 2014, 2014, 375968. DOI: https://doi.org/10.1155/2014/375968
Pimentel, C., et al. Oxid. Med. Cell. Longev. 2012, 2012, 132146.
Pocernich, C. B., et al. Curr. Alzheimer Res. 2011, 8, 452-469. DOI: https://doi.org/10.2174/156720511796391908
Pohanka, M. Curr. Med. Chem. 2014, 21, 356-364. DOI: https://doi.org/10.2174/09298673113206660258
Rosini, M., et al. J. Med. Chem. 2014, 57, 2821-2831. DOI: https://doi.org/10.1021/jm400970m
Schrag, M., et al. Neurobiol. Dis. 2013, 59, 100-110. DOI: https://doi.org/10.1016/j.nbd.2013.07.005
Torres, L. L., et al. J. Alzheimers Dis. 2011, 26, 59-68.
Yana, M. H.; Wang, X.; Zhu, X. Free Radical Bio. Med. 2013, 62, 90-101. DOI: https://doi.org/10.1016/j.freeradbiomed.2012.11.014
Zhao, Y.; Zhao, B. Oxid. Med. Cell. Longev. 2013, 2013, 316523.
Janero, D. R. Free Radic. Biol. Med. 1991, 11, 129-144. DOI: https://doi.org/10.1016/0891-5849(91)90193-7
Steinberg, D. Circulation. 1991, 84, 1420-1425. DOI: https://doi.org/10.1161/01.CIR.84.3.1420
Riemersma, R. A., et al. Lancet. 1991, 337, 1-5. DOI: https://doi.org/10.1016/0140-6736(91)93327-6
Salonen, J. T., et al. Circulation. 1992, 86, 803-811. DOI: https://doi.org/10.1161/01.CIR.86.3.803
Street, D. A., et al. Circulation. 1994, 90, 1154-1161. DOI: https://doi.org/10.1161/01.CIR.90.3.1154
Hodis, H. N., et al. J. Am. Med. Assoc. 1995, 273, 1849-1854. DOI: https://doi.org/10.1001/jama.273.23.1849
Kushi, L. H., et al. N. Engl. J. Med. 1996, 334, 1156-1162. DOI: https://doi.org/10.1056/NEJM199605023341803
Stephens, N. G., et al. Lancet. 1996, 347, 781-786. DOI: https://doi.org/10.1016/S0140-6736(96)90866-1
Panasenko, O. M., et al. Free Radical Bio. Med. 1991, 10, 137-148. DOI: https://doi.org/10.1016/0891-5849(91)90007-P
Matsuda, M.; Shimomura, I. Rev. Endocr. Metab. Disord. 2014, 15, 1-10. DOI: https://doi.org/10.1007/s11154-013-9271-7
Eren, E., et al. Redox report: communications in free radical research. 2014, 19, 34-39. DOI: https://doi.org/10.1179/1351000213Y.0000000069
Al-Aubaidy, H. A.; Jelinek, H. F. Redox Rep. 2014, 19, 87-91. DOI: https://doi.org/10.1179/1351000213Y.0000000080
?erban, C.; Dr?gan, S. Curr. Pharm. Design. 2014, 20, 585-600. DOI: https://doi.org/10.2174/138161282004140213145806
Zampetaki, A.; Dudek, K.; Mayr, M. Free Radic. Biol. Med. 2013, 64, 69-77. DOI: https://doi.org/10.1016/j.freeradbiomed.2013.06.025
Cadet, J.; Douki, T.; Ravanat, J.-L. Acc. Chem. Res. 2008, 41, 1075-1083. DOI: https://doi.org/10.1021/ar700245e
Kawanishi, S.; Hiraku, Y.; Oikawa, S. Mutat. Res. 2001, 488, 65-76. DOI: https://doi.org/10.1016/S1383-5742(00)00059-4
Sevilla, M. D.; Besler, B.; Colson, A.-O. J. Phys. Chem. 1995, 99, 1060-1063. DOI: https://doi.org/10.1021/j100003a032
Seidel, C. A. M.; Schulz, A.; Sauer, M. H. M. J. Phys. Chem. 1996, 100, 5541-5553. DOI: https://doi.org/10.1021/jp951507c
Sugiyama, H.; Saito, I. J. Am. Chem. Soc. 1996, 118, 7063-7068. DOI: https://doi.org/10.1021/ja9609821
Melvin, T., et al. J. Am. Chem. Soc. 1996, 118, 10031-10036. DOI: https://doi.org/10.1021/ja961722m
Wetmore, S. D.; Boyd, R. J.; Eriksson, L. A. Chem. Phys. Lett. 2000, 322, 129-135. DOI: https://doi.org/10.1016/S0009-2614(00)00391-2
Langmaier, J., et al. J. Phys. Chem. B. 2004, 108, 15896-15899. DOI: https://doi.org/10.1021/jp0481207
Burrows, C. J.; Muller, J. G. Chem. Rev. 1998, 98, 1109-1152. DOI: https://doi.org/10.1021/cr960421s
Angelov, D., et al. J. Am. Chem. Soc. 1997, 119, 11373-11380. DOI: https://doi.org/10.1021/ja971728r
Melvin, T., et al. Photochem. Photobiol. 1997, 65, 660-665. DOI: https://doi.org/10.1111/j.1751-1097.1997.tb01908.x
Melvin, T., et al. J. Chem. Soc., Chem. Commun. 1995, 653-654. DOI: https://doi.org/10.1039/c39950000653
Saito, I., et al. J. Am. Chem. Soc. 1995, 117, 6406-6407. DOI: https://doi.org/10.1021/ja00128a050
Breslin, D. T.; Schuster, G. B. J. Am. Chem. Soc. 1996, 118, 2311-2319. DOI: https://doi.org/10.1021/ja953714w
Stemp, E. D. A.; Arkin, M. R.; Barton, J. K. J. Am. Chem. Soc. 1997, 119, 2921-2925. DOI: https://doi.org/10.1021/ja963606p
Armitage, B., et al. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 12320-12325. DOI: https://doi.org/10.1073/pnas.94.23.12320
Saito, I., et al. J. Am. Chem. Soc. 1998, 120, 12686-12687. DOI: https://doi.org/10.1021/ja981888i
Yoshioka, Y., et al. J. Am. Chem. Soc. 1999, 121, 8712-8719. DOI: https://doi.org/10.1021/ja991032t
Steenken, S. Chem. Rev. 1989, 89, 503-520. DOI: https://doi.org/10.1021/cr00093a003
Galano, A.; Alvarez-Idaboy, J. R. PCCP. 2012, 14, 12476-12484. DOI: https://doi.org/10.1039/c2cp40799j
Pratviel, G.; Bernadou, J.; Meunier, B. Angew. Chem. Int. Ed. 1995, 34, 746-769. DOI: https://doi.org/10.1002/anie.199507461
Pogozelski, W. K.; Tullius, T. D. Chem. Rev. 1998, 98, 1089-1108. DOI: https://doi.org/10.1021/cr960437i
Shukla, L. I., et al. Radiat. Res. 2004, 161, 582-590. DOI: https://doi.org/10.1667/RR3167
Dedon, P. C. Chem. Res. Toxicol. 2007, 21, 206-219. DOI: https://doi.org/10.1021/tx700283c
Kim, J.; Kreller, C. R.; Greenberg, M. M. J. Org. Chem. 2005, 70, 8122-8129. DOI: https://doi.org/10.1021/jo0512249
Tronche, C.; Goodman, B. K.; Greenberg, M. M. Chem. Biol. 1998, 5, 263-271. DOI: https://doi.org/10.1016/S1074-5521(98)90619-6
