Free Radicals Induced Oxidative Stress at a Molecular Level: The Current Status, Challenges and Perspectives of Computational Chemistry Based Protocols

Authors

  • Annia Galano Universidad Autónoma Metropolitana-Iztapalapa.

DOI:

https://doi.org/10.29356/jmcs.v59i4.81

Keywords:

antioxidants, free radical scavenging, kinetics, mecha-nism of reaction, trends in activity.

Abstract

Oxidative stress is frequently caused by an excess of free radicals and has been associated with a wide variety of health disor-ders. Therefore, finding strategies for scavenging free radicals has be-come an active area of research. This review summarizes, from a physicochemical perspective, relevant strategies to fight oxidative stress via antioxidants, including prevention, deactivation of oxidants, and repair of damaged targets. Different reaction mechanisms in-volved in the chemical protection exerted by antioxidants are dis-cussed, as well as their relative importance depending on several aspects. Some of them are the polarity of the environment, the pH of aqueous phase, and the chemical nature of the reacting radicals. Data that can currently be obtained from computational, quantum, chemis-try, protocols are detailed and their reliability is analyzed. Viable crite-ria to identify optimal antioxidants using such protocols are provided. Current challenges and future directions in this area of research are discussed. A large set of antioxidants are compared and their trends in activity, based on kinetic data, is provided.

Downloads

Download data is not yet available.

Author Biography

Annia Galano, Universidad Autónoma Metropolitana-Iztapalapa.

Departamento de Química

References

Sayre, L. M.; Perry, G.; Smith, M. A. Chem. Res. Toxicol. 2008, 21, 172-188. DOI: https://doi.org/10.1021/tx700210j

Pacher, P.; Beckman, J. S.; Liaudet, L. Physiol. Rev. 2007, 87, 315-424. DOI: https://doi.org/10.1152/physrev.00029.2006

Genestra, M. Cell. Signal. 2007, 19, 1807-1819. DOI: https://doi.org/10.1016/j.cellsig.2007.04.009

Valko, M., et al. Int. J. Biochem. Cell Biol. 2007, 39, 44-84. DOI: https://doi.org/10.1016/j.biocel.2006.07.001

Valko, M., et al. Chem. Biol. Interact. 2006, 160, 1-40. DOI: https://doi.org/10.1016/j.cbi.2005.12.009

Pham-Huy, L. A.; He, H.; Pham-Huy, C. Int. J. Biomed. Sci. 2008, 4, 89-96. DOI: https://doi.org/10.59566/IJBS.2008.4089

Droge, W. Physiol. Rev. 2002, 82, 47-95. DOI: https://doi.org/10.1152/physrev.00018.2001

Young, I. S.; Woodside, J. V. J. Clin. Pathol. 2001, 54, 176-186. DOI: https://doi.org/10.1136/jcp.54.3.176

Halliwell, B. Biochem. Soc. Trans. 2007, 35, 1147-1150. DOI: https://doi.org/10.1042/BST0351147

Kaminskyy, V. O.; Zhivotovsky, B. Antioxid. Redox Signal. 2014, 21, 86-102. DOI: https://doi.org/10.1089/ars.2013.5746

Yin, H.; Zhu, M. Free Radic. Res. 2012, 46, 959-974. DOI: https://doi.org/10.3109/10715762.2012.676642

Griffiths, H. R., et al. Biochem. Soc. Trans. 2011, 39, 1273-1278. DOI: https://doi.org/10.1042/BST0391273

Schetter, A. J.; Heegaard, N. H. H.; Harris, C. C. Carcinogenesis. 2009, 31, 37-49. DOI: https://doi.org/10.1093/carcin/bgp272

Giannapas, M.; Karnis, L.; Dailianis, S. Comp. Biochem. Physi-ol. C Toxicol. Pharmacol. 2012, 55, 182-189. DOI: https://doi.org/10.1016/j.cbpc.2011.08.001

Lantow, M., et al. Radiat. Res. 2006, 165, 88-94. DOI: https://doi.org/10.1667/RR3476.1

Ren, Y., et al. Int. J. Neurosci. 2015, 125, 555-565. DOI: https://doi.org/10.3109/00207454.2014.959121

Niatsetskaya, Z. V., et al. J. Neurosci. 2012, 32, 3235-3244. DOI: https://doi.org/10.1523/JNEUROSCI.6303-11.2012

Maeda, H. Cancer Sci. 2013, 104, 779-789. DOI: https://doi.org/10.1111/cas.12152

Guha, M., et al. J. Pineal Res. 2007, 43, 372-381. DOI: https://doi.org/10.1111/j.1600-079X.2007.00488.x

De Luca, C., et al. Toxicol. Ind. Health. 2009, 25, 259-267. DOI: https://doi.org/10.1177/0748233709103032

Morales-Alamo, D.; Calbet, J. A. L. Free Radic. Res. 2014, 48, 30-42. DOI: https://doi.org/10.3109/10715762.2013.825043

Benameur, L., et al. Bio-Med. Mater. Eng. 2015, 25, S41-S46. DOI: https://doi.org/10.3233/BME-141247

Shiraiwa, M.; Selzle, K.; Pöschl, U. Free Radic. Res. 2012, 46, 927-939. DOI: https://doi.org/10.3109/10715762.2012.663084

Valencia-Islas, N.; Zambrano, A.; Rojas, J. L. J. Chem. Ecol. 2007, 33, 1619-1634. DOI: https://doi.org/10.1007/s10886-007-9330-1

Kami?ski, P.; Kurhalyuk, N.; Szady-Grad, M. Polish J. Environ. Studies. 2007, 16, 555-562.

Vejerano, E.; Lomnicki, S.; Dellinger, B. J. Environ. Monit. 2012, 14, 2803-2806. DOI: https://doi.org/10.1039/c2em30545c

Robinson, E. A.; Johnson, J. D. Mini Rev. Org. Chem. 2011, 8, 401-411. DOI: https://doi.org/10.2174/157019311797440362

Wang, Y., et al. Tobacco Sci. Technol. 2014, 47, 47-53. DOI: https://doi.org/10.1016/j.neubiorev.2014.07.014

Michail, K., et al. Chem. Res. Toxicol. 2013, 26, 1872-1883. DOI: https://doi.org/10.1021/tx4002463

Aleryani, S. L.; Aleryani, R. A.; Al-Akwa, A. A. Drug Test Anal. 2011, 3, 548-551. DOI: https://doi.org/10.1002/dta.224

Narwaley, M., et al. Chem. Res. Toxicol. 2011, 24, 1031-1039. DOI: https://doi.org/10.1021/tx200016h

Karadayian, A. G., et al. Neuroscience. 2015, 304, 47-59. DOI: https://doi.org/10.1016/j.neuroscience.2015.07.012

Albano, E. Proc. Nutr. Soc. 2006, 65, 278-290. DOI: https://doi.org/10.1079/PNS2006496

Spitz, D. R.; Hauer-Jensen, M. Antioxid. Redox Signal. 2014, 20, 1407-1409. DOI: https://doi.org/10.1089/ars.2013.5769

Rancan, F., et al. Skin Res. Technol. 2014, 20, 182-193. DOI: https://doi.org/10.1111/srt.12104

Burlaka, A., et al. Exp. Oncol. 2013, 35, 219-225. DOI: https://doi.org/10.3109/0142159X.2012.737966

Marnett, L. J. Carcinogenesis. 1987, 8, 1365-1373. DOI: https://doi.org/10.1093/carcin/8.10.1365

Pryor, W. A. Annu. Rev. Physiol. 1986, VOL. 48, 657-667. DOI: https://doi.org/10.1146/annurev.ph.48.030186.003301

León-Carmona, J. R.; Galano, A. J. Phys. Chem. B. 2011, 115, 4538-4546. DOI: https://doi.org/10.1021/jp201383y

Galano, A. J. Phys. Chem. B. 2007, 111, 12898-12908. DOI: https://doi.org/10.1021/jp074358u

Martínez, A.; Vargas, R.; Galano, A. J. Phys. Chem. B. 2009, 113, 12113-12120. DOI: https://doi.org/10.1021/jp903958h

Martínez, A.; Vargas, R.; Galano, A. Theor. Chem. Acc. 2010, 127, 595-603. DOI: https://doi.org/10.1007/s00214-010-0753-3

Martínez, A.; Galano, A. Journal of Physical Chemistry C. 2010, 114, 8184-8191. DOI: https://doi.org/10.1021/jp100168q

Brunelli, L.; Crow, J. P.; Beckman, J. S. Arch. Biochem. Biophys. 1995, 316, 327-334. DOI: https://doi.org/10.1006/abbi.1995.1044

Squadrito, G. L.; Pryor, W. A. Free Radical Biology and Medi-cine. 1998, 25, 392-403. DOI: https://doi.org/10.1016/S0891-5849(98)00095-1

Radi, R., et al. Free Radical Biology and Medicine. 2001, 30, 463-488. DOI: https://doi.org/10.1016/S0891-5849(00)00373-7

Douki, T.; Cadet, J. Free Radical Research. 1996, 24, 369-380. DOI: https://doi.org/10.3109/10715769609088035

Wiseman, H.; Halliwell, B. Biochem. J. 1996, 313, 17-29. DOI: https://doi.org/10.1042/bj3130017

Koppal, T., et al. J. Neurochem. 1999, 72, 310-317. DOI: https://doi.org/10.1046/j.1471-4159.1999.0720310.x

Forni, L. G., et al. Chemico-Biological Interactions. 1983, 45, 171-177. DOI: https://doi.org/10.1016/0009-2797(83)90066-2

Prütz, W. A., et al. Arch. Biochem. Biophys. 1985, 243, 125-134. DOI: https://doi.org/10.1016/0003-9861(85)90780-5

Abedinzadeh, Z. Can. J. Physiol. Pharmacol. 2001, 79, 166-170. DOI: https://doi.org/10.1139/cjpp-79-2-166

Giles, G. I.; Tasker, K. M.; Jacob, C. Free Radic. Biol. Med. 2001, 31, 1279-1283. DOI: https://doi.org/10.1016/S0891-5849(01)00710-9

Giles, G. I.; Tasker, K. M.; Jacob, C. Gen. Physiol. Biophys. 2002, 21, 65-72.

