Molecular Insights on Coffee Components as Chemical Antioxidants

Authors

  • Luis Felipe Hernández-Ayala Universidad Autónoma Metropolitana-Iztapalapa
  • Eduardo Gabriel Guzmán-López Universidad Autónoma Metropolitana-Iztapalapa
  • Adriana Pérez-González Universidad Autónoma Metropolitana-Iztapalapa
  • Miguel Reina Universidad Nacional Autónoma de México
  • Annia Galano Universidad Autónoma Metropolitana-Iztapalapa

DOI:

https://doi.org/10.29356/jmcs.v68i4.2238

Keywords:

Free radicals, scavengers, reaction mechanisms, kinetics, trends in activity, coffee components

Abstract

Coffee is not only a delicious beverage but also an important dietary source of natural antioxidants. We live in a world where it is impossible to avoid pollution, stress, food additives, radiation, and other sources of oxidants that eventually lead to severe health disorders. Fortunately, there are chemicals in our diet that counteract the hazards posed by the reactive species that trigger oxidative stress. They are usually referred to as antioxidants; some of them can be versatile compounds that exert such a role in many ways. This review summarizes, from a chemical point of view, the antioxidant effects of relevant molecules found in coffee. Their mechanisms of action, trends in activity, and the influence of media and pH in aqueous solutions, are analyzed. Structure-activity relationships are discussed, and the protective roles of these compounds are examined. A particular section is devoted to derivatives of some coffee components, and another one to their bioactivity. The data used in the analysis come from theoretical and computational protocols, which have been proven to be very useful in this context. Hopefully, the information provided here will pro-mote further investigations into the amazing chemistry contained in our morning coffee cup.

 

Resumen. El café no solo es una bebida deliciosa, sino también una importante fuente dietética de antioxidantes naturales. Vivimos en un mundo donde es imposible evitar la contaminación, el estrés, los aditivos alimentarios, la radiación y otras fuentes de oxidantes que eventualmente conducen a trastornos de salud graves. Afortunadamente, existen sustancias químicas en nuestra dieta que contrarrestan los peligros planteados por las especies reactivas que desencadenan el estrés oxidativo. Por lo general, se les denomina antioxidantes; algunos de ellos pueden ser compuestos versátiles que ejercen dicho papel de muchas maneras. Este artículo de revisión resume, desde un punto de vista químico, los efectos antioxidantes de moléculas relevantes encontradas en el café. Se analizan sus mecanismos de acción, tendencias en la actividad y la influencia del medio y el pH en soluciones acuosas. Se discuten las relaciones estructura-actividad, y se examinan los roles protectores de estos compuestos. Se dedica una sección particular a los derivados de algunos componentes del café, y otra a su bioactividad. Los datos utilizados en el análisis provienen de protocolos teóricos y computacionales, que han demostrado ser muy útiles en este contexto. Se espera que la información proporcionada aquí promueva investigaciones futuras sobre la química contenida en nuestra taza de café matutina.

Downloads

Download data is not yet available.

Author Biographies

Luis Felipe Hernández-Ayala, Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Química

Eduardo Gabriel Guzmán-López, Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Química

Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México

Adriana Pérez-González, Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Química

Miguel Reina, Universidad Nacional Autónoma de México

Departamento de Química Inorgánica y Nuclear, Facultad de Química, Universidad Nacional Autónoma de México

Annia Galano, Universidad Autónoma Metropolitana-Iztapalapa

Departamento de Química

References

Nolan, L. The world's favorite beverage- coffee- and health. J. Herbs Spices Med. Plants 2001, 8 (2-3), 119-159. DOI: https://doi.org/10.1300/J044v08n02_04. DOI: https://doi.org/10.1300/J044v08n02_04

Muhie, S. H. Strategies to improve the quantity and quality of export coffee in Ethiopia, a look at multiple opportunities. J. Agric. Food Res. 2022, 10. DOI: https://doi.org/10.1016/j.jafr.2022.100372. DOI: https://doi.org/10.1016/j.jafr.2022.100372

Mussatto, S. I.; Machado, E. M. S.; Martins, S.; Teixeira, J. A. Production, Composition, and Application of Coffee and Its Industrial Residues. Food Bioprocess Technol. 2011, 4 (5), 661-672. DOI: https://doi.org/10.1007/s11947-011-0565-z. DOI: https://doi.org/10.1007/s11947-011-0565-z

Elder, L. W. Staling vs. Rancidity in Roasted Coffee: Antioxygens Produced by Roasting. Ind. Eng. Chem. 1940, 32 (6), 798-801. DOI: https://doi.org/10.1021/ie50366a014. DOI: https://doi.org/10.1021/ie50366a014

Hassan, W.; Noreen, H.; Rehman, S.; Kamal, M. A.; da Rocha, J. B. T. Association of Oxidative Stress with Neurological Disorders. Curr. Neuropharmacol. 2022, 20 (6), 1046-1072. DOI: https://doi.org/10.2174/1570159X19666211111141246. DOI: https://doi.org/10.2174/1570159X19666211111141246

Korovesis, D.; Rubio-Tomás, T.; Tavernarakis, N. Oxidative Stress in Age-Related Neurodegenerative Diseases: An Overview of Recent Tools and Findings. Antioxidants 2023, 12 (1). DOI: https://doi.org/10.3390/antiox12010131. DOI: https://doi.org/10.3390/antiox12010131

Martínez Leo, E. E.; Segura Campos, M. R. Systemic Oxidative Stress: A Key Point in Neurodegeneration — A Review. J. Nutr. Health Aging 2019, 23 (8), 694-699. DOI: https://doi.org/10.1007/s12603-019-1240-8. DOI: https://doi.org/10.1007/s12603-019-1240-8

Sienes Bailo, P.; Llorente Martín, E.; Calmarza, P.; Montolio Breva, S.; Bravo Gómez, A.; Pozo Giráldez, A.; Sánchez-Pascuala Callau, J. J.; Vaquer Santamaría, J. M.; Dayaldasani Khialani, A.; Cerdá Micó, C.; et al. The role of oxidative stress in neurodegenerative diseases and potential antioxidant therapies. Adv. Lab. Med. 2022, 3 (4), 342-350. DOI: https://doi.org/10.1515/almed-2022-0111. DOI: https://doi.org/10.1515/almed-2022-0111

Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019, 24 (8). DOI: https://doi.org/10.3390/molecules24081583. DOI: https://doi.org/10.3390/molecules24081583

Singh, E.; Devasahayam, G. Neurodegeneration by oxidative stress: a review on prospective use of small molecules for neuroprotection. Mol. Biol. Rep. 2020, 47 (4), 3133-3140. DOI: https://doi.org/10.1007/s11033-020-05354-1. DOI: https://doi.org/10.1007/s11033-020-05354-1

Aborode, A. T.; Pustake, M.; Awuah, W. A.; Alwerdani, M.; Shah, P.; Yarlagadda, R.; Ahmad, S.; Silva Correia, I. F.; Chandra, A.; Nansubuga, E. P.; et al. Targeting Oxidative Stress Mechanisms to Treat Alzheimer's and Parkinson's Disease: A Critical Review. Oxidative Med. Cell. Longev. 2022, 2022. DOI: https://doi.org/10.1155/2022/7934442. DOI: https://doi.org/10.1155/2022/7934442

Chang, K. H.; Chen, C. M. The role of oxidative stress in Parkinson’s disease. Antioxidants 2020, 9 (7), 1-32. DOI: https://doi.org/0.3390/antiox9070597. DOI: https://doi.org/10.3390/antiox9070597

Dorszewska, J.; Kowalska, M.; Prendecki, M.; Piekut, T.; Kozłowska, J.; Kozubski, W. Oxidative stress factors in Parkinson's disease. Neural Regen. Res. 2021, 16 (7), 1383-1391. DOI: https://doi.org/10.4103/1673-5374.300980. DOI: https://doi.org/10.4103/1673-5374.300980

Percário, S.; Da Silva Barbosa, A.; Varela, E. L. P.; Gomes, A. R. Q.; Ferreira, M. E. S.; De Nazaré Araújo Moreira, T.; Dolabela, M. F. Oxidative Stress in Parkinson's Disease: Potential Benefits of Antioxidant Supplementation. Oxidative Med. Cell. Longev. 2020, 2020. DOI: https://doi.org/10.1155/2020/2360872. DOI: https://doi.org/10.1155/2020/2360872

Pyatha, S.; Kim, H.; Lee, D.; Kim, K. Association between Heavy Metal Exposure and Parkinson’s Disease: A Review of the Mechanisms Related to Oxidative Stress. Antioxidants 2022, 11 (12). DOI: https://doi.org/10.3390/antiox11122467. DOI: https://doi.org/10.3390/antiox11122467

Wei, Z.; Li, X.; Li, X.; Liu, Q.; Cheng, Y. Oxidative Stress in Parkinson's Disease: A Systematic Review and Meta-Analysis. Front. Mol. Neurosci. 2018, 11. DOI: https://doi.org/10.3389/fnmol.2018.00236. DOI: https://doi.org/10.3389/fnmol.2018.00236

Arfin, S.; Jha, N. K.; Jha, S. K.; Kesari, K. K.; Ruokolainen, J.; Roychoudhury, S.; Rathi, B.; Kumar, D. Oxidative stress in cancer cell metabolism. Antioxidants 2021, 10 (5). DOI: https://doi.org/10.3390/antiox10050642. DOI: https://doi.org/10.3390/antiox10050642

Calaf, G. M.; Urzua, U.; Termini, L.; Aguayo, F. Oxidative stress in female cancers. Oncotarget 2018, 9 (34), 23824-23842. DOI: https://doi.org/10.18632/oncotarget.25323. DOI: https://doi.org/10.18632/oncotarget.25323

Cruz-Gregorio, A.; Aranda-Rivera, A. K.; Ortega-Lozano, A. J.; Pedraza-Chaverri, J.; Mendoza-Hoffmann, F. Lipid metabolism and oxidative stress in HPV-related cancers. Free Radic. Biol. Med. 2021, 172, 226-236. DOI: https://doi.org/10.1016/j.freeradbiomed.2021.06.009. DOI: https://doi.org/10.1016/j.freeradbiomed.2021.06.009

Ding, D. N.; Xie, L. Z.; Shen, Y.; Li, J.; Guo, Y.; Fu, Y.; Liu, F. Y.; Han, F. J. Insights into the Role of Oxidative Stress in Ovarian Cancer. Oxidative Med. Cell. Longev. 2021, 2021. DOI: https://doi.org/10.1155/2021/8388258. DOI: https://doi.org/10.1155/2021/8388258

Ebrahimi, S.; Soltani, A.; Hashemy, S. I. Oxidative stress in cervical cancer pathogenesis and resistance to therapy. J. Cell. Biochem. 2019, 120 (5), 6868-6877. DOI: https://doi.org/10.1002/jcb.28007. DOI: https://doi.org/10.1002/jcb.28007

Hayes, J. D.; Dinkova-Kostova, A. T.; Tew, K. D. Oxidative Stress in Cancer. Cancer Cell 2020, 38 (2), 167-197. DOI: https://doi.org/10.1016/j.ccell.2020.06.001. DOI: https://doi.org/10.1016/j.ccell.2020.06.001

Jelic, M. D.; Mandic, A. D.; Maricic, S. M.; Srdjenovic, B. U. Oxidative stress and its role in cancer. J. Cancer Res. Ther. 2021, 17 (1), 22-28. DOI: https://doi.org/10.4103/jcrt.JCRT_862_16. DOI: https://doi.org/10.4103/jcrt.JCRT_862_16