Borrego, S., et al. Int. J. Mol. Sci. 2013, 14, 3467-3486. DOI: https://doi.org/10.3390/ijms14023467
De Iuliis, G. N., et al. Biol. Reprod. 2009, 81, 517-524. DOI: https://doi.org/10.1095/biolreprod.109.076836
Mangal, D., et al. Chem. Res. Toxicol. 2009, 22, 788-797. DOI: https://doi.org/10.1021/tx800343c
Tope, A. M.; Panemangalore, M. J. Environ. Sci. Health, Pt. B: Pestic., Food Contam., Agric. Wastes. 2007, 42, 151-155. DOI: https://doi.org/10.1080/03601230601123276
Chen, S. S., et al. J. Urol. 2004, 172, 1418-1421. DOI: https://doi.org/10.1097/01.ju.0000138344.56941.b1
Tarng, D. C., et al. Am. J. Kidney Dis. 2000, 36, 934-944. DOI: https://doi.org/10.1053/ajkd.2000.19086
Kasai, H. Mutat. Res. - Rev. Mut. Res. 1997, 387, 147-163. DOI: https://doi.org/10.1016/S1383-5742(97)00035-5
Mozziconacci, O.; Kerwin, B. A.; Schöneich, C. Chem. Res. Tox-icol. 2010, 23, 1310-1312. DOI: https://doi.org/10.1021/tx100193b
Lund, M. N., et al. Biochem. J. 2008, 410, 565-574. DOI: https://doi.org/10.1042/BJ20071107
Lardinois, O. M.; Ortiz De Montellano, P. R. J. Biol. Chem. 2001, 276, 23186-23191. DOI: https://doi.org/10.1074/jbc.M102084200
Lardinois, O. M.; Medzihradszky, K. F.; Ortiz De Montellano, P. R. J. Biol. Chem. 1999, 274, 35441-35448. DOI: https://doi.org/10.1074/jbc.274.50.35441
Hands, S., et al. J. Biol. Chem. 2011, 286, 44512-44520. DOI: https://doi.org/10.1074/jbc.M111.307587
Hawkins, C. L.; Pattison, D. I.; Davies, M. J. Biochem. J. 2002, 365, 605-615. DOI: https://doi.org/10.1042/bj20020363
Hawkins, C. L.; Davies, M. J. Biochem. J. 1999, 340, 539-548. DOI: https://doi.org/10.1042/bj3400539
Headlam, H. A., et al. Chem. Res. Toxicol. 2000, 13, 1087-1095. DOI: https://doi.org/10.1021/tx0001171
Grune, T., et al. J. Biol. Chem. 1995, 270, 2344-2351. DOI: https://doi.org/10.1074/jbc.270.5.2344
Pacifici, R. E.; Kono, Y.; Davies, K. J. A. J. Biol. Chem. 1993, 268, 15405-15411. DOI: https://doi.org/10.1016/S0021-9258(18)82272-4
Silakov, A., et al. J. Am. Chem. Soc. 2014, 136, 8221-8228. DOI: https://doi.org/10.1021/ja410560p
Decroos, C., et al. Chem. Res. Toxicol. 2014, 27, 627-636. DOI: https://doi.org/10.1021/tx400467p
Chung, T. W., et al. J. Am. Soc. Mass Spectrom. 2012, 23, 1336-1350. DOI: https://doi.org/10.1007/s13361-012-0408-9
Pattison, D. I.; Davies, M. J. Biochemistry. 2004, 43, 4799-4809. DOI: https://doi.org/10.1021/bi035946a
Stadtman, E. R.; Levine, R. L. Amino Acids. 2003, 25, 207-218. DOI: https://doi.org/10.1007/s00726-003-0011-2
Filipe, P., et al. Biochemistry. 2002, 41, 11057-11064. DOI: https://doi.org/10.1021/bi026133+
Elias, R. J.; McClements, D. J.; Decker, E. A. J. Agric. Food Chem. 2005, 53, 10248-10253. DOI: https://doi.org/10.1021/jf0521698
Alvarez, B.; Radi, R. Amino Acids. 2003, 25, 295-311. DOI: https://doi.org/10.1007/s00726-003-0018-8
Nadal, R. C.; Rigby, S. E. J.; Viles, J. H. Biochemistry. 2008, 47, 11653-11664. DOI: https://doi.org/10.1021/bi8011093
Nadal, R. C., et al. Free Radical Bio. Med. 2007, 42, 79-89. DOI: https://doi.org/10.1016/j.freeradbiomed.2006.09.019
Kim, N. H., et al. Mol. Cells. 2006, 22, 220-227. DOI: https://doi.org/10.1016/S1016-8478(23)17413-9
Arenas, A., et al. Chem. Res. Toxicol. 2013, 26, 67-77. DOI: https://doi.org/10.1021/tx300372t
Beal, J. L.; Foster, S. B.; Ashby, M. T. Biochemistry. 2009, 48, 11142-11148. DOI: https://doi.org/10.1021/bi901343d
Estevam, M. L., et al. J. Biol. Chem. 2004, 279, 39214-39222. DOI: https://doi.org/10.1074/jbc.M402093200
Hawkins, C. L.; Davies, M. J. Free Radic. Biol. Med. 2005, 39, 900-912. DOI: https://doi.org/10.1016/j.freeradbiomed.2005.05.011
Mozziconacci, O., et al. Free Radical Bio. Med. 2007, 43, 229-240. DOI: https://doi.org/10.1016/j.freeradbiomed.2007.04.006
Galletti, P., et al. FEBS J. 2007, 274, 5263-5277. DOI: https://doi.org/10.1111/j.1742-4658.2007.06048.x
Chatgilialoglu, C., et al. J. Proteomics. 2011, 74, 2264-2273. DOI: https://doi.org/10.1016/j.jprot.2011.03.012
Moosmann, B. Exp. Gerontol. 2011, 46, 164-169. DOI: https://doi.org/10.1016/j.exger.2010.08.034
Kwon, D. Y., et al. J. Nutr. 2009, 139, 63-68. DOI: https://doi.org/10.3138/ctr.139.009
Tsakiris, S., et al. Pharmacol. Res. 2006, 53, 386-390. DOI: https://doi.org/10.1016/j.phrs.2006.01.008
Miller, B. L.; Williams, T. D.; Schöneich, C. J. Am. Chem. Soc. 1996, 118, 11014-11025. DOI: https://doi.org/10.1021/ja962032l
Näslund, J., et al. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 8378-8382. DOI: https://doi.org/10.1073/pnas.91.18.8378
Bhatia, S., et al. Biochem. J. 2012, 442, 713-721. DOI: https://doi.org/10.1042/BJ20111166
Nagy, P.; Kettle, A. J.; Winterbourn, C. C. Free Radic. Biol. Med. 2010, 49, 792-799. DOI: https://doi.org/10.1016/j.freeradbiomed.2010.05.033
Kontush, A.; Chapman, M. J. Curr. Opin. Lipidol. 2010, 21, 312-318. DOI: https://doi.org/10.1097/MOL.0b013e32833bcdc1
Thariat, J., et al. Biochimie. 2008, 90, 1442-1451. DOI: https://doi.org/10.1016/j.biochi.2008.04.018
Nakao, L. S., et al. FEBS Lett. 2003, 547, 87-91. DOI: https://doi.org/10.1016/S0014-5793(03)00674-4
Fay, D. S., et al. J. Neurochem. 1998, 71, 1616-1625. DOI: https://doi.org/10.1046/j.1471-4159.1998.71041616.x
Clementi, M. E., et al. Biochem. Biophys. Res. Commun. 2006, 342, 206-213.