Mishanina, T. V.; Libiad, M.; Banerjee, R. Nat. Chem. Biol. 2015, 11, 457-464. DOI: https://doi.org/10.1038/nchembio.1834

Wenska, G., et al. J. Phys. Chem. B. 2008, 112, 10045-10053. DOI: https://doi.org/10.1021/jp8041928

Glass, R. S., et al. Tetrahedron Lett. 1992, 33, 1721-1724. DOI: https://doi.org/10.1016/S0040-4039(00)91715-5

Asmus, K. D. Methods Enzymol. 1990, 186, 168-180. DOI: https://doi.org/10.1016/0076-6879(90)86107-7

Bonifa?i?, M.; Asmus, K. D. J. Org. Chem. 1986, 51, 1216-1222. DOI: https://doi.org/10.1021/jo00358a011

Göbl, M.; Bonifa?i?, M.; Asmus, K. D. J. Am. Chem. Soc. 1984, 106, 5984-5988. DOI: https://doi.org/10.1021/ja00332a039

Fourré, I.; Silvi, B. Heteroat. Chem. 2007, 18, 135-160. DOI: https://doi.org/10.1002/hc.20325

McKee, M. L. J. Phys. Chem. 1992, 96, 1675-1679. DOI: https://doi.org/10.1021/j100183a033

Brunelle, P.; Rauk, A. J. Phys. Chem. A. 2004, 108, 11032-11041. DOI: https://doi.org/10.1021/jp046626j

Schöneich, C., et al. J. Am. Chem. Soc. 2003, 125, 13700-13713. DOI: https://doi.org/10.1021/ja036733b

Wiberg, K. B.; Petersson, G. A. J. Phys. Chem. A. 2014, 118, 2353-2359. DOI: https://doi.org/10.1021/jp500035m

Gerschman, R., et al. Science. 1954, 119, 623-626. DOI: https://doi.org/10.1126/science.119.3097.623

MacNee, W. Eur. J. Pharmacol. 2001, 429, 195-207. DOI: https://doi.org/10.1016/S0014-2999(01)01320-6

Caramori, G.; Papi, A. Thorax. 2004, 59, 170-173. DOI: https://doi.org/10.1136/thorax.2002.002477

Guo, R. F.; Ward, P. A. Antioxid. Redox Signal. 2007, 9, 1991-2002. DOI: https://doi.org/10.1089/ars.2007.1785

Hoshino, Y.; Mishima, M. Antioxid. Redox Signal. 2008, 10, 701-704. DOI: https://doi.org/10.1089/ars.2007.1961

Shadab, M., et al. J. Clin. Diagnostic Res. 2014, 8, BC11-BC13.

Zhao, W., et al. J. Surg. Res. 2014, 187, 542-552. DOI: https://doi.org/10.1016/j.jss.2013.10.033

Ghasemzadeh, N., et al. Hypertension. 2014, 63, 1270-1275. DOI: https://doi.org/10.1161/HYPERTENSIONAHA.113.02360

Cheresh, P., et al. Biochim. Biophys. Acta. 2013, 1832, 1028-1040. DOI: https://doi.org/10.1016/j.bbadis.2012.11.021

Pandey, R., et al. J. Clin. Diagn. Res. 2013, 7, 580-588.

Lanzetti, M., et al. Free Radic. Biol. Med. 2012, 53, 1993-2001. DOI: https://doi.org/10.1016/j.freeradbiomed.2012.09.015

Zuo, L., et al. Frontiers in Biology. 2012, 7, 506-513. DOI: https://doi.org/10.1007/s11515-012-1251-x

Kratzer, E., et al. Am. J. Respir. Cell Mol. Biol. 2012, 47, 688-697. DOI: https://doi.org/10.1165/rcmb.2012-0161OC

Galle, J. Nephrol. Dial. Transplant. 2001, 16, 2135-2137. DOI: https://doi.org/10.1093/ndt/16.11.2135

Yang, S. K., et al. Ren. Fail. 2014, 36, 313-320. DOI: https://doi.org/10.3109/0886022X.2013.846867

Aruna, G.; Ambika Devi, K. Int. J. Pharma Bio Sci. 2014, 5, B127-B133.

Araujo, A. M., et al. Am. J. Trop. Med. Hyg. 2014, 90, 719-723.

Sung, C. C., et al. Oxid. Med. Cell. Longev. 2013, 2013, 301982.

Small, D. M., et al. Nephron Exp. Nephrol. 2013, 122, 123-130. DOI: https://doi.org/10.1159/000350726

Ozbek, E. Int. J. Nephrol. 2012, 2012, 465897. DOI: https://doi.org/10.1155/2012/465897

Massy, Z. A.; Stenvinkel, P.; Drueke, T. B. Semin. Dial. 2009, 22, 405-408. DOI: https://doi.org/10.1111/j.1525-139X.2009.00590.x

Beatty, S., et al. Surv. Ophthalmol. 2000, 45, 115-134. DOI: https://doi.org/10.1016/S0039-6257(00)00140-5

Rosenstein, R. E., et al. J. Pineal Res. 2010, 49, 1-13. DOI: https://doi.org/10.1093/ntr/ntq207

Uchino, Y., et al. Cornea. 2012, 31, S63-S67. DOI: https://doi.org/10.1097/ICO.0b013e31826a5de1

Kaur, J., et al. J. Clin. Diagn. Res. 2012, 6, 1629-1632.

Wakamatsu, T. H., et al. Mol. Vis. 2010, 16, 2465-2475.

Dogru, M., et al. Cornea. 2009, 28, S70-S74. DOI: https://doi.org/10.1097/ICO.0b013e3181ae8689

Dong, A., et al. J. Cell. Physiol. 2009, 219, 544-552. DOI: https://doi.org/10.1002/jcp.21698

Mahajan, A.; Tandon, V. R. J. Indian Rheumatol. Assoc. 2004, 12, 139-142.

Veselinovic, M., et al. Mol. Cell. Biochem. 2014, 391, 225-232. DOI: https://doi.org/10.1007/s11010-014-2006-6

Kundu, S., et al. Free Radical Res. 2012, 46, 1482-1489. DOI: https://doi.org/10.3109/10715762.2012.727991

Wruck, C. J., et al. Ann. Rheum. Dis. 2011, 70, 844-850.

Vasanthi, P.; Nalini, G.; Rajasekhar, G. Int. J. Rheum. Dis. 2009, 12, 29-33. DOI: https://doi.org/10.1111/j.1756-185X.2009.01375.x

Myatt, L. J. Physiol. 2006, 572, 25-30. DOI: https://doi.org/10.1113/jphysiol.2006.104968

Braekke, K.; Harsem, N. K.; Staff, A. C. Pediatr. Res. 2006, 60, 560-564. DOI: https://doi.org/10.1203/01.pdr.0000242299.01219.6a

Biri, A., et al. Gynecol. Obstet. Invest. 2007, 64, 187-192. DOI: https://doi.org/10.1159/000106488

Hracsko, Z., et al. Redox Rep. 2008, 13, 11-16. DOI: https://doi.org/10.1179/135100008X259097

Gitto, E., et al. J. Pineal Res. 2009, 46, 128-139. DOI: https://doi.org/10.1111/j.1600-079X.2008.00649.x

Mert, I., et al. J. Obstet. Gynaecol. Res. 2012, 38, 658-664. DOI: https://doi.org/10.1111/j.1447-0756.2011.01771.x

Valko, M., et al. Mol. Cell. Biochem. 2004, 266, 37-56. DOI: https://doi.org/10.1023/B:MCBI.0000049134.69131.89

Boyd, N. F.; McGuire, V. Free Radic. Biol. Med. 1991, 10, 185-190. DOI: https://doi.org/10.1016/0891-5849(91)90074-D

Nelson, R. L. Free Radic. Biol. Med. 1992, 12, 161-168. DOI: https://doi.org/10.1016/0891-5849(92)90010-E

Knekt, P., et al. Int. J. Cancer. 1994, 56, 379-382. DOI: https://doi.org/10.1002/ijc.2910560315

Omenn, G. S., et al. N. Engl. J. Med. 1996, 334, 1150-1155. DOI: https://doi.org/10.1056/NEJM199605023341802

Willcox, J. K.; Ash, S. L.; Catignani, G. L. Crit. Rev. Food Sci. Nutr. 2004, 44, 275-295. DOI: https://doi.org/10.1080/10408690490468489

Wang, J., et al. Oncol. Lett. 2014, 7, 1159-1164. DOI: https://doi.org/10.1109/LCSYS.2022.3231628

Granados-Principal, S., et al. Biochem. Pharmacol. 2014, 90, 25-33. DOI: https://doi.org/10.1016/j.bcp.2014.04.001

Tekiner-Gulbas, B.; Westwell, A. D.; Suzen, S. Curr. Med. Chem. 2013, 20, 4451-4459. DOI: https://doi.org/10.2174/09298673113203690142

Sayre, L. M.; Smith, M. A.; Perry, G. Curr. Med. Chem. 2001, 8, 721-738. DOI: https://doi.org/10.2174/0929867013372922

Butterfield, D. A., et al. Biochem. Biophys. Res. Commun. 1994, 200, 710-715. DOI: https://doi.org/10.1006/bbrc.1994.1508

Hensley, K., et al. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 3270-3274. DOI: https://doi.org/10.1073/pnas.91.8.3270

Butterfield, D. A., et al. Life Sci. 1996, 58, 217-228. DOI: https://doi.org/10.1007/978-3-663-05759-8_12

Butterfield, D. A. Chem. Res. Toxicol. 1997, 10, 495-506. DOI: https://doi.org/10.1021/tx960130e

Mattson, M. P. Nature. 2004, 430, 631-639. DOI: https://doi.org/10.1038/nature02621

Christen, Y. Am. J. Clin. Nutr. 2000, 71, 621S-629S. DOI: https://doi.org/10.1093/ajcn/71.2.621s

Halliwell, B. Drugs Aging. 2001, 18, 685-716. DOI: https://doi.org/10.2165/00002512-200118090-00004

Butterfield, D. A. Free Radic. Res. 2002, 36, 1307-1313. DOI: https://doi.org/10.1080/1071576021000049890

Cruz-Sanchez, F. F., et al. J. Neurol. Sci. 2010, 299, 163-167. DOI: https://doi.org/10.1016/j.jns.2010.08.029

Bonda, D. J., et al. Neuropharmacology. 2010, 59, 290-294. DOI: https://doi.org/10.1016/j.neuropharm.2010.04.005

Cai, Z.; Zhao, B.; Ratka, A. Neuromolecular Med. 2011, 13, 223-250. DOI: https://doi.org/10.1007/s12017-011-8155-9

Chen, Z.; Zhong, C. Neurosci. Bull. 2014, 30, 271-281. DOI: https://doi.org/10.1007/s12264-013-1423-y

Eskici, G.; Axelsen, P. H. Biochemistry. 2012, 51, 6289-6311. DOI: https://doi.org/10.1021/bi3006169

López, N., et al. J. Alzheimers Dis. 2013, 33, 823-829. DOI: https://doi.org/10.3233/JAD-2012-121528

Meraz-Ríos, M. A., et al. Oxid. Med. Cell. Longev. 2014, 2014, 375968. DOI: https://doi.org/10.1155/2014/375968

Pimentel, C., et al. Oxid. Med. Cell. Longev. 2012, 2012, 132146.