Katakwar, P.; Metgud, R.; Naik, S.; Mittal, R. Oxidative stress marker in oral cancer: A review. J. Cancer Res. Ther. 2016, 12 (2), 438-446. DOI: https://doi.org/10.4103/0973-1482.151935. DOI: https://doi.org/10.4103/0973-1482.151935

Klaunig, J. E. Oxidative stress and cancer. Curr. Pharm. Des. 2018, 24 (40), 4771-4778. DOI: https://doi.org/10.2174/1381612825666190215121712. DOI: https://doi.org/10.2174/1381612825666190215121712

Kruk, J.; Aboul-Enein, H. Y. Reactive oxygen and nitrogen species in carcinogenesis: Implications of oxidative stress on the progression and development of several cancer types. Mini-Rev. Med. Chem. 2017, 17 (11), 904-919. DOI: https://doi.org/10.2174/1389557517666170228115324. DOI: https://doi.org/10.2174/1389557517666170228115324

Wang, Z.; Li, Z.; Ye, Y.; Xie, L.; Li, W. Oxidative stress and liver cancer: Etiology and therapeutic targets. Oxidative Med. Cell. Longev. 2016, 2016. DOI: https://doi.org/10.1155/2016/7891574. DOI: https://doi.org/10.1155/2016/7891574

2Zahra, K. F.; Lefter, R.; Ali, A.; Abdellah, E. C.; Trus, C.; Ciobica, A.; Timofte, D. The Involvement of the Oxidative Stress Status in Cancer Pathology: A Double View on the Role of the Antioxidants. Oxidative Med. Cell. Longev. 2021, 2021. DOI: https://doi.org/10.1155/2021/9965916. DOI: https://doi.org/10.1155/2021/9965916

De Almeida, A. J. P. O.; De Almeida Rezende, M. S.; Dantas, S. H.; De Lima Silva, S.; De Oliveira, J. C. P. L.; De Lourdes Assunção Araújo De Azevedo, F.; Alves, R. M. F. R.; De Menezes, G. M. S.; Dos Santos, P. F.; Gonçalves, T. A. F.; et al. Unveiling the Role of Inflammation and Oxidative Stress on Age-Related Cardiovascular Diseases. Oxidative Med. Cell. Longev. 2020, 2020. DOI: https://doi.org/10.1155/2020/1954398. DOI: https://doi.org/10.1155/2020/1954398

30. De Geest, B.; Mishra, M. Role of Oxidative Stress in Diabetic Cardiomyopathy. Antioxidants 2022, 11 (4). DOI: https://doi.org/10.3390/antiox11040784. DOI: https://doi.org/10.3390/antiox11040784

Izzo, C.; Vitillo, P.; Di Pietro, P.; Visco, V.; Strianese, A.; Virtuoso, N.; Ciccarelli, M.; Galasso, G.; Carrizzo, A.; Vecchione, C. The role of oxidative stress in cardiovascular aging and cardiovascular diseases. Life 2021, 11 (1), 1-42. DOI: https://doi.org/10.3390/life11010060. DOI: https://doi.org/10.3390/life11010060

Jakovljevic, V.; Djuric, D.; Pechanova, O.; Bolevich, S.; Tyagi, S. Oxidative Stress and Cardiovascular Dysfunction: From Basic Science to Applied Investigations. Oxidative Med. Cell. Longev. 2020, 2020. DOI: https://doi.org/10.1155/2020/6985284. DOI: https://doi.org/10.1155/2020/6985284

Panda, P.; Verma, H. K.; Lakkakula, S.; Merchant, N.; Kadir, F.; Rahman, S.; Jeffree, M. S.; Lakkakula, B. V. K. S.; Rao, P. V. Biomarkers of Oxidative Stress Tethered to Cardiovascular Diseases. Oxidative Med. Cell. Longev. 2022, 2022. DOI: https://doi.org/10.1155/2022/9154295. DOI: https://doi.org/10.1155/2022/9154295

3Pignatelli, P.; Menichelli, D.; Pastori, D.; Violi, F. Oxidative stress and cardiovascular disease: New insights. Kardiol. Pol. 2018, 76 (4), 713-722. DOI: https://doi.org/10.5603/KP.a2018.0071. DOI: https://doi.org/10.5603/KP.a2018.0071

Shaito, A.; Aramouni, K.; Assaf, R.; Parenti, A.; Orekhov, A.; Yazbi, A. E.; Pintus, G.; Eid, A. H. Oxidative Stress-Induced Endothelial Dysfunction in Cardiovascular Diseases. Front. Biosci. - Landmark 2022, 27 (3). DOI: https://doi.org/10.31083/j.fbl2703105. DOI: https://doi.org/10.31083/j.fbl2703105

Wang, W.; Kang, P. M. Oxidative stress and antioxidant treatments in cardiovascular diseases. Antioxidants 2020, 9 (12), 1-25. DOI: https://doi.org/10.3390/antiox9121292. DOI: https://doi.org/10.3390/antiox9121292

Yan, F.; Li, K.; Xing, W.; Dong, M.; Yi, M.; Zhang, H. Role of Iron-Related Oxidative Stress and Mitochondrial Dysfunction in Cardiovascular Diseases. Oxidative Med. Cell. Longev. 2022, 2022. DOI: https://doi.org/10.1155/2022/5124553. DOI: https://doi.org/10.1155/2022/5124553

Xu, T.; Ding, W.; Ji, X.; Ao, X.; Liu, Y.; Yu, W.; Wang, J. Oxidative Stress in Cell Death and Cardiovascular Diseases. Oxidative Med. Cell. Longev. 2019, 2019. DOI: https://doi.org/10.1155/2019/9030563. DOI: https://doi.org/10.1155/2019/9030563

Bhatti, J. S.; Sehrawat, A.; Mishra, J.; Sidhu, I. S.; Navik, U.; Khullar, N.; Kumar, S.; Bhatti, G. K.; Reddy, P. H. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic. Biol. Med. 2022, 184, 114-134. DOI: https://doi.org/10.1016/j.freeradbiomed.2022.03.019. DOI: https://doi.org/10.1016/j.freeradbiomed.2022.03.019

Black, H. S. A Synopsis of the Associations of Oxidative Stress, ROS, and Antioxidants with Diabetes Mellitus. Antioxidants 2022, 11 (10). DOI: https://doi.org/10.3390/antiox11102003. DOI: https://doi.org/10.3390/antiox11102003

Ghasemi-Dehnoo, M.; Amini-Khoei, H.; Lorigooini, Z.; Rafieian-Kopaei, M. Oxidative stress and antioxidants in diabetes mellitus. Asian Pac. J. Trop. Med. 2020, 13 (10), 431-438. DOI: https://doi.org/10.4103/1995-7645.291036. DOI: https://doi.org/10.4103/1995-7645.291036

Ighodaro, O. M. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed. Pharmacother. 2018, 108, 656-662. DOI: https://doi.org/10.1016/j.biopha.2018.09.058. DOI: https://doi.org/10.1016/j.biopha.2018.09.058

Ramos-Riera, K. P.; Pérez-Severiano, F.; López-Meraz, M. L. Oxidative stress: a common imbalance in diabetes and epilepsy. Metab. Brain Dis. 2023, 38 (3),767-782. DOI: https://doi.org/10.1007/s11011-022-01154-7. DOI: https://doi.org/10.1007/s11011-022-01154-7

Thakur, P.; Kumar, A.; Kumar, A. Targeting oxidative stress through antioxidants in diabetes mellitus. J. Drug Target. 2018, 26 (9), 766-776. DOI: https://doi.org/10.1080/1061186X.2017.1419478. DOI: https://doi.org/10.1080/1061186X.2017.1419478

Zhang, P.; Li, T.; Wu, X.; Nice, E. C.; Huang, C.; Zhang, Y. Oxidative stress and diabetes: antioxidative strategies. Front. Med. 2020, 14 (5), 583-600. DOI: https://doi.org/10.1007/s11684-019-0729-1. DOI: https://doi.org/10.1007/s11684-019-0729-1

Eguchi, N.; Vaziri, N. D.; Dafoe, D. C.; Ichii, H. The role of oxidative stress in pancreatic β cell dysfunction in diabetes. Int. J. Mol. Sci. 2021, 22 (4), 1-18. DOI: https://doi.org/10.3390/ijms22041509. DOI: https://doi.org/10.3390/ijms22041509

Ferreira, H. B.; Melo, T.; Paiva, A.; Domingues, M. D. R. Insights in the role of lipids, oxidative stress and inflammation in rheumatoid arthritis unveiled by new trends in lipidomic investigations. Antioxidants 2021, 10 (1), 1-21. DOI: 10.3390/antiox10010045. DOI: https://doi.org/10.3390/antiox10010045

Kaur, G.; Sharma, A.; Bhatnagar, A. Role of oxidative stress in pathophysiology of rheumatoid arthritis: insights into NRF2-KEAP1 signalling. Autoimmunity 2021, 54 (7), 385-397. DOI: https://doi.org/10.1080/08916934.2021.1963959. DOI: https://doi.org/10.1080/08916934.2021.1963959

Kunsch, C.; Sikorski, J. A.; Sundell, C. L. Oxidative stress and the use of antioxidants for the treatment of rheumatoid arthritis. Curr. Med. Chem.: Immunol. Endocr. Metabol. Agents 2005, 5 (3), 249-258. DOI: https://doi.org/10.2174/1568013054022490. DOI: https://doi.org/10.2174/1568013054022490

Quinonez-Flores, C. M.; Gonzalez-Chavez, S. A.; Del Rio Najera, D.; Pacheco-Tena, C. Oxidative Stress Relevance in the Pathogenesis of the Rheumatoid Arthritis: A Systematic Review. Biomed. Res. Int. 2016, 2016. DOI: https://doi.org/10.1155/2016/6097417. DOI: https://doi.org/10.1155/2016/6097417

Zamudio-Cuevas, Y.; Martínez-Flores, K.; Martínez-Nava, G. A.; Clavijo-Cornejo, D.; Fernández-Torres, J.; Sánchez-Sánchez, R. Rheumatoid arthritis and oxidative stress, a review of a decade. Cell. Mol. Biol. 2022, 68 (6), 174-184. DOI: https://doi.org/10.14715/cmb/2022.68.6.28. DOI: https://doi.org/10.14715/cmb/2022.68.6.28

Amiri, M. Oxidative stress and free radicals in liver and kidney diseases; an updated short-review. J. Nephropathol. 2018, 7 (3), 127-131. DOI: https://doi.org/10.15171/jnp.2018.30. DOI: https://doi.org/10.15171/jnp.2018.30

Coppolino, G.; Leonardi, G.; Andreucci, M.; Bolignano, D. Oxidative stress and kidney function: A brief update. Curr. Pharm. Des. 2018, 24 (40), 4794-4799. DOI: https://doi.org/10.2174/1381612825666190112165206. DOI: https://doi.org/10.2174/1381612825666190112165206

Daenen, K.; Andries, A.; Mekahli, D.; Van Schepdael, A.; Jouret, F.; Bammens, B. Oxidative stress in chronic kidney disease. Pediatr. Nephrol. 2019, 34 (6), 975-991. DOI: 10.1007/s00467-018-4005-4. DOI: https://doi.org/10.1007/s00467-018-4005-4