Ali, F. E., et al. J. Pept. Sci. 2005, 11, 353-360. DOI: https://doi.org/10.1002/psc.626
Schöneich, C. Biochim. Biophys. Acta. 2005, 1703, 111-119. DOI: https://doi.org/10.1016/j.bbapap.2004.09.009
Clementi, M. E., et al. Int. J. Biochem. Cell Biol. 2004, 36, 2066-2076. DOI: https://doi.org/10.1016/j.biocel.2004.03.006
Misiti, F., et al. Neuroscience. 2004, 126, 297-303. DOI: https://doi.org/10.1016/j.neuroscience.2004.03.047
Butterfield, D. A.; Kanski, J. Peptides. 2002, 23, 1299-1309. DOI: https://doi.org/10.1016/S0196-9781(02)00066-9
Varadarajan, S., et al. J. Struct. Biol. 2000, 130, 184-208. DOI: https://doi.org/10.1006/jsbi.2000.4274
Yatin, S. M., et al. Neurobiol. Aging. 1999, 20, 325-330. DOI: https://doi.org/10.1016/S0197-4580(99)00056-1
Pike, C. J., et al. J. Neurochem. 1995, 64, 253-265. DOI: https://doi.org/10.1046/j.1471-4159.1995.64010253.x
Varadarajan, S., et al. Brain Res. Bull. 1999, 50, 133-141. DOI: https://doi.org/10.1016/S0361-9230(99)00093-3
Francisco-Marquez, M.; Galano, A. J. Phys. Chem. B. 2009, 113, 4947-4952. DOI: https://doi.org/10.1021/jp900118f
Boyd-Kimball, D., et al. Peptides. 2005, 26, 665-673. DOI: https://doi.org/10.1016/j.peptides.2004.11.001
Hawkins, C. L.; Davies, M. J. J. Chem. Soc. Perk. Trans. 2. 1998, 2617-2622. DOI: https://doi.org/10.1039/a806666c
Chan, B., et al. J. Org. Chem. 2012, 77, 9807-9812. DOI: https://doi.org/10.1021/jo3021538
Trouillas, P.; Bergès, J.; Houée-Lévin, C. Int. J. Quantum Chem. 2011, 111, 1143-1151. DOI: https://doi.org/10.1002/qua.22556
Pryor, W. A. Free Radical Bio. Med. 1988, 4, 219-223. DOI: https://doi.org/10.1016/0891-5849(88)90043-3
Vijayalaxmi, et al. Int. J. Radiat. Oncol. Biol. Phys. 2004, 59, 639-653.
Candeias, L. P.; Steenken, S. Chem. - Eur. J. 2000, 6, 475-484. DOI: https://doi.org/10.1002/(SICI)1521-3765(20000204)6:3<475::AID-CHEM475>3.0.CO;2-E
Chatgilialoglu, C., et al. Angew. Chem. Int. Ed. Engl. 2009, 48, 2214-2217. DOI: https://doi.org/10.1002/anie.200805372
Galano, A.; Alvarez-Idaboy, J. R. Org. Lett. 2009, 11, 5114-5117. DOI: https://doi.org/10.1021/ol901862h
Weinstein, J.; Bielski, B. H. J. J. Am. Chem. Soc. 1979, 101, 58-62. DOI: https://doi.org/10.1021/ja00495a010
Remucal, C. K.; Sedlak, D. L., in: ACS Symp. Ser., Vol. 1071, 2011, 177-197. DOI: https://doi.org/10.1021/bk-2011-1071.ch009
Salgado, P., et al. Journal of the Chilean Chemical Society. 2013, 58, 2096-2101. DOI: https://doi.org/10.4067/S0717-97072013000400043
Bokare, A. D.; Choi, W. Environ. Sci. Technol. 2010, 44, 7232-7237. DOI: https://doi.org/10.1021/es903930h
Yao, B., et al., in: Adv. Mater. Res., Vol. 1010-1012, 2014, 84-87. DOI: https://doi.org/10.4028/www.scientific.net/AMR.1010-1012.84
Bang, S., et al. Angew. Chem. Int. Ed. Engl. 2014, 53, 7843-7847. DOI: https://doi.org/10.1002/anie.201404556
Silaghi-Dumitrescu, R. Arch. Biochem. Biophys. 2004, 424, 137-140. DOI: https://doi.org/10.1016/j.abb.2004.02.017
Sutton, H. C. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases. 1989, 85, 883- 893. DOI: https://doi.org/10.1039/f19898500883
Hong, J.; Schöneich, C. Free Radic. Biol. Med. 2001, 31, 1432-1441. DOI: https://doi.org/10.1016/S0891-5849(01)00722-5
Berthon, G. Agents Actions. 1993, 39, 210-217. DOI: https://doi.org/10.1007/BF01998975
Galano, A.; Francisco Marquez, M.; Pérez-González, A. Chem. Res. Toxicol. 2014, 27, 904-918. DOI: https://doi.org/10.1021/tx500065y
Galano, A., et al. J. Pineal Res. 2014,
Zheng, R., et al. Chem. Soc. Rev. 2010, 39, 2827-2834. DOI: https://doi.org/10.1039/b924875g
Loeb, L. A. Cancer Res. 1989, 49, 5489-5496.