Pocernich, C. B., et al. Curr. Alzheimer Res. 2011, 8, 452-469. DOI: https://doi.org/10.2174/156720511796391908

Pohanka, M. Curr. Med. Chem. 2014, 21, 356-364. DOI: https://doi.org/10.2174/09298673113206660258

Rosini, M., et al. J. Med. Chem. 2014, 57, 2821-2831. DOI: https://doi.org/10.1021/jm400970m

Schrag, M., et al. Neurobiol. Dis. 2013, 59, 100-110. DOI: https://doi.org/10.1016/j.nbd.2013.07.005

Torres, L. L., et al. J. Alzheimers Dis. 2011, 26, 59-68.

Yana, M. H.; Wang, X.; Zhu, X. Free Radical Bio. Med. 2013, 62, 90-101. DOI: https://doi.org/10.1016/j.freeradbiomed.2012.11.014

Zhao, Y.; Zhao, B. Oxid. Med. Cell. Longev. 2013, 2013, 316523.

Janero, D. R. Free Radic. Biol. Med. 1991, 11, 129-144. DOI: https://doi.org/10.1016/0891-5849(91)90193-7

Steinberg, D. Circulation. 1991, 84, 1420-1425. DOI: https://doi.org/10.1161/01.CIR.84.3.1420

Riemersma, R. A., et al. Lancet. 1991, 337, 1-5. DOI: https://doi.org/10.1016/0140-6736(91)93327-6

Salonen, J. T., et al. Circulation. 1992, 86, 803-811. DOI: https://doi.org/10.1161/01.CIR.86.3.803

Street, D. A., et al. Circulation. 1994, 90, 1154-1161. DOI: https://doi.org/10.1161/01.CIR.90.3.1154

Hodis, H. N., et al. J. Am. Med. Assoc. 1995, 273, 1849-1854. DOI: https://doi.org/10.1001/jama.273.23.1849

Kushi, L. H., et al. N. Engl. J. Med. 1996, 334, 1156-1162. DOI: https://doi.org/10.1056/NEJM199605023341803

Stephens, N. G., et al. Lancet. 1996, 347, 781-786. DOI: https://doi.org/10.1016/S0140-6736(96)90866-1

Panasenko, O. M., et al. Free Radical Bio. Med. 1991, 10, 137-148. DOI: https://doi.org/10.1016/0891-5849(91)90007-P

Matsuda, M.; Shimomura, I. Rev. Endocr. Metab. Disord. 2014, 15, 1-10. DOI: https://doi.org/10.1007/s11154-013-9271-7

Eren, E., et al. Redox report: communications in free radical research. 2014, 19, 34-39. DOI: https://doi.org/10.1179/1351000213Y.0000000069

Al-Aubaidy, H. A.; Jelinek, H. F. Redox Rep. 2014, 19, 87-91. DOI: https://doi.org/10.1179/1351000213Y.0000000080

?erban, C.; Dr?gan, S. Curr. Pharm. Design. 2014, 20, 585-600. DOI: https://doi.org/10.2174/138161282004140213145806

Zampetaki, A.; Dudek, K.; Mayr, M. Free Radic. Biol. Med. 2013, 64, 69-77. DOI: https://doi.org/10.1016/j.freeradbiomed.2013.06.025

Cadet, J.; Douki, T.; Ravanat, J.-L. Acc. Chem. Res. 2008, 41, 1075-1083. DOI: https://doi.org/10.1021/ar700245e

Kawanishi, S.; Hiraku, Y.; Oikawa, S. Mutat. Res. 2001, 488, 65-76. DOI: https://doi.org/10.1016/S1383-5742(00)00059-4

Sevilla, M. D.; Besler, B.; Colson, A.-O. J. Phys. Chem. 1995, 99, 1060-1063. DOI: https://doi.org/10.1021/j100003a032

Seidel, C. A. M.; Schulz, A.; Sauer, M. H. M. J. Phys. Chem. 1996, 100, 5541-5553. DOI: https://doi.org/10.1021/jp951507c

Sugiyama, H.; Saito, I. J. Am. Chem. Soc. 1996, 118, 7063-7068. DOI: https://doi.org/10.1021/ja9609821

Melvin, T., et al. J. Am. Chem. Soc. 1996, 118, 10031-10036. DOI: https://doi.org/10.1021/ja961722m

Wetmore, S. D.; Boyd, R. J.; Eriksson, L. A. Chem. Phys. Lett. 2000, 322, 129-135. DOI: https://doi.org/10.1016/S0009-2614(00)00391-2

Langmaier, J., et al. J. Phys. Chem. B. 2004, 108, 15896-15899. DOI: https://doi.org/10.1021/jp0481207

Burrows, C. J.; Muller, J. G. Chem. Rev. 1998, 98, 1109-1152. DOI: https://doi.org/10.1021/cr960421s

Angelov, D., et al. J. Am. Chem. Soc. 1997, 119, 11373-11380. DOI: https://doi.org/10.1021/ja971728r

Melvin, T., et al. Photochem. Photobiol. 1997, 65, 660-665. DOI: https://doi.org/10.1111/j.1751-1097.1997.tb01908.x

Melvin, T., et al. J. Chem. Soc., Chem. Commun. 1995, 653-654. DOI: https://doi.org/10.1039/c39950000653

Saito, I., et al. J. Am. Chem. Soc. 1995, 117, 6406-6407. DOI: https://doi.org/10.1021/ja00128a050

Breslin, D. T.; Schuster, G. B. J. Am. Chem. Soc. 1996, 118, 2311-2319. DOI: https://doi.org/10.1021/ja953714w

Stemp, E. D. A.; Arkin, M. R.; Barton, J. K. J. Am. Chem. Soc. 1997, 119, 2921-2925. DOI: https://doi.org/10.1021/ja963606p

Armitage, B., et al. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 12320-12325. DOI: https://doi.org/10.1073/pnas.94.23.12320

Saito, I., et al. J. Am. Chem. Soc. 1998, 120, 12686-12687. DOI: https://doi.org/10.1021/ja981888i

Yoshioka, Y., et al. J. Am. Chem. Soc. 1999, 121, 8712-8719. DOI: https://doi.org/10.1021/ja991032t

Steenken, S. Chem. Rev. 1989, 89, 503-520. DOI: https://doi.org/10.1021/cr00093a003

Galano, A.; Alvarez-Idaboy, J. R. PCCP. 2012, 14, 12476-12484. DOI: https://doi.org/10.1039/c2cp40799j

Pratviel, G.; Bernadou, J.; Meunier, B. Angew. Chem. Int. Ed. 1995, 34, 746-769. DOI: https://doi.org/10.1002/anie.199507461

Pogozelski, W. K.; Tullius, T. D. Chem. Rev. 1998, 98, 1089-1108. DOI: https://doi.org/10.1021/cr960437i

Shukla, L. I., et al. Radiat. Res. 2004, 161, 582-590. DOI: https://doi.org/10.1667/RR3167

Dedon, P. C. Chem. Res. Toxicol. 2007, 21, 206-219. DOI: https://doi.org/10.1021/tx700283c

Kim, J.; Kreller, C. R.; Greenberg, M. M. J. Org. Chem. 2005, 70, 8122-8129. DOI: https://doi.org/10.1021/jo0512249

Tronche, C.; Goodman, B. K.; Greenberg, M. M. Chem. Biol. 1998, 5, 263-271. DOI: https://doi.org/10.1016/S1074-5521(98)90619-6

Borrego, S., et al. Int. J. Mol. Sci. 2013, 14, 3467-3486. DOI: https://doi.org/10.3390/ijms14023467

De Iuliis, G. N., et al. Biol. Reprod. 2009, 81, 517-524. DOI: https://doi.org/10.1095/biolreprod.109.076836

Mangal, D., et al. Chem. Res. Toxicol. 2009, 22, 788-797. DOI: https://doi.org/10.1021/tx800343c

Tope, A. M.; Panemangalore, M. J. Environ. Sci. Health, Pt. B: Pestic., Food Contam., Agric. Wastes. 2007, 42, 151-155. DOI: https://doi.org/10.1080/03601230601123276

Chen, S. S., et al. J. Urol. 2004, 172, 1418-1421. DOI: https://doi.org/10.1097/01.ju.0000138344.56941.b1

Tarng, D. C., et al. Am. J. Kidney Dis. 2000, 36, 934-944. DOI: https://doi.org/10.1053/ajkd.2000.19086

Kasai, H. Mutat. Res. - Rev. Mut. Res. 1997, 387, 147-163. DOI: https://doi.org/10.1016/S1383-5742(97)00035-5

Mozziconacci, O.; Kerwin, B. A.; Schöneich, C. Chem. Res. Tox-icol. 2010, 23, 1310-1312. DOI: https://doi.org/10.1021/tx100193b