Duni, A.; Liakopoulos, V.; Roumeliotis, S.; Peschos, D.; Dounousi, E. Oxidative stress in the pathogenesis and evolution of chronic kidney disease: Untangling ariadne’s thread. Int. J. Mol. Sci. 2019, 20 (15). DOI: https://doi.org/10.3390/ijms20153711. DOI: https://doi.org/10.3390/ijms20153711

Hsu, C. N.; Tain, Y. L. Developmental origins of kidney disease: Why oxidative stress matters? Antioxidants 2021, 10 (1), 1-18. DOI: https://doi.org/10.3390/antiox10010033. DOI: https://doi.org/10.3390/antiox10010033

Jha, J. C.; Banal, C.; Chow, B. S. M.; Cooper, M. E.; Jandeleit-Dahm, K. Diabetes and Kidney Disease: Role of Oxidative Stress. Antioxid. Redox Signal. 2016, 25 (12), 657-684. DOI: https://doi.org/10.1089/ars.2016.6664. DOI: https://doi.org/10.1089/ars.2016.6664

Ling, X. C.; Kuo, K. L. Oxidative stress in chronic kidney disease. Ren. Replace. Ther. 2018, 4 (1). DOI: https://doi.org/10.1186/s41100-018-0195-2. DOI: https://doi.org/10.1186/s41100-018-0195-2

Tamay-Cach, F.; Quintana-Pérez, J. C.; Trujillo-Ferrara, J. G.; Cuevas-Hernández, R. I.; Del Valle-Mondragón, L.; García-Trejo, E. M.; Arellano-Mendoza, M. G. A review of the impact of oxidative stress and some antioxidant therapies on renal damage. Ren. Fail. 2016, 38 (2), 171-175. DOI: https://doi.org/10.3109/0886022X.2015.1120097. DOI: https://doi.org/10.3109/0886022X.2015.1120097

Verma, S.; Singh, P.; Khurana, S.; Ganguly, N. K.; Kukreti, R.; Saso, L.; Rana, D. S.; Taneja, V.; Bhargava, V. Implications of oxidative stress in chronic kidney disease: A review on current concepts and therapies. Kidney Res. Clin. Pract. 2021, 40 (2), 183-193. DOI: https://doi.org/10.23876/j.krcp.20.163. DOI: https://doi.org/10.23876/j.krcp.20.163

Antunes, M. A.; Lopes-Pacheco, M.; Rocco, P. R. M. Oxidative Stress-Derived Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: A Concise Review. Oxidative Med. Cell. Longev. 2021, 2021. DOI: https://doi.org/10.1155/2021/6644002. DOI: https://doi.org/10.1155/2021/6644002

Bargagli, E.; Olivieri, C.; Bennett, D.; Prasse, A.; Muller-Quernheim, J.; Rottoli, P. Oxidative stress in the pathogenesis of diffuse lung diseases: A review. Respir. Med. 2009, 103 (9), 1245-1256. DOI: https://doi.org/10.1016/j.rmed.2009.04.014. DOI: https://doi.org/10.1016/j.rmed.2009.04.014

6 Barnes, P. J. Oxidative Stress in Chronic Obstructive Pulmonary Disease. Antioxidants 2022, 11 (5). DOI: https://doi.org/10.3390/antiox11050965. DOI: https://doi.org/10.3390/antiox11050965

Bast, A.; Weseler, A. R.; Haenen, G. R. M. M.; Den Hartog, G. J. M. Oxidative stress and antioxidants in interstitial lung disease. Curr. Opin. Pulm. Med. 2010, 16 (5), 516-520. DOI: https://doi.org/10.1097/MCP.0b013e32833c645d. DOI: https://doi.org/10.1097/MCP.0b013e32833c645d

6Cheresh, P.; Kim, S. J.; Tulasiram, S.; Kamp, D. W. Oxidative stress and pulmonary fibrosis. Biochim. Biophys. Acta - Mol. Basis Dis. 2013, 1832 (7), 1028-1040. DOI: https://doi.org/10.1016/j.bbadis.2012.11.021. DOI: https://doi.org/10.1016/j.bbadis.2012.11.021

Hecker, L. Mechanisms and consequences of oxidative stress in lung disease: Therapeutic implications for an aging populace. Am. J. Physiol. Lung Cell. Mol. Physiol. 2018, 314 (4), L642-L653. DOI: https://doi.org/10.1152/ajplung.00275.2017. DOI: https://doi.org/10.1152/ajplung.00275.2017

Hsueh, Y. J.; Chen, Y. N.; Tsao, Y. T.; Cheng, C. M.; Wu, W. C.; Chen, H. C. The Pathomechanism, Antioxidant Biomarkers, and Treatment of Oxidative Stress-Related Eye Diseases. Int. J. Mol. Sci. 2022, 23 (3). DOI: https://doi.org/10.3390/ijms23031255. DOI: https://doi.org/10.3390/ijms23031255

Ivanov, I. V.; Mappes, T.; Schaupp, P.; Lappe, C.; Wahl, S. Ultraviolet radiation oxidative stress affects eye health. J. Biophotonics 2018, 11 (7). DOI: https://doi.org/10.1002/jbio.201700377. DOI: https://doi.org/10.1002/jbio.201700377

Nita, M.; Grzybowski, A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxidative Med. Cell. Longev. 2016, 2016. DOI: https://doi.org/10.1155/2016/3164734. DOI: https://doi.org/10.1155/2016/3164734

Seen, S.; Tong, L. Dry eye disease and oxidative stress. Acta Ophthalmol. (Copenh.) 2018, 96 (4), e412-e420. DOI: https://doi.org/10.1111/aos.13526. DOI: https://doi.org/10.1111/aos.13526

Subramaniam, M. D.; Iyer, M.; Nair, A. P.; Venkatesan, D.; Mathavan, S.; Eruppakotte, N.; Kizhakkillach, S.; Chandran, M. K.; Roy, A.; Gopalakrishnan, A. V.; Vellingiri, B. Oxidative stress and mitochondrial transfer: A new dimension towards ocular diseases. Genes Dis. 2022, 9 (3), 610-637. DOI: https://doi.org/10.1016/j.gendis.2020.11.020. DOI: https://doi.org/10.1016/j.gendis.2020.11.020

Ung, L.; Pattamatta, U.; Carnt, N.; Wilkinson-Berka, J. L.; Liew, G.; White, A. J. R. Oxidative stress and reactive oxygen species: A review of their role in ocular disease. Clin. Sci. 2017, 131 (24), 2865-2883. DOI: https://doi.org/10.1042/CS20171246. DOI: https://doi.org/10.1042/CS20171246

Aouache, R.; Biquard, L.; Vaiman, D.; Miralles, F. Oxidative stress in preeclampsia and placental diseases. Int. J. Mol. Sci. 2018, 19 (5). DOI: https://doi.org/10.3390/ijms19051496. DOI: https://doi.org/10.3390/ijms19051496

Chiarello, D. I.; Abad, C.; Rojas, D.; Toledo, F.; Vázquez, C. M.; Mate, A.; Sobrevia, L.; Marín, R. Oxidative stress: Normal pregnancy versus preeclampsia. Biochim. Biophys. Acta - Mol. Basis Dis. 2020, 1866 (2). DOI: https://doi.org/10.1016/j.bbadis.2018.12.005. DOI: https://doi.org/10.1016/j.bbadis.2018.12.005

Siddiqui, I. A.; Jaleel, A.; Tamimi, W.; Al Kadri, H. M. F. Role of oxidative stress in the pathogenesis of preeclampsia. Arch. Gynecol. Obstet. 2010, 282 (5), 469-474. DOI: https://doi.org/10.1007/s00404-010-1538-6. DOI: https://doi.org/10.1007/s00404-010-1538-6

Taysi, S.; Tascan, A. S.; Ugur, M. G.; Demir, M. Radicals, oxidative/nitrosative stress and preeclampsia. Mini-Rev. Med. Chem. 2019, 19 (3), 178-193. DOI: https://doi.org/10.2174/1389557518666181015151350. DOI: https://doi.org/10.2174/1389557518666181015151350

Thompson, L. P.; Al-Hasan, Y. Impact of oxidative stress in fetal programming. J. Pregnancy 2012, 2012. DOI: https://doi.org/10.1155/2012/582748. DOI: https://doi.org/10.1155/2012/582748

Liang, N.; Kitts, D. D. Antioxidant property of coffee components: Assessment of methods that define mechanism of action. Molecules 2014, 19 (11), 19180-19208. DOI: 10.3390/molecules191119180. DOI: https://doi.org/10.3390/molecules191119180

Aguiar, J.; Estevinho, B. N.; Santos, L. Microencapsulation of natural antioxidants for food application – The specific case of coffee antioxidants – A review. Trends Food Sci. Technol. 2016, 58, 21-39. DOI: https://doi.org/10.1016/j.tifs.2016.10.012. DOI: https://doi.org/10.1016/j.tifs.2016.10.012

Bothiraj, K. V.; Murugan; Vanitha, V. Green coffee bean seed and their role in antioxidant–a review. Int. J. Pharm. Sci. Res. 2020, 11 (1), 233-240. DOI: https://doi.org/10.26452/ijrps.v11i1.1812. DOI: https://doi.org/10.26452/ijrps.v11i1.1812

Iriondo-DeHond, A.; Ramírez, B.; Escobar, F. V.; del Castillo, M. D. Antioxidant properties of high molecular weight compounds from coffee roasting and brewing byproducts. Bioact. Compd. Health Dis. 2019, 2 (3), 48-63. DOI: https://doi.org/10.31989/bchd.v2i3.588. DOI: https://doi.org/10.31989/bchd.v2i3.588

Ahmed Ali, A. M.; Yagi, S.; Qahtan, A. A.; Alatar, A. A.; Angeloni, S.; Maggi, F.; Caprioli, G.; Abdel-Salam, E. M.; Sinan, K. I.; Zengin, G. Evaluation of the chemical constituents, antioxidant and enzyme inhibitory activities of six Yemeni green coffee beans varieties. Food Biosci. 2022, 46. DOI: https://doi.org/10.1016/j.fbio.2022.101552. DOI: https://doi.org/10.1016/j.fbio.2022.101552

AlAmri, O. D.; Albeltagy, R. S.; M. A. Akabawy, A.; Mahgoub, S.; Abdel-Mohsen, D. M.; Abdel Moneim, A. E.; Amin, H. K. Investigation of antioxidant and anti-inflammatory activities as well as the renal protective potential of green coffee extract in high fat-diet/streptozotocin-induced diabetes in male albino rats. J. Funct. Foods 2020, 71. DOI: https://doi.org/10.1016/j.jff.2020.103996. DOI: https://doi.org/10.1016/j.jff.2020.103996

Andrade, C.; Perestrelo, R.; Câmara, J. S. Bioactive Compounds and Antioxidant Activity from Spent Coffee Grounds as a Powerful Approach for Its Valorization. Molecules 2022, 27 (21). DOI: https://doi.org/10.3390/molecules27217504. DOI: https://doi.org/10.3390/molecules27217504

Angeloni, S.; Freschi, M.; Marrazzo, P.; Hrelia, S.; Beghelli, D.; Juan-García, A.; Juan, C.; Caprioli, G.; Sagratini, G.; Angeloni, C. Antioxidant and Anti-Inflammatory Profiles of Spent Coffee Ground Extracts for the Treatment of Neurodegeneration. Oxidative Med. Cell. Longev. 2021, 2021. DOI: https://doi.org/10.1155/2021/6620913. DOI: https://doi.org/10.1155/2021/6620913