Shuryak, I.; Brenner, D. J. J. Theor. Biol. 2009, 261, 305-317. DOI: https://doi.org/10.1016/j.jtbi.2009.08.003
Culard, F., et al. J. Mol. Biol. 2003, 328, 1185-1195. DOI: https://doi.org/10.1016/S0022-2836(03)00361-9
Jolivet, E., et al. Mol. Microbiol. 2006, 59, 338-349. DOI: https://doi.org/10.1111/j.1365-2958.2005.04946.x
Kowalczyk, A.; Serafin, E.; Pucha?a, M. Int. J. Radiat Biol. 2008, 84, 15-22. DOI: https://doi.org/10.1080/09553000701616056
Liu, Y., et al. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 4191-4196. DOI: https://doi.org/10.1073/pnas.0630387100
Gorbunova, V., et al. Nucleic Acids Res. 2007, 35, 7466-7474. DOI: https://doi.org/10.1093/nar/gkm756
Schulte-Frohlinde, D.; Behrens, G.; Önal, A. Int. J. Radiat Biol. 1986, 50, 103-110. DOI: https://doi.org/10.1080/09553008614550481
Jaruga, P.; Dizdaroglu, M. Nucleic Acids Res. 1996, 24, 1389-1394. DOI: https://doi.org/10.1093/nar/24.8.1389
Yakes, F. M.; Van Houten, B. Proc. Natl. Acad. Sci. USA. 1997, 94, 514-519. DOI: https://doi.org/10.1073/pnas.94.2.514
Anderson, R. F., et al. Free Radic. Res. 2000, 33, 91-103. DOI: https://doi.org/10.1080/10715760000300651
Anderson, R. F., et al. Carcinogenesis. 2001, 22, 1189-1193. DOI: https://doi.org/10.1093/carcin/22.8.1189
Fu, H., et al. J. Radiat. Res. 2008, 49, 609-614. DOI: https://doi.org/10.1269/jrr.08056
Milligan, J. R., et al. J. Am. Chem. Soc. 2004, 126, 1682-1687. DOI: https://doi.org/10.1021/ja030319u
Jiang, Y., et al. Radiat. Phys. Chem. 1999, 54, 349-353. DOI: https://doi.org/10.1016/S0969-806X(98)00220-5
Ly, A., et al. Biochemistry. 2004, 43, 9098-9104. DOI: https://doi.org/10.1021/bi0494830
Jovanovic, S. V.; Simic, M. G. Biochim. Biophys. Acta. 1989, 1008, 39-44. DOI: https://doi.org/10.1016/0167-4781(89)90167-X
Anderson, R. F.; Harris, T. A. Free Radic. Res. 2003, 37, 1131-1136. DOI: https://doi.org/10.1080/10715760310001604134
Ly, A., et al. Org. Biomol. Chem. 2005, 3, 917-923. DOI: https://doi.org/10.1039/b418681h
Pellmar, T. C.; Roney, D.; Lepinski, D. L. Brain Res. 1992, 583, 194-200. DOI: https://doi.org/10.1016/S0006-8993(10)80024-1
Pujari, G., et al. Mutat. Res. 2009, 675, 23-28. DOI: https://doi.org/10.1016/j.mrgentox.2009.02.001
Kirsch, M., et al. Chem. Eur. J. 2001, 7, 3313-3320. DOI: https://doi.org/10.1002/1521-3765(20010803)7:15<3313::AID-CHEM3313>3.0.CO;2-7
Gebicki, J. M., et al. Amino Acids. 2010, 39, 1131-1137. DOI: https://doi.org/10.1007/s00726-010-0610-7
Alvarez-Idaboy, J. R.; Galano, A. J. Phys. Chem. B. 2012, 116, 9316-9325. DOI: https://doi.org/10.1021/jp303116n
Nauser, T.; Koppenol, W. H.; Schöneich, C. Free Radic. Biol. Med. 2014, 80, 158-163. DOI: https://doi.org/10.1016/j.freeradbiomed.2014.12.006
Hill, B. G.; Bhatnagar, A. J. Mol. Cell. Cardiol. 2012, 52, 559-567. DOI: https://doi.org/10.1016/j.yjmcc.2011.07.009
Klatt, P.; Lamas, S. Eur. J. Biochem. 2000, 267, 4928-4944. DOI: https://doi.org/10.1046/j.1432-1327.2000.01601.x
Adachi, T.; Schöneich, C.; Cohen, R. A. Drug Discov. Today Dis. Mech. 2005, 2, 39-46. DOI: https://doi.org/10.1016/j.ddmec.2005.05.022
Rao, A. V.; Agarwal, S. Nutr. Res. 1999, 19, 305-323. DOI: https://doi.org/10.1016/S0271-5317(98)00193-6
Halliwell, B., et al. Crit. Rev. Food Sci. Nutr. 1995, 35, 7-20. DOI: https://doi.org/10.1080/10408399509527682
Halliwell, B.; Whiteman, M. Br. J. Pharmacol. 2004, 142, 231-255. DOI: https://doi.org/10.1038/sj.bjp.0705776
Chaiyasit, W., et al. Crit. Rev. Food Sci. Nutr. 2007, 47, 299-317. DOI: https://doi.org/10.1080/10408390600754248
Rose, R. C.; Bode, A. M. FASEB J. 1993, 7, 1135-1142. DOI: https://doi.org/10.1096/fasebj.7.12.8375611
Galano, A.; Francisco-Marquez, M. J. Phys. Chem. B. 2009, 113, 11338-11345. DOI: https://doi.org/10.1021/jp904061q
Mortensen, A., et al. FEBS Lett. 1997, 418, 91-97. DOI: https://doi.org/10.1016/S0014-5793(97)01355-0
Liebler, D. C.; McClure, T. D. Chem. Res. Toxicol. 1996, 9, 8-11. DOI: https://doi.org/10.1021/tx950151t
Mortensen, A. Free Radic. Res. 2002, 36, 211-216. DOI: https://doi.org/10.1080/10715760290006501
Joshi, R., et al. Free Radic. Res. 2012, 46, 11-20. DOI: https://doi.org/10.3109/10715762.2011.633518
Hata, K., et al. J. Radiat. Res. 2011, 52, 15-23.
Pérez-González, A.; Galano, A. J. Phys. Chem. B. 2011, 115, 1306-1314. DOI: https://doi.org/10.1021/jp110400t
Galano, A. PCCP. 2011, 13, 7178-7188. DOI: https://doi.org/10.1039/c0cp02801k
Galano, A.; Tan, D. X.; Reiter, R. J. J. Pineal Res. 2013, 54, 245-257. DOI: https://doi.org/10.1111/jpi.12010
Galano, A.; Tan, D. X.; Reiter, R. J. RSC Advances. 2014, 4, 5220-5227. DOI: https://doi.org/10.1039/c3ra44604b
Dhiman, S. B.; Kamat, J. P.; Naik, D. B. Chem. Biol. Interact. 2009, 182, 119-127. DOI: https://doi.org/10.1016/j.cbi.2009.07.025
Sakurai, K., et al. Free Radic. Res. 2004, 38, 487-494. DOI: https://doi.org/10.1080/1071576042000209808
Tamba, M.; Torreggiani, A. Int. J. Radiat Biol. 1999, 75, 1177-1188. DOI: https://doi.org/10.1080/095530099139656
Barzegar, A. Food Chem. 2012, 135, 1369-1376. DOI: https://doi.org/10.1016/j.foodchem.2012.05.070
Touriño, S., et al. Chem. Res. Toxicol. 2008, 21, 696-704. DOI: https://doi.org/10.1021/tx700425n
Pérez-González, A.; Galano, A. J. Phys. Chem. B. 2012, 116, 1180-1188. DOI: https://doi.org/10.1021/jp209930y
Nakanishi, I., et al. Chem. Res. Toxicol. 2004, 17, 26-31. DOI: https://doi.org/10.1021/tx034134c
Nakanishi, I., et al. Chem. Lett. 2007, 36, 1276-1277. DOI: https://doi.org/10.1246/cl.2007.1276
Hill, T. J., et al. J. Am. Chem. Soc. 1995, 117, 8322-8326. DOI: https://doi.org/10.1021/ja00137a004
Packer, J. E., et al. Biochem. Biophys. Res. Commun. 1981, 98, 901-906. DOI: https://doi.org/10.1016/0006-291X(81)91196-7
Everett, S. A., et al. Biochem. Soc. Trans. 1995, 23, 230S. DOI: https://doi.org/10.1042/bst023230s
Galano, A.; Vargas, R.; Martínez, A. PCCP. 2010, 12, 193-200. DOI: https://doi.org/10.1039/B917636E
Martínez, A.; Hernández-Marin, E.; Galano, A. Food and Func-tion. 2012, 3, 442-450. DOI: https://doi.org/10.1039/c2fo10229c
Sueishi, Y., et al. Food Chem. 2011, 129, 866-870. DOI: https://doi.org/10.1016/j.foodchem.2011.05.036
Cao, L., et al. Anal. Methods. 2014, 6, 7149-7153. DOI: https://doi.org/10.1039/C4AY01276C
Mendoza-Wilson, A. M.; Castro-Arredondo, S. I.; Baland-rán-Quintana, R. R. Food Chem. 2014, 161, 155-161. DOI: https://doi.org/10.1016/j.foodchem.2014.03.111
Li, X., et al. Chem. Biol. Interact. 2014, 219, 221-228. DOI: https://doi.org/10.1016/j.cbi.2014.06.014
Wang, G., et al. Food Chem. 2014, 171, 89-97. DOI: https://doi.org/10.1016/j.foodchem.2014.08.106
Praveena, R., et al. J. Mol. Struct. 2014, 1061, 114-123. DOI: https://doi.org/10.1016/j.molstruc.2014.01.002
Mikulski, D.; Eder, K.; Molski, M. J. Theor. Comput. Chem. 2014, 13, DOI: https://doi.org/10.1142/S0219633614500047
Galano, A.; Martínez, A. J. Phys. Chem. B. 2012, 116, 1200-1208. DOI: https://doi.org/10.1021/jp211172f
Martínez, A.; Galano, A.; Vargas, R. J. Phys. Chem. B. 2011, 115, 12591-12598. DOI: https://doi.org/10.1021/jp205496u
Dimitri? Markovi?, J. M., et al. RSC Advances. 2014, 4, 32228-32236. DOI: https://doi.org/10.1039/C4RA02577F
Mazzone, G.; Toscano, M.; Russo, N. J. Agric. Food Chem. 2013, 61, 9650-9657. DOI: https://doi.org/10.1021/jf403262k
Xue, Y., et al. Comput. Theor. Chem. 2012, 982, 74-83. DOI: https://doi.org/10.1016/j.comptc.2011.12.020
Castañeda-Arriaga, R.; Alvarez-Idaboy, J. R. J. Chem. Inf. Mod-el. 2014, 54, 1642-1652. DOI: https://doi.org/10.1021/ci500213p
Farmanzadeh, D.; Najafi, M. Bull. Chem. Soc. Jpn. 2013, 86, 1041-1050. DOI: https://doi.org/10.1246/bcsj.20130035
Galano, A.; Alvarez-Idaboy, J. R. RSC Adv. 2011, 1, 1763-1771. DOI: https://doi.org/10.1039/c1ra00474c
Galano, A. Theor. Chem. Acc. 2011, 130, 51-60. DOI: https://doi.org/10.1007/s00214-011-0958-0
Jeremi?, S., et al. Comput. Theor. Chem. 2014, 1047, 15-21.