Lund, M. N., et al. Biochem. J. 2008, 410, 565-574. DOI: https://doi.org/10.1042/BJ20071107

Lardinois, O. M.; Ortiz De Montellano, P. R. J. Biol. Chem. 2001, 276, 23186-23191. DOI: https://doi.org/10.1074/jbc.M102084200

Lardinois, O. M.; Medzihradszky, K. F.; Ortiz De Montellano, P. R. J. Biol. Chem. 1999, 274, 35441-35448. DOI: https://doi.org/10.1074/jbc.274.50.35441

Hands, S., et al. J. Biol. Chem. 2011, 286, 44512-44520. DOI: https://doi.org/10.1074/jbc.M111.307587

Hawkins, C. L.; Pattison, D. I.; Davies, M. J. Biochem. J. 2002, 365, 605-615. DOI: https://doi.org/10.1042/bj20020363

Hawkins, C. L.; Davies, M. J. Biochem. J. 1999, 340, 539-548. DOI: https://doi.org/10.1042/bj3400539

Headlam, H. A., et al. Chem. Res. Toxicol. 2000, 13, 1087-1095. DOI: https://doi.org/10.1021/tx0001171

Grune, T., et al. J. Biol. Chem. 1995, 270, 2344-2351. DOI: https://doi.org/10.1074/jbc.270.5.2344

Pacifici, R. E.; Kono, Y.; Davies, K. J. A. J. Biol. Chem. 1993, 268, 15405-15411. DOI: https://doi.org/10.1016/S0021-9258(18)82272-4

Silakov, A., et al. J. Am. Chem. Soc. 2014, 136, 8221-8228. DOI: https://doi.org/10.1021/ja410560p

Decroos, C., et al. Chem. Res. Toxicol. 2014, 27, 627-636. DOI: https://doi.org/10.1021/tx400467p

Chung, T. W., et al. J. Am. Soc. Mass Spectrom. 2012, 23, 1336-1350. DOI: https://doi.org/10.1007/s13361-012-0408-9

Pattison, D. I.; Davies, M. J. Biochemistry. 2004, 43, 4799-4809. DOI: https://doi.org/10.1021/bi035946a

Stadtman, E. R.; Levine, R. L. Amino Acids. 2003, 25, 207-218. DOI: https://doi.org/10.1007/s00726-003-0011-2

Filipe, P., et al. Biochemistry. 2002, 41, 11057-11064. DOI: https://doi.org/10.1021/bi026133+

Elias, R. J.; McClements, D. J.; Decker, E. A. J. Agric. Food Chem. 2005, 53, 10248-10253. DOI: https://doi.org/10.1021/jf0521698

Alvarez, B.; Radi, R. Amino Acids. 2003, 25, 295-311. DOI: https://doi.org/10.1007/s00726-003-0018-8

Nadal, R. C.; Rigby, S. E. J.; Viles, J. H. Biochemistry. 2008, 47, 11653-11664. DOI: https://doi.org/10.1021/bi8011093

Nadal, R. C., et al. Free Radical Bio. Med. 2007, 42, 79-89. DOI: https://doi.org/10.1016/j.freeradbiomed.2006.09.019

Kim, N. H., et al. Mol. Cells. 2006, 22, 220-227. DOI: https://doi.org/10.1016/S1016-8478(23)17413-9

Arenas, A., et al. Chem. Res. Toxicol. 2013, 26, 67-77. DOI: https://doi.org/10.1021/tx300372t

Beal, J. L.; Foster, S. B.; Ashby, M. T. Biochemistry. 2009, 48, 11142-11148. DOI: https://doi.org/10.1021/bi901343d

Estevam, M. L., et al. J. Biol. Chem. 2004, 279, 39214-39222. DOI: https://doi.org/10.1074/jbc.M402093200

Hawkins, C. L.; Davies, M. J. Free Radic. Biol. Med. 2005, 39, 900-912. DOI: https://doi.org/10.1016/j.freeradbiomed.2005.05.011

Mozziconacci, O., et al. Free Radical Bio. Med. 2007, 43, 229-240. DOI: https://doi.org/10.1016/j.freeradbiomed.2007.04.006

Galletti, P., et al. FEBS J. 2007, 274, 5263-5277. DOI: https://doi.org/10.1111/j.1742-4658.2007.06048.x

Chatgilialoglu, C., et al. J. Proteomics. 2011, 74, 2264-2273. DOI: https://doi.org/10.1016/j.jprot.2011.03.012

Moosmann, B. Exp. Gerontol. 2011, 46, 164-169. DOI: https://doi.org/10.1016/j.exger.2010.08.034

Kwon, D. Y., et al. J. Nutr. 2009, 139, 63-68. DOI: https://doi.org/10.3138/ctr.139.009

Tsakiris, S., et al. Pharmacol. Res. 2006, 53, 386-390. DOI: https://doi.org/10.1016/j.phrs.2006.01.008

Miller, B. L.; Williams, T. D.; Schöneich, C. J. Am. Chem. Soc. 1996, 118, 11014-11025. DOI: https://doi.org/10.1021/ja962032l

Näslund, J., et al. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 8378-8382. DOI: https://doi.org/10.1073/pnas.91.18.8378

Bhatia, S., et al. Biochem. J. 2012, 442, 713-721. DOI: https://doi.org/10.1042/BJ20111166

Nagy, P.; Kettle, A. J.; Winterbourn, C. C. Free Radic. Biol. Med. 2010, 49, 792-799. DOI: https://doi.org/10.1016/j.freeradbiomed.2010.05.033

Kontush, A.; Chapman, M. J. Curr. Opin. Lipidol. 2010, 21, 312-318. DOI: https://doi.org/10.1097/MOL.0b013e32833bcdc1

Thariat, J., et al. Biochimie. 2008, 90, 1442-1451. DOI: https://doi.org/10.1016/j.biochi.2008.04.018

Nakao, L. S., et al. FEBS Lett. 2003, 547, 87-91. DOI: https://doi.org/10.1016/S0014-5793(03)00674-4

Fay, D. S., et al. J. Neurochem. 1998, 71, 1616-1625. DOI: https://doi.org/10.1046/j.1471-4159.1998.71041616.x

Clementi, M. E., et al. Biochem. Biophys. Res. Commun. 2006, 342, 206-213.

Ali, F. E., et al. J. Pept. Sci. 2005, 11, 353-360. DOI: https://doi.org/10.1002/psc.626

Schöneich, C. Biochim. Biophys. Acta. 2005, 1703, 111-119. DOI: https://doi.org/10.1016/j.bbapap.2004.09.009

Clementi, M. E., et al. Int. J. Biochem. Cell Biol. 2004, 36, 2066-2076. DOI: https://doi.org/10.1016/j.biocel.2004.03.006

Misiti, F., et al. Neuroscience. 2004, 126, 297-303. DOI: https://doi.org/10.1016/j.neuroscience.2004.03.047

Butterfield, D. A.; Kanski, J. Peptides. 2002, 23, 1299-1309. DOI: https://doi.org/10.1016/S0196-9781(02)00066-9

Varadarajan, S., et al. J. Struct. Biol. 2000, 130, 184-208. DOI: https://doi.org/10.1006/jsbi.2000.4274

Yatin, S. M., et al. Neurobiol. Aging. 1999, 20, 325-330. DOI: https://doi.org/10.1016/S0197-4580(99)00056-1

Pike, C. J., et al. J. Neurochem. 1995, 64, 253-265. DOI: https://doi.org/10.1046/j.1471-4159.1995.64010253.x

Varadarajan, S., et al. Brain Res. Bull. 1999, 50, 133-141. DOI: https://doi.org/10.1016/S0361-9230(99)00093-3

Francisco-Marquez, M.; Galano, A. J. Phys. Chem. B. 2009, 113, 4947-4952. DOI: https://doi.org/10.1021/jp900118f

Boyd-Kimball, D., et al. Peptides. 2005, 26, 665-673. DOI: https://doi.org/10.1016/j.peptides.2004.11.001

Hawkins, C. L.; Davies, M. J. J. Chem. Soc. Perk. Trans. 2. 1998, 2617-2622. DOI: https://doi.org/10.1039/a806666c

Chan, B., et al. J. Org. Chem. 2012, 77, 9807-9812. DOI: https://doi.org/10.1021/jo3021538

Trouillas, P.; Bergès, J.; Houée-Lévin, C. Int. J. Quantum Chem. 2011, 111, 1143-1151. DOI: https://doi.org/10.1002/qua.22556

Pryor, W. A. Free Radical Bio. Med. 1988, 4, 219-223. DOI: https://doi.org/10.1016/0891-5849(88)90043-3

Vijayalaxmi, et al. Int. J. Radiat. Oncol. Biol. Phys. 2004, 59, 639-653.

Candeias, L. P.; Steenken, S. Chem. - Eur. J. 2000, 6, 475-484. DOI: https://doi.org/10.1002/(SICI)1521-3765(20000204)6:3<475::AID-CHEM475>3.0.CO;2-E

Chatgilialoglu, C., et al. Angew. Chem. Int. Ed. Engl. 2009, 48, 2214-2217. DOI: https://doi.org/10.1002/anie.200805372

Galano, A.; Alvarez-Idaboy, J. R. Org. Lett. 2009, 11, 5114-5117. DOI: https://doi.org/10.1021/ol901862h

Weinstein, J.; Bielski, B. H. J. J. Am. Chem. Soc. 1979, 101, 58-62. DOI: https://doi.org/10.1021/ja00495a010

Remucal, C. K.; Sedlak, D. L., in: ACS Symp. Ser., Vol. 1071, 2011, 177-197. DOI: https://doi.org/10.1021/bk-2011-1071.ch009

Salgado, P., et al. Journal of the Chilean Chemical Society. 2013, 58, 2096-2101. DOI: https://doi.org/10.4067/S0717-97072013000400043

Bokare, A. D.; Choi, W. Environ. Sci. Technol. 2010, 44, 7232-7237. DOI: https://doi.org/10.1021/es903930h

Yao, B., et al., in: Adv. Mater. Res., Vol. 1010-1012, 2014, 84-87. DOI: https://doi.org/10.4028/www.scientific.net/AMR.1010-1012.84

Bang, S., et al. Angew. Chem. Int. Ed. Engl. 2014, 53, 7843-7847. DOI: https://doi.org/10.1002/anie.201404556

Silaghi-Dumitrescu, R. Arch. Biochem. Biophys. 2004, 424, 137-140. DOI: https://doi.org/10.1016/j.abb.2004.02.017

Sutton, H. C. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases. 1989, 85, 883- 893. DOI: https://doi.org/10.1039/f19898500883

Hong, J.; Schöneich, C. Free Radic. Biol. Med. 2001, 31, 1432-1441. DOI: https://doi.org/10.1016/S0891-5849(01)00722-5

Berthon, G. Agents Actions. 1993, 39, 210-217. DOI: https://doi.org/10.1007/BF01998975

Galano, A.; Francisco Marquez, M.; Pérez-González, A. Chem. Res. Toxicol. 2014, 27, 904-918. DOI: https://doi.org/10.1021/tx500065y

Galano, A., et al. J. Pineal Res. 2014,

Zheng, R., et al. Chem. Soc. Rev. 2010, 39, 2827-2834. DOI: https://doi.org/10.1039/b924875g

Loeb, L. A. Cancer Res. 1989, 49, 5489-5496.