Botto, L.; Bulbarelli, A.; Lonati, E.; Cazzaniga, E.; Tassotti, M.; Mena, P.; Del Rio, D.; Palestini, P. Study of the antioxidant effects of coffee phenolic metabolites on c6 glioma cells exposed to diesel exhaust particles. Antioxidants 2021, 10 (8). DOI: https://doi.org/10.3390/antiox10081169. DOI: https://doi.org/10.3390/antiox10081169

Castaldo, L.; Toriello, M.; Sessa, R.; Izzo, L.; Lombardi, S.; Narváez, A.; Ritieni, A.; Grosso, M. Antioxidant and anti-inflammatory activity of coffee brew evaluated after simulated gastrointestinal digestion. Nutrients 2021, 13 (12). DOI: https://doi.org/10.3390/nu13124368. DOI: https://doi.org/10.3390/nu13124368

Lemos, M. F.; de Andrade Salustriano, N.; de Souza Costa, M. M.; Lirio, K.; da Fonseca, A. F. A.; Pacheco, H. P.; Endringer, D. C.; Fronza, M.; Scherer, R. Chlorogenic acid and caffeine contents and anti-inflammatory and antioxidant activities of green beans of conilon and arabica coffees harvested with different degrees of maturation. J. Saudi Chem. Soc. 2022, 26 (3). DOI: https://doi.org/10.1016/j.jscs.2022.101467. DOI: https://doi.org/10.1016/j.jscs.2022.101467

Lonati, E.; Carrozzini, T.; Bruni, I.; Mena, P.; Botto, L.; Cazzaniga, E.; Del Rio, D.; Labra, M.; Palestini, P.; Bulbarelli, A. Coffee-Derived Phenolic Compounds Activate Nrf2 Antioxidant Pathway in I/R Injury In Vitro Model: A Nutritional Approach Preventing Age Related-Damages. Molecules 2022, 27 (3). DOI: https://doi.org/10.3390/molecules27031049. DOI: https://doi.org/10.3390/molecules27031049

Montenegro, J.; dos Santos, L. S.; de Souza, R. G. G.; Lima, L. G. B.; Mattos, D. S.; Viana, B. P. P. B.; da Fonseca Bastos, A. C. S.; Muzzi, L.; Conte-Júnior, C. A.; Gimba, E. R. P.; et al. Bioactive compounds, antioxidant activity and antiproliferative effects in prostate cancer cells of green and roasted coffee extracts obtained by microwave-assisted extraction (MAE). Food Res. Int. 2021, 140. DOI: https://doi.org/10.1016/j.foodres.2020.110014. DOI: https://doi.org/10.1016/j.foodres.2020.110014

Nemzer, B.; Kalita, D.; Abshiru, N. Quantification of major bioactive constituents, antioxidant activity, and enzyme inhibitory effects of whole coffee cherries (Coffea arabica) and their extracts. Molecules 2021, 26 (14). DOI: https://doi.org/10.3390/molecules26144306. DOI: https://doi.org/10.3390/molecules26144306

Nosal, B. M.; Sakaki, J. R.; Kim, D. O.; Chun, O. K. Impact of coffee preparation on total phenolic content in brewed coffee extracts and their contribution to the body’s antioxidant status. Food Sci. Biotechnol. 2022, 31 (8), 1081-1088. DOI: https://doi.org/10.1007/s10068-022-01100-4. DOI: https://doi.org/10.1007/s10068-022-01100-4

Nzekoue, F. K.; Angeloni, S.; Navarini, L.; Angeloni, C.; Freschi, M.; Hrelia, S.; Vitali, L. A.; Sagratini, G.; Vittori, S.; Caprioli, G. Coffee silverskin extracts: Quantification of 30 bioactive compounds by a new HPLC-MS/MS method and evaluation of their antioxidant and antibacterial activities. Food Res. Int. 2020, 133. DOI: https://doi.org/10.1016/j.foodres.2020.109128. DOI: https://doi.org/10.1016/j.foodres.2020.109128

Pergolizzi, S.; D’Angelo, V.; Aragona, M.; Dugo, P.; Cacciola, F.; Capillo, G.; Dugo, G.; Lauriano, E. R. Evaluation of antioxidant and anti-inflammatory activity of green coffee beans methanolic extract in rat skin. Nat. Prod. Res. 2020, 34 (11), 1535-1541. DOI: https://doi.org/10.1080/14786419.2018.1523161. DOI: https://doi.org/10.1080/14786419.2018.1523161

Sunoqrot, S.; Al-Shalabi, E.; Al-Bakri, A. G.; Zalloum, H.; Abu-Irmaileh, B.; Ibrahim, L. H.; Zeno, H. Coffee Bean Polyphenols Can Form Biocompatible Template-free Antioxidant Nanoparticles with Various Sizes and Distinct Colors. ACS Omega 2021, 6 (4), 2767-2776. DOI: https://doi.org/10.1021/acsomega.0c05061. DOI: https://doi.org/10.1021/acsomega.0c05061

Yin, X.; He, X.; Wu, L.; Yan, D.; Yan, S. Chlorogenic Acid, the Main Antioxidant in Coffee, Reduces Radiation-Induced Apoptosis and DNA Damage via NF-E2-Related Factor 2 (Nrf2) Activation in Hepatocellular Carcinoma. Oxid. Med. Cell. Longev. 2022, 2022. DOI: https://doi.org/10.1155/2022/4566949. DOI: https://doi.org/10.1155/2022/4566949

Natella, F.; Nardini, M.; Giannetti, I.; Dattilo, C.; Scaccini, C. Coffee drinking influences plasma antioxidant capacity in humans. J. Agric. Food Chem. 2002, 50 (21), 6211-6216. DOI: https://doi.org/10.1021/jf025768c. DOI: https://doi.org/10.1021/jf025768c

Hoelzl, C.; Knasmüller, S.; Wagner, K.; Elbling, L.; Huber, W.; Kager, N.; Ferk, F.; Ehrlich, V.; Nersesyan, A.; Neubauer, O.; et al. Instant coffee with high chlorogenic acid levels protects humans against oxidative damage of macromolecules. Mol. Nutr. Food Res. 2010, 54 (12), 1722-1733. DOI: https://doi.org/10.1002/mnfr.201000048. DOI: https://doi.org/10.1002/mnfr.201000048

Hori, A.; Kasai, H.; Kawai, K.; Nanri, A.; Sato, M.; Ohta, M.; Mizoue, T. Coffee intake is associated with lower levels of oxidative DNA damage and decreasing body iron storage in healthy women. Nutr. Cancer 2014, 66 (6), 964-969. DOI: https://doi.org/10.1080/01635581.2014.932398. DOI: https://doi.org/10.1080/01635581.2014.932398

Nicoli, M. C.; Anese, M.; Manzocco, L.; Lerici, C. R. Antioxidant properties of coffee brews in relation to the roasting degree. LWT 1997, 30 (3), 292-297. DOI: https://doi.org/10.1006/fstl.1996.0181. DOI: https://doi.org/10.1006/fstl.1996.0181

León-Carmona, J. R.; Alvarez-Idaboy, J. R.; Galano, A. On the peroxyl scavenging activity of hydroxycinnamic acid derivatives: Mechanisms, kinetics, and importance of the acid-base equilibrium. Phys. Chem. Chem. Phys. 2012, 14 (36), 12534-12543. DOI: https://doi.org/10.1039/c2cp40651a

Baggio, J.; Lima, A.; Mancini Filho, J.; Fett, R. Identification of phenolic acids in coffee (Coffea Arabica L.) dust and its antioxidant activity. Ital. J. Food Sci. 2007, 19 (2), 191-201.

Beder-Belkhiri, W.; Zeghichi-Hamri, S.; Kadri, N.; Boulekbache-Makhlouf, L.; Cardoso, S.; Oukhmanou-Bensidhoum, S.; Madani, K. Hydroxycinnamic acids profiling, in vitro evaluation of total phenolic compounds, caffeine and antioxidant properties of coffee imported, roasted and consumed in Algeria. Mediterr. J. Nutr. Metab. 2018, 11 (1), 51-63. DOI: https://doi.org/10.3233/MNM-17181. DOI: https://doi.org/10.3233/MNM-17181

Górnaś, P.; Dwiecki, K.; Siger, A.; Tomaszewska-Gras, J.; Michalak, M.; Polewski, K. Contribution of phenolic acids isolated from green and roasted boiled-type coffee brews to total coffee antioxidant capacity. Eur. Food Res. Technol. 2016, 242 (5), 641-653. DOI: https://doi.org/10.1007/s00217-015-2572-1. DOI: https://doi.org/10.1007/s00217-015-2572-1

Saeed Alkaltham, M.; Musa Özcan, M.; Uslu, N.; Salamatullah, A. M.; Hayat, K. Effect of microwave and oven roasting methods on total phenol, antioxidant activity, phenolic compounds, and fatty acid compositions of coffee beans. J. Food Process. Preserv. 2020, 44 (11). DOI: https://doi.org/10.1111/jfpp.14874. DOI: https://doi.org/10.1111/jfpp.14874

Alnsour, L.; Issa, R.; Awwad, S.; Albals, D.; Al-Momani, I. Quantification of Total Phenols and Antioxidants in Coffee Samples of Different Origins and Evaluation of the Effect of Degree of Roasting on Their Levels. Molecules 2022, 27 (5). DOI: https://doi.org/10.3390/molecules27051591. DOI: https://doi.org/10.3390/molecules27051591

Delgado-Andrade, C.; Morales, F. J. Unraveling the contribution of melanoidins to the antioxidant activity of coffee brews. J. Agric. Food Chem. 2005, 53 (5), 1403-1407. DOI: https://doi.org/10.1021/jf048500p. DOI: https://doi.org/10.1021/jf048500p

Pérez-Hernández, L. M.; Chávez-Quiroz, K.; Medina-Juárez, L. Á.; Gámez Meza, N. Phenolic characterization, melanoidins, and antioxidant activity of some commercial coffees from Coffea arabica and Coffea canephora. J. Mex. Chem. Soc. 2012, 56 (4), 430-435.