Xue, Y., et al. Food Chem. 2014, 151, 198-206. DOI: https://doi.org/10.1016/j.foodchem.2013.11.064
Medina, M. E.; Galano, A.; Alvarez-Idaboy, J. R. Phys. Chem. Chem. Phys. 2014, 16, 1197-1207. DOI: https://doi.org/10.1039/C3CP53889C
Markovi?, Z., et al. Monatsh. Chem. 2014, 145, 953-962. DOI: https://doi.org/10.1007/s00706-014-1163-3
Pérez-González, A.; Galano, A.; Alvarez-Idaboy, J. R. New J. Chem. 2014, 38, 2639-2652. DOI: https://doi.org/10.1039/c4nj00071d
Medina, M. E.; Iuga, C.; Álvarez-Idaboy, J. R. RSC Adv. 2014, 4, 52920-52932. DOI: https://doi.org/10.1039/C4RA08394F
Caicedo, C., et al. RSC Adv. 2014, 4, 38918-38930. DOI: https://doi.org/10.1039/C4RA04758C
Iuga, C.; Alvarez-Idaboy, J. R.; Russo, N. J. Org. Chem. 2012, 77, 3868-3877. DOI: https://doi.org/10.1021/jo3002134
Cordova-Gomez, M.; Galano, A.; Alvarez-Idaboy, J. R. RSC Adv. 2013, 3, 20209-20218. DOI: https://doi.org/10.1039/c3ra42923g
hang, Y. J., et al. J. Org. Chem. 2009, 74, 5025-5031. DOI: https://doi.org/10.1021/jo9007095
Xue, Y., et al. J. Phys. Org. Chem. 2013, 26, 240-248. DOI: https://doi.org/10.1002/poc.3074
Markovi?, Z., et al. Food Chem. 2012, 135, 2070-2077. DOI: https://doi.org/10.1016/j.foodchem.2012.05.119
Di Meo, F., et al. J. Phys. Chem. A. 2013, 117, 2082-2092. DOI: https://doi.org/10.1021/jp3116319
Erdemgil, F. Z., et al. Talanta. 2007, 72, 489-496. DOI: https://doi.org/10.1016/j.talanta.2006.11.007
Galano, A.; Alvarez-Idaboy, J. R. J. Comput. Chem. 2013, 34, 2430-2445. DOI: https://doi.org/10.1002/jcc.23409
Mayer, J. M., et al. J. Am. Chem. Soc. 2002, 124, 11142-11147. DOI: https://doi.org/10.1021/ja012732c
DiLabio, G. A.; Ingold, K. U. J. Am. Chem. Soc. 2005, 127, 6693-6699. DOI: https://doi.org/10.1021/ja0500409
Sirjoosingh, A.; Hammes-Schiffer, S. J. Phys. Chem. A. 2011, 115, 2367-2377. DOI: https://doi.org/10.1021/jp111210c
Tishchenko, O., et al. J. Am. Chem. Soc. 2008, 130, 7000-7010. DOI: https://doi.org/10.1021/ja7102907
DiLabio, G. A.; Johnson, E. R. J. Am. Chem. Soc. 2007, 129, 6199-6203. DOI: https://doi.org/10.1021/ja068090g
Ami?, A., et al. Food Chem. 2014, 152, 578-585. DOI: https://doi.org/10.1016/j.foodchem.2013.12.025
Barzegar, A. PLoS One. 2012, 7, DOI: https://doi.org/10.1371/journal.pone.0039660
Nakayama, T.; Uno, B. Chem. Lett. 2010, 39, 162-164. DOI: https://doi.org/10.1246/cl.2010.162
Inagaki, T.; Yamamoto, T. J. Phys. Chem. B. 2014, 118, 937-950. DOI: https://doi.org/10.1021/jp410263f
Li, M., et al. Int. J. Quantum Chem. 2013, 113, 966-974. DOI: https://doi.org/10.1002/qua.24060
Hanthorn, J. J., et al. J. Org. Chem. 2012, 77, 6895-6907. DOI: https://doi.org/10.1021/jo301012x
Amorati, R., et al. Chem. Eur. J. 2012, 18, 6370-6379. DOI: https://doi.org/10.1002/chem.201103459
Lynett, P. T., et al. Org. Biomol. Chem. 2011, 9, 3320-3330. DOI: https://doi.org/10.1039/c1ob05192j
Vaidya, V.; Ingold, K. U.; Pratt, D. A. Angew. Chem. Int. Ed. Engl. 2009, 48, 157-160. DOI: https://doi.org/10.1002/anie.200804560
Zaware, S. B., et al. New J. Chem. 2011, 35, 1615-1623. DOI: https://doi.org/10.1039/c1nj20176j
Litwinienko, G.; Ingold, K. U. J. Org. Chem. 2003, 68, 3433-3438. DOI: https://doi.org/10.1021/jo026917t
Litwinienko, G.; Ingold, K. U. J. Org. Chem. 2004, 69, 5888-5896. DOI: https://doi.org/10.1021/jo049254j
Litwinienko, G.; Ingold, K. U. J. Org. Chem. 2005, 70, 8982-8990. DOI: https://doi.org/10.1021/jo051474p
Litwinienko, G.; Ingold, K. U. Acc. Chem. Res. 2007, 40, 222-230. DOI: https://doi.org/10.1021/ar0682029
Foti, M. C. J. Pharm. Pharmacol. 2007, 59, 1673-1685. DOI: https://doi.org/10.1211/jpp.59.12.0010
Galano, A., et al. Chem. Phys. 2009, 363, 13-23. DOI: https://doi.org/10.1016/j.chemphys.2009.07.003
Urbaniak, A.; Szelag, M.; Molski, M. Comput. Theor. Chem. 2013, 1012, 33-40. DOI: https://doi.org/10.1016/j.comptc.2013.02.018
Fifen, J. J., et al. Comput. Theor. Chem. 2011, 966, 232-243. DOI: https://doi.org/10.1016/j.comptc.2011.03.006
Benayahoum, A.; Amira-Guebailia, H.; Houache, O. Comput. Theor. Chem. 2014, 1037, 1-9. DOI: https://doi.org/10.1016/j.comptc.2014.03.016
Xue, Y., et al. J. Mol. Model. 2013, 19, 3851-3862. DOI: https://doi.org/10.1007/s00894-013-1921-x
Qian, Y. P., et al. Food Chem. 2011, 126, 241-248. DOI: https://doi.org/10.1016/j.foodchem.2010.11.011
Musialik, M., et al. J. Org. Chem. 2009, 74, 2699-2709. DOI: https://doi.org/10.1021/jo802716v
Musialik, M.; Litwinienko, G. Org. Lett. 2005, 7, 4951-4954. DOI: https://doi.org/10.1021/ol051962j
Dimitri? Markovi?, J. M., et al. Struct. Chem. 2014, 25, 1795-1804. DOI: https://doi.org/10.1007/s11224-014-0453-z
Najafi, M. Monatsh. Chem. 2014, 145, 291-299. DOI: https://doi.org/10.1007/s00706-013-1099-z
Najafi, M. J. Mex. Chem. Soc. 2014, 58, 36-45.