Shuryak, I.; Brenner, D. J. J. Theor. Biol. 2009, 261, 305-317. DOI: https://doi.org/10.1016/j.jtbi.2009.08.003

Culard, F., et al. J. Mol. Biol. 2003, 328, 1185-1195. DOI: https://doi.org/10.1016/S0022-2836(03)00361-9

Jolivet, E., et al. Mol. Microbiol. 2006, 59, 338-349. DOI: https://doi.org/10.1111/j.1365-2958.2005.04946.x

Kowalczyk, A.; Serafin, E.; Pucha?a, M. Int. J. Radiat Biol. 2008, 84, 15-22. DOI: https://doi.org/10.1080/09553000701616056

Liu, Y., et al. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 4191-4196. DOI: https://doi.org/10.1073/pnas.0630387100

Gorbunova, V., et al. Nucleic Acids Res. 2007, 35, 7466-7474. DOI: https://doi.org/10.1093/nar/gkm756

Schulte-Frohlinde, D.; Behrens, G.; Önal, A. Int. J. Radiat Biol. 1986, 50, 103-110. DOI: https://doi.org/10.1080/09553008614550481

Jaruga, P.; Dizdaroglu, M. Nucleic Acids Res. 1996, 24, 1389-1394. DOI: https://doi.org/10.1093/nar/24.8.1389

Yakes, F. M.; Van Houten, B. Proc. Natl. Acad. Sci. USA. 1997, 94, 514-519. DOI: https://doi.org/10.1073/pnas.94.2.514

Anderson, R. F., et al. Free Radic. Res. 2000, 33, 91-103. DOI: https://doi.org/10.1080/10715760000300651

Anderson, R. F., et al. Carcinogenesis. 2001, 22, 1189-1193. DOI: https://doi.org/10.1093/carcin/22.8.1189

Fu, H., et al. J. Radiat. Res. 2008, 49, 609-614. DOI: https://doi.org/10.1269/jrr.08056

Milligan, J. R., et al. J. Am. Chem. Soc. 2004, 126, 1682-1687. DOI: https://doi.org/10.1021/ja030319u

Jiang, Y., et al. Radiat. Phys. Chem. 1999, 54, 349-353. DOI: https://doi.org/10.1016/S0969-806X(98)00220-5

Ly, A., et al. Biochemistry. 2004, 43, 9098-9104. DOI: https://doi.org/10.1021/bi0494830

Jovanovic, S. V.; Simic, M. G. Biochim. Biophys. Acta. 1989, 1008, 39-44. DOI: https://doi.org/10.1016/0167-4781(89)90167-X

Anderson, R. F.; Harris, T. A. Free Radic. Res. 2003, 37, 1131-1136. DOI: https://doi.org/10.1080/10715760310001604134

Ly, A., et al. Org. Biomol. Chem. 2005, 3, 917-923. DOI: https://doi.org/10.1039/b418681h

Pellmar, T. C.; Roney, D.; Lepinski, D. L. Brain Res. 1992, 583, 194-200. DOI: https://doi.org/10.1016/S0006-8993(10)80024-1

Pujari, G., et al. Mutat. Res. 2009, 675, 23-28. DOI: https://doi.org/10.1016/j.mrgentox.2009.02.001

Kirsch, M., et al. Chem. Eur. J. 2001, 7, 3313-3320. DOI: https://doi.org/10.1002/1521-3765(20010803)7:15<3313::AID-CHEM3313>3.0.CO;2-7

Gebicki, J. M., et al. Amino Acids. 2010, 39, 1131-1137. DOI: https://doi.org/10.1007/s00726-010-0610-7

Alvarez-Idaboy, J. R.; Galano, A. J. Phys. Chem. B. 2012, 116, 9316-9325. DOI: https://doi.org/10.1021/jp303116n

Nauser, T.; Koppenol, W. H.; Schöneich, C. Free Radic. Biol. Med. 2014, 80, 158-163. DOI: https://doi.org/10.1016/j.freeradbiomed.2014.12.006

Hill, B. G.; Bhatnagar, A. J. Mol. Cell. Cardiol. 2012, 52, 559-567. DOI: https://doi.org/10.1016/j.yjmcc.2011.07.009

Klatt, P.; Lamas, S. Eur. J. Biochem. 2000, 267, 4928-4944. DOI: https://doi.org/10.1046/j.1432-1327.2000.01601.x

Adachi, T.; Schöneich, C.; Cohen, R. A. Drug Discov. Today Dis. Mech. 2005, 2, 39-46. DOI: https://doi.org/10.1016/j.ddmec.2005.05.022

Rao, A. V.; Agarwal, S. Nutr. Res. 1999, 19, 305-323. DOI: https://doi.org/10.1016/S0271-5317(98)00193-6

Halliwell, B., et al. Crit. Rev. Food Sci. Nutr. 1995, 35, 7-20. DOI: https://doi.org/10.1080/10408399509527682

Halliwell, B.; Whiteman, M. Br. J. Pharmacol. 2004, 142, 231-255. DOI: https://doi.org/10.1038/sj.bjp.0705776

Chaiyasit, W., et al. Crit. Rev. Food Sci. Nutr. 2007, 47, 299-317. DOI: https://doi.org/10.1080/10408390600754248

Rose, R. C.; Bode, A. M. FASEB J. 1993, 7, 1135-1142. DOI: https://doi.org/10.1096/fasebj.7.12.8375611

Galano, A.; Francisco-Marquez, M. J. Phys. Chem. B. 2009, 113, 11338-11345. DOI: https://doi.org/10.1021/jp904061q

Mortensen, A., et al. FEBS Lett. 1997, 418, 91-97. DOI: https://doi.org/10.1016/S0014-5793(97)01355-0

Liebler, D. C.; McClure, T. D. Chem. Res. Toxicol. 1996, 9, 8-11. DOI: https://doi.org/10.1021/tx950151t

Mortensen, A. Free Radic. Res. 2002, 36, 211-216. DOI: https://doi.org/10.1080/10715760290006501

Joshi, R., et al. Free Radic. Res. 2012, 46, 11-20. DOI: https://doi.org/10.3109/10715762.2011.633518

Hata, K., et al. J. Radiat. Res. 2011, 52, 15-23.

Pérez-González, A.; Galano, A. J. Phys. Chem. B. 2011, 115, 1306-1314. DOI: https://doi.org/10.1021/jp110400t

Galano, A. PCCP. 2011, 13, 7178-7188. DOI: https://doi.org/10.1039/c0cp02801k

Galano, A.; Tan, D. X.; Reiter, R. J. J. Pineal Res. 2013, 54, 245-257. DOI: https://doi.org/10.1111/jpi.12010

Galano, A.; Tan, D. X.; Reiter, R. J. RSC Advances. 2014, 4, 5220-5227. DOI: https://doi.org/10.1039/c3ra44604b

Dhiman, S. B.; Kamat, J. P.; Naik, D. B. Chem. Biol. Interact. 2009, 182, 119-127. DOI: https://doi.org/10.1016/j.cbi.2009.07.025

Sakurai, K., et al. Free Radic. Res. 2004, 38, 487-494. DOI: https://doi.org/10.1080/1071576042000209808

Tamba, M.; Torreggiani, A. Int. J. Radiat Biol. 1999, 75, 1177-1188. DOI: https://doi.org/10.1080/095530099139656

Barzegar, A. Food Chem. 2012, 135, 1369-1376. DOI: https://doi.org/10.1016/j.foodchem.2012.05.070

Touriño, S., et al. Chem. Res. Toxicol. 2008, 21, 696-704. DOI: https://doi.org/10.1021/tx700425n

Pérez-González, A.; Galano, A. J. Phys. Chem. B. 2012, 116, 1180-1188. DOI: https://doi.org/10.1021/jp209930y

Nakanishi, I., et al. Chem. Res. Toxicol. 2004, 17, 26-31. DOI: https://doi.org/10.1021/tx034134c

Nakanishi, I., et al. Chem. Lett. 2007, 36, 1276-1277. DOI: https://doi.org/10.1246/cl.2007.1276

Hill, T. J., et al. J. Am. Chem. Soc. 1995, 117, 8322-8326. DOI: https://doi.org/10.1021/ja00137a004

Packer, J. E., et al. Biochem. Biophys. Res. Commun. 1981, 98, 901-906. DOI: https://doi.org/10.1016/0006-291X(81)91196-7

Everett, S. A., et al. Biochem. Soc. Trans. 1995, 23, 230S. DOI: https://doi.org/10.1042/bst023230s

Galano, A.; Vargas, R.; Martínez, A. PCCP. 2010, 12, 193-200. DOI: https://doi.org/10.1039/B917636E

Martínez, A.; Hernández-Marin, E.; Galano, A. Food and Func-tion. 2012, 3, 442-450. DOI: https://doi.org/10.1039/c2fo10229c