Perrone, D.; Farah, A.; Donangelo, C. M. Influence of coffee roasting on the incorporation of phenolic compounds into melanoidins and their relationship with antioxidant activity of the brew. J. Agric. Food Chem. 2012, 60 (17), 4265-4275. DOI: https://doi.org/10.1021/jf205388x. DOI: https://doi.org/10.1021/jf205388x

Vignoli, J. A.; Bassoli, D. G.; Benassi, M. T. Antioxidant activity, polyphenols, caffeine and melanoidins in soluble coffee: The influence of processing conditions and raw material. Food Chem. 2011, 124 (3), 863-868. DOI: https://doi.org/10.1016/j.foodchem.2010.07.008. DOI: https://doi.org/10.1016/j.foodchem.2010.07.008

Fuster, M. D.; Mitchell, A. E.; Ochi, H.; Shibamoto, T. Antioxidative activities of heterocyclic compounds formed in brewed coffee. J. Agric. Food Chem. 2000, 48 (11), 5600-5603. DOI: https://doi.org/10.1021/jf000605e. DOI: https://doi.org/10.1021/jf000605e

Yanagimoto, K.; Lee, K. G.; Ochi, H.; Shibamoto, T. Antioxidative activity of heterocyclic compounds found in coffee volatiles produced by Maillard reaction. J. Agric. Food Chem. 2002, 50 (19), 5480-5484. DOI: https://doi.org/10.1021/jf025616h. DOI: https://doi.org/10.1021/jf025616h

Liu, Y.; Kitts, D. D. Confirmation that the Maillard reaction is the principle contributor to the antioxidant capacity of coffee brews. Food Res. Int. 2011, 44 (8), 2418-2424. DOI: https://doi.org/10.1016/j.foodres.2010.12.037. DOI: https://doi.org/10.1016/j.foodres.2010.12.037

Nebesny, E.; Budryn, G. Antioxidative activity of green and roasted coffee beans as influenced by convection and microwave roasting methods and content of certain compounds. Eur. Food Res. Technol. 2003, 217 (2), 157-163. DOI: https://doi.org/10.1007/s00217-003-0705-4. DOI: https://doi.org/10.1007/s00217-003-0705-4

Cheong, M. W.; Tong, K. H.; Ong, J. J. M.; Liu, S. Q.; Curran, P.; Yu, B. Volatile composition and antioxidant capacity of Arabica coffee. Food Res. Int. 2013, 51 (1), 388-396. DOI: https://doi.org/10.1016/j.foodres.2012.12.058. DOI: https://doi.org/10.1016/j.foodres.2012.12.058

Haile, M.; Bae, H. M.; Kang, W. H. Comparison of the antioxidant activities and volatile compounds of coffee beans obtained using digestive bio-processing (elephant dung coffee) and commonly known processing methods. Antioxidants 2020, 9 (5). DOI: https://doi.org/10.3390/antiox9050408. DOI: https://doi.org/10.3390/antiox9050408

Kang, D. E.; Lee, H. U.; Davaatseren, M.; Chung, M. S. Comparison of acrylamide and furan concentrations, antioxidant activities, and volatile profiles in cold or hot brew coffees. Food Sci. Biotechnol. 2020, 29 (1), 141-148. DOI: https://doi.org/10.1007/s10068-019-00644-2. DOI: https://doi.org/10.1007/s10068-019-00644-2

Kulapichitr, F.; Borompichaichartkul, C.; Pratontep, S.; Lopetcharat, K.; Boonbumrung, S.; Suppavorasatit, I. Differences in volatile compounds and antioxidant activity of ripe and unripe green coffee beans (Coffea arabica L. ‘Catimor’). Acta Hortic. 2017, 1179, 261-268. DOI: https://doi.org/10.17660/ActaHortic.2017.1179.41. DOI: https://doi.org/10.17660/ActaHortic.2017.1179.41

Ludwig, I. A.; Sánchez, L.; De Peña, M. P.; Cid, C. Contribution of volatile compounds to the antioxidant capacity of coffee. Food Res. Int. 2014, 61, 67-74. DOI: https://doi.org/10.1016/j.foodres.2014.03.045. DOI: https://doi.org/10.1016/j.foodres.2014.03.045

Stadler, R. H.; Fay, L. B. Antioxidative Reactions of Caffeine: Formation of 8-Oxocaffeine (1,3,7-Trimethyluric Acid) in Coffee Subjected to Oxidative Stress. J. Agric. Food Chem. 1995, 43 (5), 1332-1338. DOI: https://doi.org/10.1021/jf00053a038. DOI: https://doi.org/10.1021/jf00053a038

Miłek, M.; Młodecki, Ł.; Dżugan, M. Caffeine Content and Antioxidant Activity of Various Brews of Specialty Grade Coffee. Acta Sci. Pol., Technol. Aliment. 2021, 20 (2), 179-188. DOI: https://doi.org/10.17306/J.AFS.2021.0890. DOI: https://doi.org/10.17306/J.AFS.0890

Šeremet, D.; Fabečić, P.; Cebin, A. V.; Jarić, A. M.; Pudić, R.; Komes, D. Antioxidant and Sensory Assessment of Innovative Coffee Blends of Reduced Caffeine Content. Molecules 2022, 27 (2). DOI: https://doi.org/10.3390/molecules27020448. DOI: https://doi.org/10.3390/molecules27020448

León-Carmona, J. R.; Galano, A. Is caffeine a good scavenger of oxygenated free radicals? J. Phys. Chem. B 2011, 115 (15), 4538-4546. DOI: https://doi.org/10.1021/jp201383y. DOI: https://doi.org/10.1021/jp201383y

Prior, R. L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53 (10), 4290-4302. DOI: https://doi.org/10.1021/jf0502698. DOI: https://doi.org/10.1021/jf0502698

Frankel, E. N.; Meyer, A. S. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J. Sci. Food Agric. 2000, 80 (13), 1925-1941. DOI: https://doi.org/10.1021/jf103813t. DOI: https://doi.org/10.1002/1097-0010(200010)80:13<1925::AID-JSFA714>3.0.CO;2-4

Galano, A.; Alvarez-Idaboy, J. R. A computational methodology for accurate predictions of rate constants in solution: Application to the assessment of primary antioxidant activity. J. Comput. Chem. 2013, 34 (28), 2430-2445. DOI: https://doi.org/10.1002/jcc.23409. DOI: https://doi.org/10.1002/jcc.23409

Yashin, A.; Yashin, Y.; Wang, J. Y.; Nemzer, B. Antioxidant and antiradical activity of coffee. Antioxidants 2013, 2 (4), 230-245. DOI: https://doi.org/10.3390/antiox2040230. DOI: https://doi.org/10.3390/antiox2040230

Febrianto, N. A.; Zhu, F. Coffee bean processing: Emerging methods and their effects on chemical, biological and sensory properties. Food Chem. 2023, 412. DOI: https://doi.org/10.1016/j.foodchem.2023.135489. DOI: https://doi.org/10.1016/j.foodchem.2023.135489

Saud, S.; Salamatullah, A. M. Relationship between the chemical composition and the biological functions of coffee. Molecules 2021, 26 (24). DOI: https://doi.org/10.3390/molecules26247634. DOI: https://doi.org/10.3390/molecules26247634

Hall, R. D.; Trevisan, F.; de Vos, R. C. H. Coffee berry and green bean chemistry – Opportunities for improving cup quality and crop circularity. Food Res. Int. 2022, 151. DOI: https://doi.org/10.1016/j.foodres.2021.110825. DOI: https://doi.org/10.1016/j.foodres.2021.110825

Kusumah, J.; Gonzalez de Mejia, E. Coffee constituents with antiadipogenic and antidiabetic potentials: A narrative review. Food Chem. Toxicol. 2022, 161. DOI: https://doi.org/10.1016/j.fct.2022.112821. DOI: https://doi.org/10.1016/j.fct.2022.112821

Munyendo, L. M.; Njoroge, D. M.; Owaga, E. E.; Mugendi, B. Coffee phytochemicals and post-harvest handling—A complex and delicate balance. J. Food Compos. Anal. 2021, 102. DOI: https://doi.org/10.1016/j.jfca.2021.103995. DOI: https://doi.org/10.1016/j.jfca.2021.103995

Pua, A.; Goh, R. M. V.; Huang, Y.; Tang, V. C. Y.; Ee, K. H.; Cornuz, M.; Liu, S. Q.; Lassabliere, B.; Yu, B. Recent advances in analytical strategies for coffee volatile studies: Opportunities and challenges. Food Chem. 2022, 388. DOI: https://doi.org/10.1016/j.foodchem.2022.132971. DOI: https://doi.org/10.1016/j.foodchem.2022.132971

Van Dijk, A. E.; Olthof, M. R.; Meeuse, J. C.; Seebus, E.; Heine, R. J.; Van Dam, R. M. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care 2009, 32 (6), 1023-1025. DOI: https://doi.org/10.2337/dc09-0207. DOI: https://doi.org/10.2337/dc09-0207

Chen, X. A review on coffee leaves: Phytochemicals, bioactivities and applications. Crit. Rev. Food Sci. Nutr. 2019, 59 (6), 1008-1025. DOI: https://doi.org/10.1080/10408398.2018.1546667. DOI: https://doi.org/10.1080/10408398.2018.1546667

Prakash, I.; R, S. S.; P, S. H.; Kumar, P.; Om, H.; Basavaraj, K.; Murthy, P. S. Metabolomics and volatile fingerprint of yeast fermented robusta coffee: A value added coffee. LWT 2022, 154. DOI: https://doi.org/10.1016/j.lwt.2021.112717. DOI: https://doi.org/10.1016/j.lwt.2021.112717

Sualeh, A.; Tolessa, K.; Mohammed, A. Biochemical composition of green and roasted coffee beans and their association with coffee quality from different districts of southwest Ethiopia. Heliyon 2020, 6 (12). DOI: https://doi.org/10.1016/j.heliyon.2020.e05812. DOI: https://doi.org/10.1016/j.heliyon.2020.e05812

Campa, C.; Ballester, J. F.; Doulbeau, S.; Dussert, S.; Hamon, S.; Noirot, M. Trigonelline and sucrose diversity in wild Coffea species. Food Chem. 2004, 88 (1), 39-43. DOI: https://doi.org/10.1016/j.foodchem.2004.01.020. DOI: https://doi.org/10.1016/j.foodchem.2004.01.020

Campa, C.; Doulbeau, S.; Dussert, S.; Hamon, S.; Noirot, M. Qualitative relationship between caffeine and chlorogenic acid contents among wild Coffea species. Food Chem. 2005, 93 (1), 135-139. DOI: https://doi.org/10.1016/j.foodchem.2004.10.015. DOI: https://doi.org/10.1016/j.foodchem.2004.10.015

Dias, E. C.; Borém, F. M.; Pereira, R. G. F. A.; Guerreiro, M. C. Amino acid profiles in unripe Arabica coffee fruits processed using wet and dry methods. Eur. Food Res. Technol. 2012, 234 (1), 25-32. DOI: https://doi.org/10.1007/s00217-011-1607-5. DOI: https://doi.org/10.1007/s00217-011-1607-5

Dong, W.; Tan, L.; Zhao, J.; Hu, R.; Lu, M. Characterization of fatty acid, amino acid and volatile compound compositions and bioactive components of seven coffee (Coffea robusta) cultivars grown in Hainan Province, China. Molecules 2015, 20 (9), 16687-16708. DOI: https://doi.org/10.3390/molecules200916687. DOI: https://doi.org/10.3390/molecules200916687

Fitri; Laga, A.; Dwyana, Z.; Tawali, A. B. Composition of amino acids and fatty acids on luwak coffee processing. Food Res. 2021, 5 (3), 60-64. DOI: https://doi.org/10.26656/fr.2017.5(3).637. DOI: https://doi.org/10.26656/fr.2017.5(3).637

Macheiner, L.; Schmidt, A.; Mayer, H. K. Green coffee derived supplements and infusions as a source of polyamines and free amino acids. Eur. Food Res. Technol. 2021, 247 (1), 85-99. DOI: https://doi.org/10.1007/s00217-020-03609-6. DOI: https://doi.org/10.1007/s00217-020-03609-6

Dong, W.; Hu, R.; Chu, Z.; Zhao, J.; Tan, L. Effect of different drying techniques on bioactive components, fatty acid composition, and volatile profile of robusta coffee beans. Food Chem. 2017, 234, 121-130. DOI: https://doi.org/10.1016/j.foodchem.2017.04.156. DOI: https://doi.org/10.1016/j.foodchem.2017.04.156