Dorovi?, J., et al. J. Mol. Model. 2014, 20,
Markovi?, Z., et al. Chemical Papers. 2013, 67, 1453-1461.
Van Wenum, E.; Jurczakowski, R.; Litwinienko, G. J. Org. Chem. 2013, 78, 9102-9112. DOI: https://doi.org/10.1021/jo401296k
Farmanzadeh, D.; Najafi, M. J. Theor. Comput. Chem. 2013, 12, DOI: https://doi.org/10.1142/S0219633613500582
Bamonti, L., et al. Bioorg. Med. Chem. 2013, 21, 5039-5046. DOI: https://doi.org/10.1016/j.bmc.2013.06.050
Lengyel, J., et al. PCCP. 2013, 15, 10895-10903. DOI: https://doi.org/10.1039/c3cp00095h
Senthil kumar, K.; Kumaresan, R. Comput. Theor. Chem. 2012, 985, 14-22. DOI: https://doi.org/10.1016/j.comptc.2012.01.028
Alberto, M. E., et al. Phys. Chem. Chem. Phys. 2013, 15, 4642-4650. DOI: https://doi.org/10.1039/c3cp43319f
Najafi, M.; Najafi, M.; Najafi, H. J. Theor. Comput. Chem. 2013, 12, DOI: https://doi.org/10.1142/S0219633612501167
Cao, X. Y., et al. Chem. Eur. J. 2012, 18, 5898-5905. DOI: https://doi.org/10.1002/chem.201103897
Najafi, M.; Zahedi, M.; Klein, E. Comput. Theor. Chem. 2011, 978, 16-28. DOI: https://doi.org/10.1016/j.comptc.2011.09.014
Najafi, M., et al. Comput. Theor. Chem. 2011, 969, 1-12.
Klein, E.; Lukeš, V.; Il?in, M. Chem. Phys. 2007, 336, 51-57. DOI: https://doi.org/10.1016/j.chemphys.2007.05.007
López-Munguía, A., et al. PLoS One. 2011, 6, DOI: https://doi.org/10.1371/journal.pone.0020115
Cheng, L. X., et al. Org. Biomol. Chem. 2010, 8, 1058-1063.
Markovi?, Z. S., et al. J. Mol. Model. 2011, 17, 2575-2584. DOI: https://doi.org/10.1007/s00894-010-0942-y
Jeremi?, S. R., et al. Monatsh. Chem. 2012, 143, 427-435. DOI: https://doi.org/10.1007/s00706-011-0695-z
Markovi?, Z. S., et al. Int. J. Quantum Chem. 2012, 112, 2009-2017.
Focsan, A. L.; Pan, S.; Kispert, L. D. J. Phys. Chem. B. 2014, 118, 2331-2339. DOI: https://doi.org/10.1021/jp4121436
Markovi?, Z., et al. PCCP. 2013, 15, 7370-7378.
Nakanishi, I., et al. Org. Biomol. Chem. 2005, 3, 626-629. DOI: https://doi.org/10.1039/b416572a
Ouchi, A., et al. J. Phys. Chem. B. 2009, 113, 13322-13331. DOI: https://doi.org/10.1021/jp906425r
Lhiaubet-Vallet, V., et al. J. Phys. Chem. B. 2007, 111, 8277-8282. DOI: https://doi.org/10.1021/jp071524p
Estévez, L.; Otero, N.; Mosquera, R. A. J. Phys. Chem. B. 2010, 114, 9706-9712. DOI: https://doi.org/10.1021/jp1041266
Marino, T.; Galano, A.; Russo, N. J. Phys. Chem. B. 2014, 118, 10380-10389.
Medina, M. E.; Iuga, C.; Alvarez-Idaboy, J. R. PCCP. 2013, 15, 13137-13146. DOI: https://doi.org/10.1039/c3cp51644j
Amorati, R., et al. J. Agric. Food Chem. 2006, 54, 2932-2937. DOI: https://doi.org/10.1021/jf053159+
Bayat, A.; Fattahi, A. Comput. Theor. Chem. 2013, 1018, 35-44. DOI: https://doi.org/10.1016/j.comptc.2013.05.026
Stepani?, V., et al. Food Chem. 2013, 141, 1562-1570. DOI: https://doi.org/10.1016/j.foodchem.2013.03.072
Ami?, D., et al. J. Mol. Model. 2013, 19, 2593-2603. DOI: https://doi.org/10.1007/s00894-013-1800-5
Vagánek, A., et al. Comput. Theor. Chem. 2014, 1050, 31-38. DOI: https://doi.org/10.1016/j.comptc.2014.10.020
Estévez, L.; Mosquera, R. A. J. Phys. Chem. A. 2008, 112, 10614-10623. DOI: https://doi.org/10.1021/jp8043237
Javan, A. J.; Javan, M. J.; Tehrani, Z. A. J. Agric. Food Chem. 2013, 61, 1534-1541. DOI: https://doi.org/10.1021/jf304926m
Leopoldini, M., et al. J. Phys. Chem. A. 2004, 108, 4916-4922. DOI: https://doi.org/10.1021/jp037247d
Leopoldini, M.; Russo, N.; Toscano, M. J. Agric. Food Chem. 2007, 55, 7944-7949. DOI: https://doi.org/10.1021/jf070449c
Leopoldini, M., et al. J. Agric. Food Chem. 2010, 58, 8862-8871. DOI: https://doi.org/10.1021/jf101693k
Mazzone, G., et al. Food Chem. 2013, 141, 2017-2024. DOI: https://doi.org/10.1016/j.foodchem.2013.05.071
Mazzone, G., et al. RSC Adv. 2014, 5, 565-575. DOI: https://doi.org/10.1039/C4RA11733F
Pérez-González, A., et al. J. Mex. Chem. Soc. 2012, 56, 241-249.