Sueishi, Y., et al. Food Chem. 2011, 129, 866-870. DOI: https://doi.org/10.1016/j.foodchem.2011.05.036

Cao, L., et al. Anal. Methods. 2014, 6, 7149-7153. DOI: https://doi.org/10.1039/C4AY01276C

Mendoza-Wilson, A. M.; Castro-Arredondo, S. I.; Baland-rán-Quintana, R. R. Food Chem. 2014, 161, 155-161. DOI: https://doi.org/10.1016/j.foodchem.2014.03.111

Li, X., et al. Chem. Biol. Interact. 2014, 219, 221-228. DOI: https://doi.org/10.1016/j.cbi.2014.06.014

Wang, G., et al. Food Chem. 2014, 171, 89-97. DOI: https://doi.org/10.1016/j.foodchem.2014.08.106

Praveena, R., et al. J. Mol. Struct. 2014, 1061, 114-123. DOI: https://doi.org/10.1016/j.molstruc.2014.01.002

Mikulski, D.; Eder, K.; Molski, M. J. Theor. Comput. Chem. 2014, 13, DOI: https://doi.org/10.1142/S0219633614500047

Galano, A.; Martínez, A. J. Phys. Chem. B. 2012, 116, 1200-1208. DOI: https://doi.org/10.1021/jp211172f

Martínez, A.; Galano, A.; Vargas, R. J. Phys. Chem. B. 2011, 115, 12591-12598. DOI: https://doi.org/10.1021/jp205496u

Dimitri? Markovi?, J. M., et al. RSC Advances. 2014, 4, 32228-32236. DOI: https://doi.org/10.1039/C4RA02577F

Mazzone, G.; Toscano, M.; Russo, N. J. Agric. Food Chem. 2013, 61, 9650-9657. DOI: https://doi.org/10.1021/jf403262k

Xue, Y., et al. Comput. Theor. Chem. 2012, 982, 74-83. DOI: https://doi.org/10.1016/j.comptc.2011.12.020

Castañeda-Arriaga, R.; Alvarez-Idaboy, J. R. J. Chem. Inf. Mod-el. 2014, 54, 1642-1652. DOI: https://doi.org/10.1021/ci500213p

Farmanzadeh, D.; Najafi, M. Bull. Chem. Soc. Jpn. 2013, 86, 1041-1050. DOI: https://doi.org/10.1246/bcsj.20130035

Galano, A.; Alvarez-Idaboy, J. R. RSC Adv. 2011, 1, 1763-1771. DOI: https://doi.org/10.1039/c1ra00474c

Galano, A. Theor. Chem. Acc. 2011, 130, 51-60. DOI: https://doi.org/10.1007/s00214-011-0958-0

Jeremi?, S., et al. Comput. Theor. Chem. 2014, 1047, 15-21.

Xue, Y., et al. Food Chem. 2014, 151, 198-206. DOI: https://doi.org/10.1016/j.foodchem.2013.11.064

Medina, M. E.; Galano, A.; Alvarez-Idaboy, J. R. Phys. Chem. Chem. Phys. 2014, 16, 1197-1207. DOI: https://doi.org/10.1039/C3CP53889C

Markovi?, Z., et al. Monatsh. Chem. 2014, 145, 953-962. DOI: https://doi.org/10.1007/s00706-014-1163-3

Pérez-González, A.; Galano, A.; Alvarez-Idaboy, J. R. New J. Chem. 2014, 38, 2639-2652. DOI: https://doi.org/10.1039/c4nj00071d

Medina, M. E.; Iuga, C.; Álvarez-Idaboy, J. R. RSC Adv. 2014, 4, 52920-52932. DOI: https://doi.org/10.1039/C4RA08394F

Caicedo, C., et al. RSC Adv. 2014, 4, 38918-38930. DOI: https://doi.org/10.1039/C4RA04758C

Iuga, C.; Alvarez-Idaboy, J. R.; Russo, N. J. Org. Chem. 2012, 77, 3868-3877. DOI: https://doi.org/10.1021/jo3002134

Cordova-Gomez, M.; Galano, A.; Alvarez-Idaboy, J. R. RSC Adv. 2013, 3, 20209-20218. DOI: https://doi.org/10.1039/c3ra42923g

hang, Y. J., et al. J. Org. Chem. 2009, 74, 5025-5031. DOI: https://doi.org/10.1021/jo9007095

Xue, Y., et al. J. Phys. Org. Chem. 2013, 26, 240-248. DOI: https://doi.org/10.1002/poc.3074

Markovi?, Z., et al. Food Chem. 2012, 135, 2070-2077. DOI: https://doi.org/10.1016/j.foodchem.2012.05.119

Di Meo, F., et al. J. Phys. Chem. A. 2013, 117, 2082-2092. DOI: https://doi.org/10.1021/jp3116319

Erdemgil, F. Z., et al. Talanta. 2007, 72, 489-496. DOI: https://doi.org/10.1016/j.talanta.2006.11.007

Galano, A.; Alvarez-Idaboy, J. R. J. Comput. Chem. 2013, 34, 2430-2445. DOI: https://doi.org/10.1002/jcc.23409

Mayer, J. M., et al. J. Am. Chem. Soc. 2002, 124, 11142-11147. DOI: https://doi.org/10.1021/ja012732c

DiLabio, G. A.; Ingold, K. U. J. Am. Chem. Soc. 2005, 127, 6693-6699. DOI: https://doi.org/10.1021/ja0500409

Sirjoosingh, A.; Hammes-Schiffer, S. J. Phys. Chem. A. 2011, 115, 2367-2377. DOI: https://doi.org/10.1021/jp111210c

Tishchenko, O., et al. J. Am. Chem. Soc. 2008, 130, 7000-7010. DOI: https://doi.org/10.1021/ja7102907

DiLabio, G. A.; Johnson, E. R. J. Am. Chem. Soc. 2007, 129, 6199-6203. DOI: https://doi.org/10.1021/ja068090g

Ami?, A., et al. Food Chem. 2014, 152, 578-585. DOI: https://doi.org/10.1016/j.foodchem.2013.12.025

Barzegar, A. PLoS One. 2012, 7, DOI: https://doi.org/10.1371/journal.pone.0039660

Nakayama, T.; Uno, B. Chem. Lett. 2010, 39, 162-164. DOI: https://doi.org/10.1246/cl.2010.162

Inagaki, T.; Yamamoto, T. J. Phys. Chem. B. 2014, 118, 937-950. DOI: https://doi.org/10.1021/jp410263f

Li, M., et al. Int. J. Quantum Chem. 2013, 113, 966-974. DOI: https://doi.org/10.1002/qua.24060

Hanthorn, J. J., et al. J. Org. Chem. 2012, 77, 6895-6907. DOI: https://doi.org/10.1021/jo301012x

Amorati, R., et al. Chem. Eur. J. 2012, 18, 6370-6379. DOI: https://doi.org/10.1002/chem.201103459

Lynett, P. T., et al. Org. Biomol. Chem. 2011, 9, 3320-3330. DOI: https://doi.org/10.1039/c1ob05192j

Vaidya, V.; Ingold, K. U.; Pratt, D. A. Angew. Chem. Int. Ed. Engl. 2009, 48, 157-160. DOI: https://doi.org/10.1002/anie.200804560

Zaware, S. B., et al. New J. Chem. 2011, 35, 1615-1623. DOI: https://doi.org/10.1039/c1nj20176j

Litwinienko, G.; Ingold, K. U. J. Org. Chem. 2003, 68, 3433-3438. DOI: https://doi.org/10.1021/jo026917t

Litwinienko, G.; Ingold, K. U. J. Org. Chem. 2004, 69, 5888-5896. DOI: https://doi.org/10.1021/jo049254j

Litwinienko, G.; Ingold, K. U. J. Org. Chem. 2005, 70, 8982-8990. DOI: https://doi.org/10.1021/jo051474p

Litwinienko, G.; Ingold, K. U. Acc. Chem. Res. 2007, 40, 222-230. DOI: https://doi.org/10.1021/ar0682029

Foti, M. C. J. Pharm. Pharmacol. 2007, 59, 1673-1685. DOI: https://doi.org/10.1211/jpp.59.12.0010

Galano, A., et al. Chem. Phys. 2009, 363, 13-23. DOI: https://doi.org/10.1016/j.chemphys.2009.07.003

Urbaniak, A.; Szelag, M.; Molski, M. Comput. Theor. Chem. 2013, 1012, 33-40. DOI: https://doi.org/10.1016/j.comptc.2013.02.018

Fifen, J. J., et al. Comput. Theor. Chem. 2011, 966, 232-243. DOI: https://doi.org/10.1016/j.comptc.2011.03.006

Benayahoum, A.; Amira-Guebailia, H.; Houache, O. Comput. Theor. Chem. 2014, 1037, 1-9. DOI: https://doi.org/10.1016/j.comptc.2014.03.016

Xue, Y., et al. J. Mol. Model. 2013, 19, 3851-3862. DOI: https://doi.org/10.1007/s00894-013-1921-x

Qian, Y. P., et al. Food Chem. 2011, 126, 241-248. DOI: https://doi.org/10.1016/j.foodchem.2010.11.011

Musialik, M., et al. J. Org. Chem. 2009, 74, 2699-2709. DOI: https://doi.org/10.1021/jo802716v

Musialik, M.; Litwinienko, G. Org. Lett. 2005, 7, 4951-4954. DOI: https://doi.org/10.1021/ol051962j

Dimitri? Markovi?, J. M., et al. Struct. Chem. 2014, 25, 1795-1804. DOI: https://doi.org/10.1007/s11224-014-0453-z

Najafi, M. Monatsh. Chem. 2014, 145, 291-299. DOI: https://doi.org/10.1007/s00706-013-1099-z

Najafi, M. J. Mex. Chem. Soc. 2014, 58, 36-45.

Dorovi?, J., et al. J. Mol. Model. 2014, 20,

Markovi?, Z., et al. Chemical Papers. 2013, 67, 1453-1461.