Esquivel, P.; Viñas, M.; Steingass, C. B.; Gruschwitz, M.; Guevara, E.; Carle, R.; Schweiggert, R. M.; Jiménez, V. M. Coffee (Coffea arabica L.) by-Products as a Source of Carotenoids and Phenolic Compounds—Evaluation of Varieties With Different Peel Color. Front. Sustain. Food Syst. 2020, 4. DOI: https://doi.org/10.3389/fsufs.2020.590597. DOI: https://doi.org/10.3389/fsufs.2020.590597

Simkin, A. J.; Kuntz, M.; Moreau, H.; McCarthy, J. Carotenoid profiling and the expression of carotenoid biosynthetic genes in developing coffee grain. Plant Physiol. Biochem. 2010, 48 (6), 434-442. DOI: https://doi.org/10.1016/j.plaphy.2010.02.007. DOI: https://doi.org/10.1016/j.plaphy.2010.02.007

Koshima, Y.; Kitamura, Y.; Islam, M. Z.; Kokawa, M. Quantitative and qualitative evaluation of fatty acids in coffee oil and coffee residue. Food Sci. Technol. Res. 2020, 26 (4), 545-552. DOI: https://doi.org/10.3136/FSTR.26.545. DOI: https://doi.org/10.3136/fstr.26.545

Peñuela-Martínez, A. E.; Zapata-Zapata, A. E.; Durango-Restrepo, D. L. Performance of different fermentation methods and the effect on coffee quality (coffea arabica l.). Coffee Sci. 2018, 13 (4), 465-476. DOI: https://doi.org/10.25186/cs.v13i4.1486. DOI: https://doi.org/10.25186/cs.v13i4.1486

Yeager, S. E.; Batali, M. E.; Guinard, J. X.; Ristenpart, W. D. Acids in coffee: A review of sensory measurements and meta-analysis of chemical composition. Crit. Rev. Food Sci. Nutr. 2021, 63 (8), 1010-1036. DOI: https://doi.org/10.1080/10408398.2021.1957767. DOI: https://doi.org/10.1080/10408398.2021.1957767

Pereira, P. V.; Bravim, D. G.; Grillo, R. P.; Bertoli, L. D.; Osório, V. M.; da Silva Oliveira, D.; da Cruz Pedrozo Miguel, M. G.; Schwan, R. F.; de Assis Silva, S.; Coelho, J. M.; Bernardes, P. C. Microbial diversity and chemical characteristics of Coffea canephora grown in different environments and processed by dry method. World J. Microbiol. Biotechnol. 2021, 37 (3). DOI: https://doi.org/10.1007/s11274-021-03017-2. DOI: https://doi.org/10.1007/s11274-021-03017-2

Badmos, S.; Lee, S. H.; Kuhnert, N. Comparison and quantification of chlorogenic acids for differentiation of green Robusta and Arabica coffee beans. Food Res. Int. 2019, 126. DOI: https://doi.org/10.1016/j.foodres.2019.108544. DOI: https://doi.org/10.1016/j.foodres.2019.108544

Köseoglu Yilmaz, P.; Kolak, U. SPE-HPLC Determination of Chlorogenic and Phenolic Acids in Coffee. J. Chromatogr. Sci. 2017, 55 (7), 712-718. DOI: https://doi.org/10.1093/chromsci/bmx025. DOI: https://doi.org/10.1093/chromsci/bmx025

Marmet, C.; Actis-Goretta, L.; Renouf, M.; Giuffrida, F. Quantification of phenolic acids and their methylates, glucuronides, sulfates and lactones metabolites in human plasma by LC-MS/MS after oral ingestion of soluble coffee. J. Pharm. Biomed. Anal. 2014, 88, 617-625. DOI: https://doi.org/10.1016/j.jpba.2013.10.009. DOI: https://doi.org/10.1016/j.jpba.2013.10.009

Somporn, C.; Kamtuo, A.; Theerakulpisut, P.; Siriamornpun, S. Effect of shading on yield, sugar content, phenolic acids and antioxidant property of coffee beans (Coffea Arabica L. cv. Catimor) harvested from north-eastern Thailand. J. Sci. Food Agric. 2012, 92 (9), 1956-1963. DOI: https://doi.org/10.1002/jsfa.5568. DOI: https://doi.org/10.1002/jsfa.5568

Kishimoto, N.; Kakino, Y.; Iwai, K.; Mochida, K.; Fujita, T. In vitro antibacterial, antimutagenic and anti-influenza virus activity of caffeic acid phenethyl esters. Biocontrol Sci. 2005, 10 (4), 155-161. DOI: https://doi.org/10.4265/bio.10.155. DOI: https://doi.org/10.4265/bio.10.155

Dos Santos, R. A.; Prado, M. A.; Pertierra, R. E.; Palacios, H. A. Analysis of sugars and chlorogenic acid in coffee harvested at different ripening stages and after processing. Braz. J. Food Technol. 2018, 21. DOI: https://doi.org/10.1590/1981-6723.16317. DOI: https://doi.org/10.1590/1981-6723.16317

Chindapan, N.; Soydok, S.; Devahastin, S. Roasting Kinetics and Chemical Composition Changes of Robusta Coffee Beans During Hot Air and Superheated Steam Roasting. J. Food Sci. 2019, 84 (2), 292-302. DOI: https://doi.org/10.1111/1750-3841.14422. DOI: https://doi.org/10.1111/1750-3841.14422

Wang, X.; Peng, X.; Lu, J.; Hu, G.; Qiu, M. Ent-kaurane diterpenoids from the cherries of Coffea arabica. Fitoterapia 2019, 132, 7-11. DOI: https://doi.org/10.1016/j.fitote.2018.08.023. DOI: https://doi.org/10.1016/j.fitote.2018.08.023

Wang, X.; Meng, Q.; Peng, X.; Hu, G.; Qiu, M. Identification of new diterpene esters from green Arabica coffee beans, and their platelet aggregation accelerating activities. Food Chem. 2018, 263, 251-257. DOI: https://doi.org/10.1016/j.foodchem.2018.04.081. DOI: https://doi.org/10.1016/j.foodchem.2018.04.081

Shu, Y.; Liu, J. Q.; Peng, X. R.; Wan, L. S.; Zhou, L.; Zhang, T.; Qiu, M. H. Characterization of diterpenoid glucosides in roasted puer coffee beans. J. Agric. Food Chem. 2014, 62 (12), 2631-2637. DOI: https://doi.org/10.1021/jf500788t. DOI: https://doi.org/10.1021/jf500788t

Chu, R.; Wan, L. S.; Peng, X. R.; Yu, M. Y.; Zhang, Z. R.; Zhou, L.; Li, Z. R.; Qiu, M. H. Characterization of New Ent-kaurane Diterpenoids of Yunnan Arabica Coffee Beans. Nat. Prod. Bioprospect. 2016, 6 (4), 217-223. DOI: https://doi.org/10.1007/s13659-016-0099-1. DOI: https://doi.org/10.1007/s13659-016-0099-1

Wang, X.; Peng, X. R.; Lu, J.; Hu, G. L.; Qiu, M. H. New Dammarane Triterpenoids, Caffruones A–D, from the Cherries of Coffea arabica. Nat. Prod. Bioprospect. 2018, 8 (6), 413-418. DOI: https://doi.org/10.1007/s13659-018-0181-y. DOI: https://doi.org/10.1007/s13659-018-0181-y

Lang, R.; Fromme, T.; Beusch, A.; Lang, T.; Klingenspor, M.; Hofmann, T. Raw coffee based dietary supplements contain carboxyatractyligenin derivatives inhibiting mitochondrial adenine-nucleotide-translocase. Food Chem. Toxicol. 2014, 70, 198-204. DOI: https://doi.org/10.1016/j.fct.2014.05.017. DOI: https://doi.org/10.1016/j.fct.2014.05.017

Barbosa, M. D. S. G.; Scholz, M. B. D. S.; Kitzberger, C. S. G.; Benassi, M. D. T. Correlation between the composition of green Arabica coffee beans and the sensory quality of coffee brews. Food Chem. 2019, 292, 275-280. DOI: https://doi.org/10.1016/j.foodchem.2019.04.072. DOI: https://doi.org/10.1016/j.foodchem.2019.04.072

Caporaso, N.; Whitworth, M. B.; Cui, C.; Fisk, I. D. Variability of single bean coffee volatile compounds of Arabica and robusta roasted coffees analysed by SPME-GC-MS. Food Res. Int. 2018, 108, 628-640. DOI: https://doi.org/10.1016/j.foodres.2018.03.077. DOI: https://doi.org/10.1016/j.foodres.2018.03.077

Piccino, S.; Boulanger, R.; Descroix, F.; Sing, A. S. C. Aromatic composition and potent odorants of the "specialty coffee" brew "Bourbon Pointu" correlated to its three trade classifications. Food Res. Int. 2014, 61, 264-271. DOI: https://doi.org/10.1016/j.foodres.2013.07.034. DOI: https://doi.org/10.1016/j.foodres.2013.07.034

Angeloni, S.; Mustafa, A. M.; Abouelenein, D.; Alessandroni, L.; Acquaticci, L.; Nzekoue, F. K.; Petrelli, R.; Sagratini, G.; Vittori, S.; Torregiani, E.; Caprioli, G. Characterization of the aroma profile and main key odorants of espresso coffee. Molecules 2021, 26 (13). DOI: https://doi.org/10.3390/molecules26133856. DOI: https://doi.org/10.3390/molecules26133856

Kim, H. J.; Hong, D. L.; Yu, J. W.; Lee, S. M.; Lee, Y. B. Identification of headspace volatile compounds of blended coffee and application to principal component analysis. Prev. Nutr. Food Sci. 2019, 24 (2), 217-223. DOI: https://doi.org/10.3746/pnf.2019.24.2.217. DOI: https://doi.org/10.3746/pnf.2019.24.2.217

Lee, K. G.; Shibamoto, T. Analysis of volatile components isolated from Hawaiian green coffee beans (Coffea arabica L.). Flavour Fragr. J. 2002, 17 (5), 349-351. DOI: https://doi.org/10.1002/ffj.1067. DOI: https://doi.org/10.1002/ffj.1067

Sarghini, F.; Fasano, E.; De Vivo, A.; Tricarico, M. C. Influence of roasting process in six coffee Arabica cultivars: Analysis of volatile components profiles. Chem. Eng. Trans. 2019, 75, 295-300. DOI: https://doi.org/10.3303/CET1975050.