Zhang, D., et al. J. Phys. Chem. A. 2013, 117, 1784-1794. DOI: https://doi.org/10.1021/jp307746c
Markovi?, Z., et al. Food Chem. 2012, 134, 1754-1760. DOI: https://doi.org/10.1016/j.foodchem.2012.03.124
Ami?, D.; Lu?i?, B. Bioorg. Med. Chem. 2010, 18, 28-35.
Lespade, L.; Bercion, S. Free Radic. Res. 2012, 46, 346-358. DOI: https://doi.org/10.3109/10715762.2012.658514
Mohajeri, A.; Asemani, S. S. J. Mol. Struct. 2009, 930, 15-20. DOI: https://doi.org/10.1016/j.molstruc.2009.04.031
Koopmans, T. Physica. 1934, 1, 104-113. DOI: https://doi.org/10.1016/S0031-8914(34)90011-2
Perdew, J. P., et al. Phys. Rev. Lett. 1982, 49, 1691-1694. DOI: https://doi.org/10.1103/PhysRevLett.49.1691
Ortiz, J. V. Adv. Quantum Chem. 1999, 35, 33-52. DOI: https://doi.org/10.1016/S0065-3276(08)60454-2
Ortiz, J. V. Wiley Interdisciplinary Reviews: Computational Mo-lecular Science. 2013, 3, 123-142.
Galano, A.; Alvarez-Idaboy, J. R. J. Comput. Chem. 2014, 35, 2019-2026. DOI: https://doi.org/10.1002/jcc.23715
Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B. 2009, 113, 6378-6396. DOI: https://doi.org/10.1021/jp810292n
Galano, A.; Tan, D. X.; Reiter, R. J. J. Pineal Res. 2011, 51, 1-16. DOI: https://doi.org/10.1111/j.1600-079X.2011.00916.x
Corchado, J. C., et al. J. Phys. Chem. A. 1998, 102, 2424-2438. DOI: https://doi.org/10.1021/jp9801267
Marcus, R. A. Pure Appl. Chem. 1997, 69, 13-29. DOI: https://doi.org/10.1351/pac199769010013
Marcus, R. A. Rev. Mod. Phys. 1993, 65, 599-610. DOI: https://doi.org/10.1103/RevModPhys.65.599
Pollak, E.; Pechukas, P. J. Am. Chem. Soc. 1978, 100, 2984-2991. DOI: https://doi.org/10.1021/ja00478a009
Fernández-Ramos, A., et al. Theor. Chem. Acc. 2007, 118, 813-826. DOI: https://doi.org/10.1007/s00214-007-0328-0
Fernández-Ramos, A., et al. Chem. Rev. 2006, 106, 4518-4584. DOI: https://doi.org/10.1021/cr050205w
Kuppermann, A.; Truhlar, D. G. J. Am. Chem. Soc. 1971, 93, 1840-1851. DOI: https://doi.org/10.1021/ja00737a002
Garrett, B. C.; Truhlar, D. G. J. Phys. Chem. 1979, 83, 2921-2926. DOI: https://doi.org/10.1021/j100485a023
Skodje, R. T.; Truhlar, D. G.; Garrett, B. C. J. Phys. Chem. 1981, 85, 3019-3023. DOI: https://doi.org/10.1021/j150621a001
Collins, F. C.; Kimball, G. E. J. Colloid Sci. 1949, 4, 425-437. DOI: https://doi.org/10.1016/0095-8522(49)90023-9
Smoluchowski, M. Z. Phys. Chem. 1917, 92,
Einstein, A. Ann. Phys. . 1905, 17, 549–560. DOI: https://doi.org/10.4044/joma1889.17.191_549
Stokes, G. G. Mathematical and Physical Papers. Cambridge: Cambridge University Press, 1903.
Bielski, B. H. J.; Arudi, R. L.; Sutherland, M. W. J. Biol. Chem. 1983, 258, 4759-4761. DOI: https://doi.org/10.1016/S0021-9258(18)32488-8
Bielski, B. H. J., et al. J. Phys. Chem. Ref. Data. 1985, 14, 1041-1100. DOI: https://doi.org/10.1063/1.555739
Baker, M. Z., et al. Int. J. Radiat Biol. 1982, 41, 595-602. DOI: https://doi.org/10.1080/09553008214550691
Asada, K.; Kanematsu, S. Agric. Biol. Chem. 1976, 40, 1891-1892. DOI: https://doi.org/10.1080/00021369.1976.10862321
Galano, A.; Alvarez-Idaboy, J. R.; Francisco-Márquez, M. J. Phys. Chem. B. 2011, 115, 13101-13109. DOI: https://doi.org/10.1021/jp208315k
Joshi, R., et al. J. Agric. Food Chem. 2005, 53, 2696-2703. DOI: https://doi.org/10.1021/jf0489769
Cabelli, D. E.; Bielski, B. H. J. J. Free Radic. Biol. Med. 1986, 2, DOI: https://doi.org/10.1016/8755-9668(86)90026-8
-75.
Nadezhdin, A. D.; Dunford, H. B. Can. J. Chem. 1979, 57, 3017-3022. DOI: https://doi.org/10.1139/v79-491
Nishikimi, M.; Machlin, L. J. Arch. Biochem. Biophys. 1975, 170, 684-689. DOI: https://doi.org/10.1016/0003-9861(75)90165-4
León-Carmona, J. R.; Alvarez-Idaboy, J. R.; Galano, A. PCCP. 2012, 14, 12534-12543. DOI: https://doi.org/10.1039/c2cp40651a
Taubert, D., et al. Free Radical Biology and Medicine. 2003, 35, 1599-1607. DOI: https://doi.org/10.1016/j.freeradbiomed.2003.09.005
Marino, T.; Galano, A.; Russo, N. J. Phys. Chem. B. 2014, 118, 10380-10389. DOI: https://doi.org/10.1021/jp505589b
Galano, A.; León-Carmona, J. R.; Alvarez-Idaboy, J. R. J. Phys. Chem. B. 2012, 116, 7129-7137. DOI: https://doi.org/10.1021/jp302810w
Mahal, H. S.; Badheka, L. P.; Mukherjee, T. Res. Chem. In-termed. 2001, 27, 595-604. DOI: https://doi.org/10.1163/156856701317051699
Guha, S. N.; Priyadarsini, K. I. Int. J. Chem. Kinet. 2000, 32, DOI: https://doi.org/10.1002/(SICI)1097-4601(2000)32:1<17::AID-JCK3>3.0.CO;2-5
-23.
Okada, Y., et al. JAOCS, Journal of the American Oil Chemists’ Society. 2010, 87, 1397-1405. DOI: https://doi.org/10.1007/s11746-010-1628-4
Galano, A., et al. Theor. Chem. Acc. 2012, 131, 1-12.