Van Wenum, E.; Jurczakowski, R.; Litwinienko, G. J. Org. Chem. 2013, 78, 9102-9112. DOI: https://doi.org/10.1021/jo401296k

Farmanzadeh, D.; Najafi, M. J. Theor. Comput. Chem. 2013, 12, DOI: https://doi.org/10.1142/S0219633613500582

Bamonti, L., et al. Bioorg. Med. Chem. 2013, 21, 5039-5046. DOI: https://doi.org/10.1016/j.bmc.2013.06.050

Lengyel, J., et al. PCCP. 2013, 15, 10895-10903. DOI: https://doi.org/10.1039/c3cp00095h

Senthil kumar, K.; Kumaresan, R. Comput. Theor. Chem. 2012, 985, 14-22. DOI: https://doi.org/10.1016/j.comptc.2012.01.028

Alberto, M. E., et al. Phys. Chem. Chem. Phys. 2013, 15, 4642-4650. DOI: https://doi.org/10.1039/c3cp43319f

Najafi, M.; Najafi, M.; Najafi, H. J. Theor. Comput. Chem. 2013, 12, DOI: https://doi.org/10.1142/S0219633612501167

Cao, X. Y., et al. Chem. Eur. J. 2012, 18, 5898-5905. DOI: https://doi.org/10.1002/chem.201103897

Najafi, M.; Zahedi, M.; Klein, E. Comput. Theor. Chem. 2011, 978, 16-28. DOI: https://doi.org/10.1016/j.comptc.2011.09.014

Najafi, M., et al. Comput. Theor. Chem. 2011, 969, 1-12.

Klein, E.; Lukeš, V.; Il?in, M. Chem. Phys. 2007, 336, 51-57. DOI: https://doi.org/10.1016/j.chemphys.2007.05.007

López-Munguía, A., et al. PLoS One. 2011, 6, DOI: https://doi.org/10.1371/journal.pone.0020115

Cheng, L. X., et al. Org. Biomol. Chem. 2010, 8, 1058-1063.

Markovi?, Z. S., et al. J. Mol. Model. 2011, 17, 2575-2584. DOI: https://doi.org/10.1007/s00894-010-0942-y

Jeremi?, S. R., et al. Monatsh. Chem. 2012, 143, 427-435. DOI: https://doi.org/10.1007/s00706-011-0695-z

Markovi?, Z. S., et al. Int. J. Quantum Chem. 2012, 112, 2009-2017.

Focsan, A. L.; Pan, S.; Kispert, L. D. J. Phys. Chem. B. 2014, 118, 2331-2339. DOI: https://doi.org/10.1021/jp4121436

Markovi?, Z., et al. PCCP. 2013, 15, 7370-7378.

Nakanishi, I., et al. Org. Biomol. Chem. 2005, 3, 626-629. DOI: https://doi.org/10.1039/b416572a

Ouchi, A., et al. J. Phys. Chem. B. 2009, 113, 13322-13331. DOI: https://doi.org/10.1021/jp906425r

Lhiaubet-Vallet, V., et al. J. Phys. Chem. B. 2007, 111, 8277-8282. DOI: https://doi.org/10.1021/jp071524p

Estévez, L.; Otero, N.; Mosquera, R. A. J. Phys. Chem. B. 2010, 114, 9706-9712. DOI: https://doi.org/10.1021/jp1041266

Marino, T.; Galano, A.; Russo, N. J. Phys. Chem. B. 2014, 118, 10380-10389.

Medina, M. E.; Iuga, C.; Alvarez-Idaboy, J. R. PCCP. 2013, 15, 13137-13146. DOI: https://doi.org/10.1039/c3cp51644j

Amorati, R., et al. J. Agric. Food Chem. 2006, 54, 2932-2937. DOI: https://doi.org/10.1021/jf053159+

Bayat, A.; Fattahi, A. Comput. Theor. Chem. 2013, 1018, 35-44. DOI: https://doi.org/10.1016/j.comptc.2013.05.026

Stepani?, V., et al. Food Chem. 2013, 141, 1562-1570. DOI: https://doi.org/10.1016/j.foodchem.2013.03.072

Ami?, D., et al. J. Mol. Model. 2013, 19, 2593-2603. DOI: https://doi.org/10.1007/s00894-013-1800-5

Vagánek, A., et al. Comput. Theor. Chem. 2014, 1050, 31-38. DOI: https://doi.org/10.1016/j.comptc.2014.10.020

Estévez, L.; Mosquera, R. A. J. Phys. Chem. A. 2008, 112, 10614-10623. DOI: https://doi.org/10.1021/jp8043237

Javan, A. J.; Javan, M. J.; Tehrani, Z. A. J. Agric. Food Chem. 2013, 61, 1534-1541. DOI: https://doi.org/10.1021/jf304926m

Leopoldini, M., et al. J. Phys. Chem. A. 2004, 108, 4916-4922. DOI: https://doi.org/10.1021/jp037247d

Leopoldini, M.; Russo, N.; Toscano, M. J. Agric. Food Chem. 2007, 55, 7944-7949. DOI: https://doi.org/10.1021/jf070449c

Leopoldini, M., et al. J. Agric. Food Chem. 2010, 58, 8862-8871. DOI: https://doi.org/10.1021/jf101693k

Mazzone, G., et al. Food Chem. 2013, 141, 2017-2024. DOI: https://doi.org/10.1016/j.foodchem.2013.05.071

Mazzone, G., et al. RSC Adv. 2014, 5, 565-575. DOI: https://doi.org/10.1039/C4RA11733F

Pérez-González, A., et al. J. Mex. Chem. Soc. 2012, 56, 241-249.

Zhang, D., et al. J. Phys. Chem. A. 2013, 117, 1784-1794. DOI: https://doi.org/10.1021/jp307746c

Markovi?, Z., et al. Food Chem. 2012, 134, 1754-1760. DOI: https://doi.org/10.1016/j.foodchem.2012.03.124

Ami?, D.; Lu?i?, B. Bioorg. Med. Chem. 2010, 18, 28-35.

Lespade, L.; Bercion, S. Free Radic. Res. 2012, 46, 346-358. DOI: https://doi.org/10.3109/10715762.2012.658514

Mohajeri, A.; Asemani, S. S. J. Mol. Struct. 2009, 930, 15-20. DOI: https://doi.org/10.1016/j.molstruc.2009.04.031

Koopmans, T. Physica. 1934, 1, 104-113. DOI: https://doi.org/10.1016/S0031-8914(34)90011-2

Perdew, J. P., et al. Phys. Rev. Lett. 1982, 49, 1691-1694. DOI: https://doi.org/10.1103/PhysRevLett.49.1691

Ortiz, J. V. Adv. Quantum Chem. 1999, 35, 33-52. DOI: https://doi.org/10.1016/S0065-3276(08)60454-2

Ortiz, J. V. Wiley Interdisciplinary Reviews: Computational Mo-lecular Science. 2013, 3, 123-142.

Galano, A.; Alvarez-Idaboy, J. R. J. Comput. Chem. 2014, 35, 2019-2026. DOI: https://doi.org/10.1002/jcc.23715

Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B. 2009, 113, 6378-6396. DOI: https://doi.org/10.1021/jp810292n

Galano, A.; Tan, D. X.; Reiter, R. J. J. Pineal Res. 2011, 51, 1-16. DOI: https://doi.org/10.1111/j.1600-079X.2011.00916.x

Corchado, J. C., et al. J. Phys. Chem. A. 1998, 102, 2424-2438. DOI: https://doi.org/10.1021/jp9801267

Marcus, R. A. Pure Appl. Chem. 1997, 69, 13-29. DOI: https://doi.org/10.1351/pac199769010013

Marcus, R. A. Rev. Mod. Phys. 1993, 65, 599-610. DOI: https://doi.org/10.1103/RevModPhys.65.599

Pollak, E.; Pechukas, P. J. Am. Chem. Soc. 1978, 100, 2984-2991. DOI: https://doi.org/10.1021/ja00478a009

Fernández-Ramos, A., et al. Theor. Chem. Acc. 2007, 118, 813-826. DOI: https://doi.org/10.1007/s00214-007-0328-0

Fernández-Ramos, A., et al. Chem. Rev. 2006, 106, 4518-4584. DOI: https://doi.org/10.1021/cr050205w

Kuppermann, A.; Truhlar, D. G. J. Am. Chem. Soc. 1971, 93, 1840-1851. DOI: https://doi.org/10.1021/ja00737a002

Garrett, B. C.; Truhlar, D. G. J. Phys. Chem. 1979, 83, 2921-2926. DOI: https://doi.org/10.1021/j100485a023

Skodje, R. T.; Truhlar, D. G.; Garrett, B. C. J. Phys. Chem. 1981, 85, 3019-3023. DOI: https://doi.org/10.1021/j150621a001

Collins, F. C.; Kimball, G. E. J. Colloid Sci. 1949, 4, 425-437. DOI: https://doi.org/10.1016/0095-8522(49)90023-9

Smoluchowski, M. Z. Phys. Chem. 1917, 92,

Einstein, A. Ann. Phys. . 1905, 17, 549–560. DOI: https://doi.org/10.4044/joma1889.17.191_549

Stokes, G. G. Mathematical and Physical Papers. Cambridge: Cambridge University Press, 1903.

Bielski, B. H. J.; Arudi, R. L.; Sutherland, M. W. J. Biol. Chem. 1983, 258, 4759-4761. DOI: https://doi.org/10.1016/S0021-9258(18)32488-8

Bielski, B. H. J., et al. J. Phys. Chem. Ref. Data. 1985, 14, 1041-1100. DOI: https://doi.org/10.1063/1.555739

Baker, M. Z., et al. Int. J. Radiat Biol. 1982, 41, 595-602. DOI: https://doi.org/10.1080/09553008214550691

Asada, K.; Kanematsu, S. Agric. Biol. Chem. 1976, 40, 1891-1892. DOI: https://doi.org/10.1080/00021369.1976.10862321

Galano, A.; Alvarez-Idaboy, J. R.; Francisco-Márquez, M. J. Phys. Chem. B. 2011, 115, 13101-13109. DOI: https://doi.org/10.1021/jp208315k

Joshi, R., et al. J. Agric. Food Chem. 2005, 53, 2696-2703. DOI: https://doi.org/10.1021/jf0489769

Cabelli, D. E.; Bielski, B. H. J. J. Free Radic. Biol. Med. 1986, 2, DOI: https://doi.org/10.1016/8755-9668(86)90026-8

-75.