Butt, M. S.; Sultan, M. T. Coffee and its consumption: Benefits and risks. Crit. Rev. Food Sci. Nutr. 2011, 51 (4), 363-373. DOI: https://doi.org/10.1080/10408390903586412. DOI: https://doi.org/10.1080/10408390903586412

Colombo, R.; Papetti, A. Decaffeinated coffee and its benefits on health: focus on systemic disorders. Crit. Rev. Food Sci. Nutr. 2021, 61 (15), 2506-2522. DOI: https://doi.org/10.1080/10408398.2020.1779175. DOI: https://doi.org/10.1080/10408398.2020.1779175

Dirks-Naylor, A. J. The benefits of coffee on skeletal muscle. Life Sci. 2015, 143, 182-186. DOI: https://doi.org/10.1016/j.lfs.2015.11.005. DOI: https://doi.org/10.1016/j.lfs.2015.11.005

Pourshahidi, L. K.; Navarini, L.; Petracco, M.; Strain, J. J. A Comprehensive Overview of the Risks and Benefits of Coffee Consumption. Compr. Rev. Food Sci. Food Saf. 2016, 15 (4), 671-684. DOI: https://doi.org/10.1111/1541-4337.12206. DOI: https://doi.org/10.1111/1541-4337.12206

dos Santos, H. D.; Boffo, E. F. Coffee beyond the cup: analytical techniques used in chemical composition research—a review. Eur. Food Res. Technol. 2021, 247 (4), 749-775. DOI: https://doi.org/10.1007/s00217-020-03679-6. DOI: https://doi.org/10.1007/s00217-020-03679-6

Barrea, L.; Pugliese, G.; Frias-Toral, E.; El Ghoch, M.; Castellucci, B.; Chapela, S. P.; Carignano, M. D. L. A.; Laudisio, D.; Savastano, S.; Colao, A.; Muscogiuri, G. Coffee consumption, health benefits and side effects: a narrative review and update for dietitians and nutritionists. Crit. Rev. Food Sci. Nutr. 2023, 63 (9), 1238-1261. DOI: https://doi.org/10.1080/10408398.2021.1963207. DOI: https://doi.org/10.1080/10408398.2021.1963207

Jeong, J. M.; Lee, K. I.; Kim, S. M. Simultaneous determination of benzoic Acid, Caffeic acid and Chlorogenic acid in seeds of Eriobotrya japonica and their antibacterial Effect. J. Appl. Biol. Chem. 2014, 57 (1), 89-93. DOI: https://doi.org/10.3839/jabc.2014.014. DOI: https://doi.org/10.3839/jabc.2014.014

Park, M. Y.; Kang, D. H. Antibacterial Activity of Caffeic Acid Combined with UV-A Light against Escherichia coli O157:H7, Salmonella enterica Serovar Typhimurium, and Listeria monocytogenes. Appl. Environ. Microbiol. 2021, 87 (15). DOI: https://doi.org/10.1128/AEM.00631-21. DOI: https://doi.org/10.1128/AEM.00631-21

Pinho, E.; Soares, G.; Henriques, M. Evaluation of antibacterial activity of caffeic acid encapsulated by β-cyclodextrins. J. Microencapsul. 2015, 32 (8), 804-810. DOI: https://doi.org/10.3109/02652048.2015.1094531. DOI: https://doi.org/10.3109/02652048.2015.1094531

Niu, Y.; Wang, K.; Zheng, S.; Wang, Y.; Ren, Q.; Li, H.; Ding, L.; Li, W.; Zhang, L. Antibacterial effect of caffeic acid phenethyl ester on cariogenic bacteria and streptococcus mutans biofilms. Antimicrob. Agents Chemother. 2020, 64 (9). DOI: https://doi.org/10.1128/AAC.00251-20. DOI: https://doi.org/10.1128/AAC.00251-20

Rojas-González, A.; Figueroa-Hernández, C. Y.; González-Rios, O.; Suárez-Quiroz, M. L.; González-Amaro, R. M.; Hernández-Estrada, Z. J.; Rayas-Duarte, P. Coffee Chlorogenic Acids Incorporation for Bioactivity Enhancement of Foods: A Review. Molecules 2022, 27 (11). DOI: https://doi.org/10.3390/molecules27113400. DOI: https://doi.org/10.3390/molecules27113400

Elbestawy, M. K. M.; El-Sherbiny, G. M.; Moghannem, S. A. Antibacterial, Antibiofilm and Anti-Inflammatory Activities of Eugenol Clove Essential Oil against Resistant Helicobacter pylori. Molecules 2023, 28 (6). DOI: https://doi.org/10.3390/molecules28062448. DOI: https://doi.org/10.3390/molecules28062448

Ashrafudoulla, M.; Mizan, M. F. R.; Ha, A. J. W.; Park, S. H.; Ha, S. D. Antibacterial and antibiofilm mechanism of eugenol against antibiotic resistance Vibrio parahaemolyticus. Food Microbiol. 2020, 91. DOI: https://doi.org/10.1016/j.fm.2020.103500. DOI: https://doi.org/10.1016/j.fm.2020.103500

Bai, X.; Li, X.; Liu, X.; Xing, Z.; Su, R.; Wang, Y.; Xia, X.; Shi, C. Antibacterial Effect of Eugenol on Shigella flexneri and Its Mechanism. Foods 2022, 11 (17). DOI: https://doi.org/10.3390/foods11172565. DOI: https://doi.org/10.3390/foods11172565

Bezerra, S. R.; Bezerra, A. H.; de Sousa Silveira, Z.; Macedo, N. S.; dos Santos Barbosa, C. R.; Muniz, D. F.; Sampaio dos Santos, J. F.; Melo Coutinho, H. D.; Bezerra da Cunha, F. A. Antibacterial activity of eugenol on the IS-58 strain of Staphylococcus aureus resistant to tetracycline and toxicity in Drosophila melanogaster. Microb. Pathog. 2022, 164. DOI: https://doi.org/10.1016/j.micpath.2022.105456. DOI: https://doi.org/10.1016/j.micpath.2022.105456

Devi, K. P.; Nisha, S. A.; Sakthivel, R.; Pandian, S. K. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 2010, 130 (1), 107-115. DOI: https://doi.org/10.1016/j.jep.2010.04.025. DOI: https://doi.org/10.1016/j.jep.2010.04.025

Pavesi, C.; Banks, L. A.; Hudaib, T. Antifungal and antibacterial activities of eugenol and non-polar extract of Syzygium aromaticum L. J. Pharm. Sci. Res. 2018, 10 (2), 337-339.

Silva, J. C.; Silva Pereira, R. L.; Sampaio de Freitas, T.; Rocha, J. E.; Macedo, N. S.; de Fatima Alves Nonato, C.; Linhares, M. L.; Arruda Tavares, D. S.; Bezerra da Cunha, F. A.; Melo Coutinho, H. D.; et al. Evaluation of antibacterial and toxicological activities of essential oil of Ocimum gratissimum L. and its major constituent eugenol. Food Biosci. 2022, 50. DOI: https://doi.org/10.1016/j.fbio.2022.102128. DOI: https://doi.org/10.1016/j.fbio.2022.102128

Su, R.; Bai, X.; Liu, X.; Song, L.; Liu, X.; Zhan, X.; Guo, D.; Wang, Y.; Chang, Y.; Shi, C. Antibacterial Mechanism of Eugenol Against Shigella sonnei and Its Antibacterial Application in Lettuce Juice. Foodborne Pathog. Dis. 2022, 19 (11), 779-786. DOI: https://doi.org/10.1089/fpd.2022.0046. DOI: https://doi.org/10.1089/fpd.2022.0046

Zhang, L. L.; Zhang, L. F.; Xu, J. G.; Hu, Q. P. Comparison study on antioxidant, DNA damage protective and antibacterial activities of eugenol and isoeugenol against several foodborne pathogens. Food Nutr. Res. 2017, 61. DOI: https://doi.org/10.1080/16546628.2017.1353356. DOI: https://doi.org/10.1080/16546628.2017.1353356

Amani, F.; Rezaei, A.; Kharazmi, M. S.; Jafari, S. M. Loading ferulic acid into β-cyclodextrin nanosponges; antibacterial activity, controlled release and application in pomegranate juice as a copigment agent. Colloids Surf. Physicochem. Eng. Aspects 2022, 649. DOI: https://doi.org/10.1016/j.colsurfa.2022.129454. DOI: https://doi.org/10.1016/j.colsurfa.2022.129454

Borges, A.; Ferreira, C.; Saavedra, M. J.; Simões, M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013, 19 (4), 256-265. DOI: https://doi.org/10.1089/mdr.2012.0244. DOI: https://doi.org/10.1089/mdr.2012.0244

Ordoñez, R.; Atarés, L.; Chiralt, A. Antibacterial properties of cinnamic and ferulic acids incorporated to starch and PLA monolayer and multilayer films. Food Control 2022, 136. DOI: https://doi.org/10.1016/j.foodcont.2022.108878. DOI: https://doi.org/10.1016/j.foodcont.2022.108878

Tu, Q. B.; Shi, H. C.; Li, P.; Sheng, S.; Wu, F. A. Antibacterial Activity of Ferulic Acid Ester against Ralstonia solanacearum and Its Synergy with Essential Oils. Sustainability 2022, 14 (24). DOI: https://doi.org/10.3390/su142416348. DOI: https://doi.org/10.3390/su142416348

Sung, W. S.; Jung, H. J.; Lee, I. S.; Kim, H. S.; Lee, D. G. Antimicrobial effect of furaneol against human pathogenic bacteria and fungi. J. Microbiol. Biotechnol. 2006, 16 (3), 349-354.

Aulestia-Viera, P. V.; Gontijo, S. M. L.; Gomes, A. D. M.; Sinisterra, R. D.; Rocha, R. G.; Cortés, M. E.; dos Santos, M. F.; Borsatti, M. A. Guaiacol/β-cyclodextrin for rapid healing of dry socket: antibacterial activity, cytotoxicity, and bone repair—an animal study. Oral Maxillofac. Surg. 2019, 23 (1), 53-61. DOI: https://doi.org/10.1007/s10006-019-00747-4. DOI: https://doi.org/10.1007/s10006-019-00747-4

Cooper, R. A. Inhibition of biofilms by glucose oxidase, lactoperoxidase and guaiacol: The active antibacterial component in an enzyme alginogel. Int. Wound J. 2013, 10 (6), 630-637. DOI: https://doi.org/10.1111/iwj.12083. DOI: https://doi.org/10.1111/iwj.12083

Mangal, S.; Chhibber, S.; Singh, V.; Harjai, K. Guaiacol augments quorum quenching potential of ciprofloxacin against Pseudomonas aeruginosa. J. Appl. Microbiol. 2022, 133 (4), 2235-2254. DOI: https://doi.org/10.1111/jam.15787. DOI: https://doi.org/10.1111/jam.15787

Galvão, J. L. F. M.; Rosa, L. L. S.; Neto, H. D.; Silva, D. F.; Nóbrega, J. R.; Cordeiro, L. V.; de Figueiredo, P. T. R.; Andrade Júnior, F. P.; Filho, A. A. O.; Lima, E. O. Antibacterial effect of isoeugenol against Pseudomonas aeruginosa. Braz. J. Pharm. Sci. 2022, 58. DOI: https://doi.org/10.1590/s2175-97902022e20075. DOI: https://doi.org/10.1590/s2175-97902022e20075

Krogsgård Nielsen, C.; Kjems, J.; Mygind, T.; Snabe, T.; Schwarz, K.; Serfert, Y.; Meyer, R. L. Antimicrobial effect of emulsion-encapsulated isoeugenol against biofilms of food pathogens and spoilage bacteria. Int. J. Food Microbiol. 2017, 242, 7-12. DOI: https://doi.org/10.1016/j.ijfoodmicro.2016.11.002. DOI: https://doi.org/10.1016/j.ijfoodmicro.2016.11.002

Nielsen, C. K.; Subbiahdoss, G.; Zeng, G.; Salmi, Z.; Kjems, J.; Mygind, T.; Snabe, T.; Meyer, R. L. Antibacterial isoeugenol coating on stainless steel and polyethylene surfaces prevents biofilm growth. J. Appl. Microbiol. 2018, 124 (1), 179-187. DOI: https://doi.org/10.1111/jam.13634. DOI: https://doi.org/10.1111/jam.13634

Siva, S.; Li, C.; Cui, H.; Lin, L. Encompassment of isoeugenol in 2-hydroxypropyl-β-cyclodextrin using ultrasonication: Characterization, antioxidant and antibacterial activities. J. Mol. Liq. 2019, 296. DOI: https://doi.org/10.1016/j.molliq.2019.111777. DOI: https://doi.org/10.1016/j.molliq.2019.111777