Storozhok, N. M., et al. Kinet. Catal. 2004, 45, 488-496. DOI: https://doi.org/10.1023/B:KICA.0000038075.46269.a6
Mitarai, A., et al. J. Agric. Food Chem. 2008, 56, 84-91. DOI: https://doi.org/10.1021/jf0720133
Aruoma, O. I., et al. Free Radic. Res. Commun. 1990, 10, 143-157. DOI: https://doi.org/10.3109/10715769009149883
Quintiliani, M., et al. Int. J. Radiat Biol. 1977, 32, 195-202. DOI: https://doi.org/10.1080/09553007714550891
Eriksen, T. E.; Fransson, G. Journal of the Chemical Society, Perkin Transactions 2. 1988, 1117-1122. DOI: https://doi.org/10.1039/p29880001117
Hofstetter, D.; Nauser, T.; Koppenol, W. H. Chem. Res. Toxicol. 2010, 23, 1596-1600. DOI: https://doi.org/10.1021/tx100185k
Kesavan, P. C.; Powers, E. L. Int. J. Radiat Biol. 1985, 48, 223-233. DOI: https://doi.org/10.1080/09553008514551221
Devasagayam, T. P. A., et al. Biochimica et Biophysica Acta Biomembranes. 1996, 1282, 63-70. DOI: https://doi.org/10.1016/0005-2736(96)00040-5
Brezová, V.; Šlebodová, A.; Staško, A. Food Chem. 2009, 114,859-868. DOI: https://doi.org/10.1016/j.foodchem.2008.10.025
Poeggeler, B., et al. Redox Report. 1996, 2, 179-184. DOI: https://doi.org/10.1080/13510002.1996.11747046
Matuszak, Z.; Reszka, K. J.; Chignell, C. F. Free Radic. Biol. Med. 1997, 23, 367-372. DOI: https://doi.org/10.1016/S0891-5849(96)00614-4
Stasica, P.; Ulanski, P.; Rosiak, J. M. J. Radioanal. Nucl. Chem. 1998, 232, 107-113. DOI: https://doi.org/10.1007/BF02383723
Chyan, Y. J., et al. J. Biol. Chem. 1999, 274, 21937-21942. DOI: https://doi.org/10.1074/jbc.274.31.21937
Marshall, K. A., et al. Free Radic. Biol. Med. 1996, 21, 307-315. DOI: https://doi.org/10.1016/0891-5849(96)00046-9
Mahal, H. S.; Sharma, H. S.; Mukherjee, T. Free Radic. Biol. Med. 1999, 26, 557-565. DOI: https://doi.org/10.1016/S0891-5849(98)00226-3
Abe, S., et al. Chem. Pharm. Bull. 2004, 52, 186-191. DOI: https://doi.org/10.1248/cpb.52.186
Lin, M., et al. J. Photochem. Photobiol. B: Biol. 2007, 89, 36-43.
Emanuel, C. J., et al. J. Am. Chem. Soc. 1999, 121, 2927-2928. DOI: https://doi.org/10.1021/ja9839872
Chatgilialoglu, C., et al. J. Am. Chem. Soc. 2000, 122, 9525-9533. DOI: https://doi.org/10.1021/ja001783r
Prior, R. L.; Wu, X.; Schaich, K. J. Agric. Food Chem. 2005, 53, 4290-4302. DOI: https://doi.org/10.1021/jf0502698
Frankel, E. N.; Meyer, A. S. J. Sci. Food Agric. 2000, 80, 1925-1941. DOI: https://doi.org/10.1002/1097-0010(200010)80:13<1925::AID-JSFA714>3.0.CO;2-4
Antolovich, M., et al. Analyst. 2002, 127, 183-198. DOI: https://doi.org/10.1039/b009171p
Huang, D.; Ou, B.; Prior, R. L. J. Agric. Food Chem. 2005, 53, 1841-1856. DOI: https://doi.org/10.1021/jf030723c
Brand-Williams, W.; Cuvelier, M. E.; Berset, C. LWT - Food Sci. Technol. 1995, 28, 25-30. DOI: https://doi.org/10.1016/S0023-6438(95)80008-5
Singleton, V. L.; Orthofer, R.; Lamuela-Raventós, R. M. Meth-ods Enzymol. 1998, 299, 152-178. DOI: https://doi.org/10.1016/S0076-6879(99)99017-1
Benzie, I. F. F.; Strain, J. J. Anal. Biochem. 1996, 239, 70-76. DOI: https://doi.org/10.1006/abio.1996.0292
Cao, G.; Alessio, H. M.; Cutler, R. G. Free Radic. Biol. Med. 1993, 14, 303-311. DOI: https://doi.org/10.1016/0891-5849(93)90027-R
Huang, D., et al. J. Agric. Food Chem. 2002, 50, 1815-1821. DOI: https://doi.org/10.1021/jf0113732
Miller, N. J., et al. Clin. Sci. 1993, 84, 407-412. DOI: https://doi.org/10.1042/cs0840407
Re, R., et al. Free Radic. Biol. Med. 1999, 26, 1231-1237. DOI: https://doi.org/10.1016/S0891-5849(98)00315-3
Wayner, D. D. M., et al. FEBS Lett. 1985, 187, 33-37. DOI: https://doi.org/10.1016/0014-5793(85)81208-4
Jiménez, A., et al. Org. Lett. 2004, 6, 4583-4586. DOI: https://doi.org/10.1021/ol048015f
Porter, W. L. Toxicol. Ind. Health. 1993, 9, 93-122. DOI: https://doi.org/10.1177/0748233793009001-209
Frankel, E. N., et al. J. Agric. Food Chem. 1994, 42, 1054-1059. DOI: https://doi.org/10.1021/jf00041a001
Frankel, E. N., et al. J. Agric. Food Chem. 1996, 44, 131-135. DOI: https://doi.org/10.1021/jf950374p
De Grey, A. D. N. J. DNA Cell Biol. 2002, 21, 251-257. DOI: https://doi.org/10.1089/104454902753759672
Terpinc, P.; Abramovi?, H. Food Chem. 2010, 121, 366-371. DOI: https://doi.org/10.1016/j.foodchem.2009.12.037
Sies, H. Exp. Physiol. 1997, 82, 291-295. DOI: https://doi.org/10.1113/expphysiol.1997.sp004024
Iuga, C.; Alvarez-Idaboy, J. R.; Vivier-Bunge, A. J. Phys. Chem. B. 2011, 115, 12234-12246. DOI: https://doi.org/10.1021/jp206347u
Galano, A.; Francisco-Márquez, M.; Alvarez-Idaboy, J. R. J. Phys. Chem. B. 2011, 115, 8590-8596. DOI: https://doi.org/10.1021/jp2022105
Álvarez-Diduk, R.; Galano, A. J. Phys. Chem. B. 2015, 119, 3479-3491. DOI: https://doi.org/10.1021/acs.jpcb.5b00052
Álvarez-Diduk, R., et al. J. Phys. Chem. B. 2015, 119, 8535-8543. DOI: https://doi.org/10.1021/acs.jpcb.5b04920
Galano, A.; Francisco-Márquez, M.; Alvarez-Idaboy, J. R. PCCP. 2011, 13, 11199-11205. DOI: https://doi.org/10.1039/c1cp20722a
Galano, A.; Pérez-González, A. Theor. Chem. Acc. 2012, 131, 1-13. DOI: https://doi.org/10.1007/s00214-012-1265-0
León-Carmona, J. R.; Galano, A. J. Phys. Chem. B. 2011, 115, 15430-15438. DOI: https://doi.org/10.1021/jp209776x
Galano, A.; Francisco-Marquez, M. J. Phys. Chem. B. 2009, 113, 16077-16081. DOI: https://doi.org/10.1021/jp907906h
Perez-Gonzalez, A.; Muñoz-Rugeles, L.; Alvarez-Idaboy, J. R. RSC Advances. 2014, 4, 56128-56131. DOI: https://doi.org/10.1039/C4RA11635F
Descargas
Publicado
Número
Sección
Licencia
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