Nadezhdin, A. D.; Dunford, H. B. Can. J. Chem. 1979, 57, 3017-3022. DOI: https://doi.org/10.1139/v79-491

Nishikimi, M.; Machlin, L. J. Arch. Biochem. Biophys. 1975, 170, 684-689. DOI: https://doi.org/10.1016/0003-9861(75)90165-4

León-Carmona, J. R.; Alvarez-Idaboy, J. R.; Galano, A. PCCP. 2012, 14, 12534-12543. DOI: https://doi.org/10.1039/c2cp40651a

Taubert, D., et al. Free Radical Biology and Medicine. 2003, 35, 1599-1607. DOI: https://doi.org/10.1016/j.freeradbiomed.2003.09.005

Marino, T.; Galano, A.; Russo, N. J. Phys. Chem. B. 2014, 118, 10380-10389. DOI: https://doi.org/10.1021/jp505589b

Galano, A.; León-Carmona, J. R.; Alvarez-Idaboy, J. R. J. Phys. Chem. B. 2012, 116, 7129-7137. DOI: https://doi.org/10.1021/jp302810w

Mahal, H. S.; Badheka, L. P.; Mukherjee, T. Res. Chem. In-termed. 2001, 27, 595-604. DOI: https://doi.org/10.1163/156856701317051699

Guha, S. N.; Priyadarsini, K. I. Int. J. Chem. Kinet. 2000, 32, DOI: https://doi.org/10.1002/(SICI)1097-4601(2000)32:1<17::AID-JCK3>3.0.CO;2-5

-23.

Okada, Y., et al. JAOCS, Journal of the American Oil Chemists’ Society. 2010, 87, 1397-1405. DOI: https://doi.org/10.1007/s11746-010-1628-4

Galano, A., et al. Theor. Chem. Acc. 2012, 131, 1-12.

Storozhok, N. M., et al. Kinet. Catal. 2004, 45, 488-496. DOI: https://doi.org/10.1023/B:KICA.0000038075.46269.a6

Mitarai, A., et al. J. Agric. Food Chem. 2008, 56, 84-91. DOI: https://doi.org/10.1021/jf0720133

Aruoma, O. I., et al. Free Radic. Res. Commun. 1990, 10, 143-157. DOI: https://doi.org/10.3109/10715769009149883

Quintiliani, M., et al. Int. J. Radiat Biol. 1977, 32, 195-202. DOI: https://doi.org/10.1080/09553007714550891

Eriksen, T. E.; Fransson, G. Journal of the Chemical Society, Perkin Transactions 2. 1988, 1117-1122. DOI: https://doi.org/10.1039/p29880001117

Hofstetter, D.; Nauser, T.; Koppenol, W. H. Chem. Res. Toxicol. 2010, 23, 1596-1600. DOI: https://doi.org/10.1021/tx100185k

Kesavan, P. C.; Powers, E. L. Int. J. Radiat Biol. 1985, 48, 223-233. DOI: https://doi.org/10.1080/09553008514551221

Devasagayam, T. P. A., et al. Biochimica et Biophysica Acta Biomembranes. 1996, 1282, 63-70. DOI: https://doi.org/10.1016/0005-2736(96)00040-5

Brezová, V.; Šlebodová, A.; Staško, A. Food Chem. 2009, 114,859-868. DOI: https://doi.org/10.1016/j.foodchem.2008.10.025

Poeggeler, B., et al. Redox Report. 1996, 2, 179-184. DOI: https://doi.org/10.1080/13510002.1996.11747046

Matuszak, Z.; Reszka, K. J.; Chignell, C. F. Free Radic. Biol. Med. 1997, 23, 367-372. DOI: https://doi.org/10.1016/S0891-5849(96)00614-4

Stasica, P.; Ulanski, P.; Rosiak, J. M. J. Radioanal. Nucl. Chem. 1998, 232, 107-113. DOI: https://doi.org/10.1007/BF02383723

Chyan, Y. J., et al. J. Biol. Chem. 1999, 274, 21937-21942. DOI: https://doi.org/10.1074/jbc.274.31.21937

Marshall, K. A., et al. Free Radic. Biol. Med. 1996, 21, 307-315. DOI: https://doi.org/10.1016/0891-5849(96)00046-9

Mahal, H. S.; Sharma, H. S.; Mukherjee, T. Free Radic. Biol. Med. 1999, 26, 557-565. DOI: https://doi.org/10.1016/S0891-5849(98)00226-3

Abe, S., et al. Chem. Pharm. Bull. 2004, 52, 186-191. DOI: https://doi.org/10.1248/cpb.52.186

Lin, M., et al. J. Photochem. Photobiol. B: Biol. 2007, 89, 36-43.

Emanuel, C. J., et al. J. Am. Chem. Soc. 1999, 121, 2927-2928. DOI: https://doi.org/10.1021/ja9839872

Chatgilialoglu, C., et al. J. Am. Chem. Soc. 2000, 122, 9525-9533. DOI: https://doi.org/10.1021/ja001783r

Prior, R. L.; Wu, X.; Schaich, K. J. Agric. Food Chem. 2005, 53, 4290-4302. DOI: https://doi.org/10.1021/jf0502698

Frankel, E. N.; Meyer, A. S. J. Sci. Food Agric. 2000, 80, 1925-1941. DOI: https://doi.org/10.1002/1097-0010(200010)80:13<1925::AID-JSFA714>3.0.CO;2-4

Antolovich, M., et al. Analyst. 2002, 127, 183-198. DOI: https://doi.org/10.1039/b009171p

Huang, D.; Ou, B.; Prior, R. L. J. Agric. Food Chem. 2005, 53, 1841-1856. DOI: https://doi.org/10.1021/jf030723c

Brand-Williams, W.; Cuvelier, M. E.; Berset, C. LWT - Food Sci. Technol. 1995, 28, 25-30. DOI: https://doi.org/10.1016/S0023-6438(95)80008-5

Singleton, V. L.; Orthofer, R.; Lamuela-Raventós, R. M. Meth-ods Enzymol. 1998, 299, 152-178. DOI: https://doi.org/10.1016/S0076-6879(99)99017-1

Benzie, I. F. F.; Strain, J. J. Anal. Biochem. 1996, 239, 70-76. DOI: https://doi.org/10.1006/abio.1996.0292

Cao, G.; Alessio, H. M.; Cutler, R. G. Free Radic. Biol. Med. 1993, 14, 303-311. DOI: https://doi.org/10.1016/0891-5849(93)90027-R

Huang, D., et al. J. Agric. Food Chem. 2002, 50, 1815-1821. DOI: https://doi.org/10.1021/jf0113732

Miller, N. J., et al. Clin. Sci. 1993, 84, 407-412. DOI: https://doi.org/10.1042/cs0840407

Re, R., et al. Free Radic. Biol. Med. 1999, 26, 1231-1237. DOI: https://doi.org/10.1016/S0891-5849(98)00315-3

Wayner, D. D. M., et al. FEBS Lett. 1985, 187, 33-37. DOI: https://doi.org/10.1016/0014-5793(85)81208-4

Jiménez, A., et al. Org. Lett. 2004, 6, 4583-4586. DOI: https://doi.org/10.1021/ol048015f

Porter, W. L. Toxicol. Ind. Health. 1993, 9, 93-122. DOI: https://doi.org/10.1177/0748233793009001-209

Frankel, E. N., et al. J. Agric. Food Chem. 1994, 42, 1054-1059. DOI: https://doi.org/10.1021/jf00041a001

Frankel, E. N., et al. J. Agric. Food Chem. 1996, 44, 131-135. DOI: https://doi.org/10.1021/jf950374p

De Grey, A. D. N. J. DNA Cell Biol. 2002, 21, 251-257. DOI: https://doi.org/10.1089/104454902753759672

Terpinc, P.; Abramovi?, H. Food Chem. 2010, 121, 366-371. DOI: https://doi.org/10.1016/j.foodchem.2009.12.037

Sies, H. Exp. Physiol. 1997, 82, 291-295. DOI: https://doi.org/10.1113/expphysiol.1997.sp004024

Iuga, C.; Alvarez-Idaboy, J. R.; Vivier-Bunge, A. J. Phys. Chem. B. 2011, 115, 12234-12246. DOI: https://doi.org/10.1021/jp206347u

Galano, A.; Francisco-Márquez, M.; Alvarez-Idaboy, J. R. J. Phys. Chem. B. 2011, 115, 8590-8596. DOI: https://doi.org/10.1021/jp2022105

Álvarez-Diduk, R.; Galano, A. J. Phys. Chem. B. 2015, 119, 3479-3491. DOI: https://doi.org/10.1021/acs.jpcb.5b00052

Álvarez-Diduk, R., et al. J. Phys. Chem. B. 2015, 119, 8535-8543. DOI: https://doi.org/10.1021/acs.jpcb.5b04920

Galano, A.; Francisco-Márquez, M.; Alvarez-Idaboy, J. R. PCCP. 2011, 13, 11199-11205. DOI: https://doi.org/10.1039/c1cp20722a

Galano, A.; Pérez-González, A. Theor. Chem. Acc. 2012, 131, 1-13. DOI: https://doi.org/10.1007/s00214-012-1265-0

León-Carmona, J. R.; Galano, A. J. Phys. Chem. B. 2011, 115, 15430-15438. DOI: https://doi.org/10.1021/jp209776x

Galano, A.; Francisco-Marquez, M. J. Phys. Chem. B. 2009, 113, 16077-16081. DOI: https://doi.org/10.1021/jp907906h

Perez-Gonzalez, A.; Muñoz-Rugeles, L.; Alvarez-Idaboy, J. R. RSC Advances. 2014, 4, 56128-56131. DOI: https://doi.org/10.1039/C4RA11635F

×

Downloads

Published

2017-10-12
x

Similar Articles

<< < 39 40 41 42 43 44 

You may also start an advanced similarity search for this article.

Loading...