Ajiboye, T. O.; Habibu, R. S.; Saidu, K.; Haliru, F. Z.; Ajiboye, H. O.; Aliyu, N. O.; Ibitoye, O. B.; Uwazie, J. N.; Muritala, H. F.; Bello, S. A.; et al. Involvement of oxidative stress in protocatechuic acid-mediated bacterial lethality. Microbiol. Open 2017, 6 (4). DOI: https://doi.org/10.1002/mbo3.472. DOI: https://doi.org/10.1002/mbo3.472

Bernal-Mercado, A. T.; Vazquez-Armenta, F. J.; Tapia-Rodriguez, M. R.; Islas-Osuna, M. A.; Mata-Haro, V.; Gonzalez-Aguilar, G. A.; Lopez-Zavala, A. A.; Ayala-Zavala, J. F. Comparison of single and combined use of catechin, protocatechuic, and vanillic acids as antioxidant and antibacterial agents against uropathogenic Escherichia coli at planktonic and biofilm levels. Molecules 2018, 23 (11). DOI: https://doi.org/10.3390/molecules23112813. DOI: https://doi.org/10.3390/molecules23112813

Chao, C. Y.; Yin, M. C. Antibacterial effects of roselle calyx extracts and protocatechuic acid in ground beef and apple juice. Foodborne Pathog. Dis. 2009, 6 (2), 201-206. DOI: https://doi.org/10.1089/fpd.2008.0187. DOI: https://doi.org/10.1089/fpd.2008.0187

Liu, K. S.; Tsao, S. M.; Yin, M. C. In vitro antibacterial activity of roselle calyx and protocatechuic acid. Phytother. Res. 2005, 19 (11), 942-945. DOI: https://doi.org/10.1002/ptr.1760. DOI: https://doi.org/10.1002/ptr.1760

Stojković, D. S.; Živković, J.; Soković, M.; Glamočlija, J.; Ferreira, I. C. F. R.; Janković, T.; Maksimović, Z. Antibacterial activity of Veronica montana L. extract and of protocatechuic acid incorporated in a food system. Food Chem. Toxicol. 2013, 55, 209-213. DOI: https://doi.org/10.1016/j.fct.2013.01.005. DOI: https://doi.org/10.1016/j.fct.2013.01.005

Wu, M.; Tian, L.; Fu, J.; Liao, S.; Li, H.; Gai, Z.; Gong, G. Antibacterial mechanism of Protocatechuic acid against Yersinia enterocolitica and its application in pork. Food Control 2022, 133. DOI: https://doi.org/10.1016/j.foodcont.2021.108573. DOI: https://doi.org/10.1016/j.foodcont.2021.108573

Buathong, R.; Chamchumroon, V.; Schinnerl, J.; Bacher, M.; Santimaleeworagun, W.; Kraichak, E.; Vajrodaya, S. Chemovariation and antibacterial activity of extracts and isolated compounds from species of Ixora and Greenea (Ixoroideae, Rubiaceae). PeerJ 2019, 2019 (5). DOI: https://doi.org/10.7717/peerj.6893. DOI: https://doi.org/10.7717/peerj.6893

Napiroon, T.; Bacher, M.; Balslev, H.; Tawaitakham, K.; Santimaleeworagun, W.; Vajrodaya, S. Scopoletin from Lasianthus lucidus Blume (Rubiaceae): A potential antimicrobial against multidrug-resistant Pseudomonas aeruginosa. J. Appl. Pharm. Sci. 2018, 8 (9), 1-6. DOI: https://doi.org/10.7324/JAPS.2018.8901. DOI: https://doi.org/10.7324/JAPS.2018.8901

De La Cruz-Sánchez, N. G.; Gómez-Rivera, A.; Alvarez-Fitz, P.; Ventura-Zapata, E.; Pérez-García, M. D.; Avilés-Flores, M.; Gutiérrez-Román, A. S.; González-Cortazar, M. Antibacterial activity of Morinda citrifolia Linneo seeds against Methicillin-Resistant Staphylococcus spp. Microb. Pathog. 2019, 128, 347-353. DOI: https://doi.org/10.1016/j.micpath.2019.01.030. DOI: https://doi.org/10.1016/j.micpath.2019.01.030

Firmansyah, A.; Winingsih, W.; Manobi, J. D. Y. Review of scopoletin: Isolation, analysis process, and pharmacological activity. Biointerface Res. Appl. Chem. 2021, 11 (4), 12006-12019. DOI: https://doi.org/10.33263/BRIAC114.1200612019. DOI: https://doi.org/10.33263/BRIAC114.1200612019

Mfonku, N. A.; Tadjong, A. T.; Kamsu, G. T.; Kodjio, N.; Ren, J.; Mbah, J. A.; Gatsing, D.; Zhan, J. Isolation and characterization of antisalmonellal anthraquinones and coumarins from Morinda lucida Benth. (Rubiaceae). Chem. Pap. 2021, 75 (5), 2067-2073. DOI: https://doi.org/10.1007/s11696-020-01460-3. DOI: https://doi.org/10.1007/s11696-020-01460-3

Naz, F.; Kumar, M.; Koley, T.; Sharma, P.; Haque, M. A.; Kapil, A.; Kumar, M.; Kaur, P.; Ethayathulla, A. S. Screening of plant-based natural compounds as an inhibitor of FtsZ from Salmonella Typhi using the computational, biochemical and in vitro cell-based studies. Int. J. Biol. Macromol. 2022, 219, 428-437. DOI: https://doi.org/10.1016/j.ijbiomac.2022.07.241. DOI: https://doi.org/10.1016/j.ijbiomac.2022.07.241

Qian, W.; Fu, Y.; Liu, M.; Wang, T.; Zhang, J.; Yang, M.; Sun, Z.; Li, X.; Li, Y. In vitro antibacterial activity and mechanism of vanillic acid against carbapenem-resistant Enterobacter cloacae. Antibiotics 2019, 8 (4). DOI: https://doi.org/10.3390/antibiotics8040220. DOI: https://doi.org/10.3390/antibiotics8040220

Qian, W.; Yang, M.; Wang, T.; Sun, Z.; Liu, M.; Zhang, J.; Zeng, Q.; Cai, C.; Li, Y. Antibacterial Mechanism of Vanillic Acid on Physiological, Morphological, and Biofilm Properties of Carbapenem-Resistant Enterobacter hormaechei. J. Food Prot. 2020, 83 (4), 576-583. DOI: https://doi.org/10.4315/JFP-19-469. DOI: https://doi.org/10.4315/JFP-19-469

Luo, Y.; Wang, C. Z.; Sawadogo, R.; Yuan, J.; Zeng, J.; Xu, M.; Tan, T.; Yuan, C. S. 4-Vinylguaiacol, an Active Metabolite of Ferulic Acid by Enteric Microbiota and Probiotics, Possesses Significant Activities against Drug-Resistant Human Colorectal Cancer Cells. ACS Omega 2021, 6 (7), 4551-4561. DOI: https://doi.org/10.1021/acsomega.0c04394. DOI: https://doi.org/10.1021/acsomega.0c04394

Sudhagar, S.; Sathya, S.; Anuradha, R.; Gokulapriya, G.; Geetharani, Y.; Lakshmi, B. S. Inhibition of epidermal growth factor receptor by ferulic acid and 4-vinylguaiacol in human breast cancer cells. Biotechnol. Lett. 2018, 40 (2), 257-262. DOI: https://doi.org/10.1007/s10529-017-2475-2. DOI: https://doi.org/10.1007/s10529-017-2475-2

Cavin, C.; Holzhaeuser, D.; Scharf, G.; Constable, A.; Huber, W. W.; Schilter, B. Cafestol and kahweol, two coffee specific diterpenes with anticarcinogenic activity. Food Chem. Toxicol. 2002, 40 (8), 1155-1163. DOI: https://doi.org/10.1016/S0278-6915(02)00029-7. DOI: https://doi.org/10.1016/S0278-6915(02)00029-7

Ren, Y.; Wang, C.; Xu, J.; Wang, S. Cafestol and kahweol: A review on their bioactivities and pharmacological properties. Int. J. Mol. Sci. 2019, 20 (17). DOI: https://doi.org/10.3390/ijms20174238. DOI: https://doi.org/10.3390/ijms20174238

Iwamoto, H.; Izumi, K.; Natsagdorj, A.; Naito, R.; Marino, T.; Kadomoto, S.; Hiratsuka, K.; Shigehara, K.; Radono, Y.; Mizorami, A.; et al. Coffee diterpenes, kahweol acetate and cafestol, synergistically induce apoptosis and inhibit the epithelial-mesenchymal transition of prostate cancer cells. Nishinihon J. Urol. 2019, 81 (3), 364-371.

Lee, K. A.; Chae, J. I.; Shim, J. H. Natural diterpenes from coffee, cafestol and kahweol induce apoptosis through regulation of specificity protein 1 expression in human malignant pleural mesothelioma. J. Biomed. Sci. 2012, 19 (1). DOI: https://doi.org/10.1186/1423-0127-19-60. DOI: https://doi.org/10.1186/1423-0127-19-60

Bovilla, V.; Anantharaju, P.; Dornadula, S.; Veeresh, P.; Kuruburu, M.; Bettada, V.; Ramkumar, K.; Madhunapantula, S. Caffeic acid and protocatechuic acid modulate Nrf2 and inhibit Ehrlich ascites carcinomas in mice. Asian Pac. J. Trop. Biomed. 2021, 11 (6), 244-253. DOI: https://doi.org/10.4103/2221-1691.314045. DOI: https://doi.org/10.4103/2221-1691.314045

Brautigan, D. L.; Gielata, M.; Heo, J.; Kubicka, E.; Wilkins, L. R. Selective toxicity of caffeic acid in hepatocellular carcinoma cells. Biochem. Biophys. Res. Commun. 2018, 505 (2), 612-617. DOI: https://doi.org/10.1016/j.bbrc.2018.09.155. DOI: https://doi.org/10.1016/j.bbrc.2018.09.155

Celińska-Janowicz, K.; Zarȩba, I.; Lazarek, U.; Teul, J.; Tomczyk, M.; Pałka, J.; Miltyk, W. Constituents of propolis: Chrysin, caffeic acid, p-coumaric acid, and ferulic acid induce PRODH/POX-dependent apoptosis in human tongue squamous cell carcinoma cell (CAL-27). Front. Pharmacol. 2018, 9 (APR). DOI: https://doi.org/10.3389/fphar.2018.00336. DOI: https://doi.org/10.3389/fphar.2018.00336

Matejczyk, M.; Świsłocka, R.; Golonko, A.; Lewandowski, W.; Hawrylik, E. Cytotoxic, genotoxic and antimicrobial activity of caffeic and rosmarinic acids and their lithium, sodium and potassium salts as potential anticancer compounds. Adv. Med. Sci. 2018, 63 (1), 14-21. DOI: https://doi.org/10.1016/j.advms.2017.07.003. DOI: https://doi.org/10.1016/j.advms.2017.07.003

Tyszka-Czochara, M.; Bukowska-Strakova, K.; Kocemba-Pilarczyk, K. A.; Majka, M. Caffeic acid targets AMPK signaling and regulates tricarboxylic acid cycle anaplerosis while metformin downregulates HIF-1α-induced glycolytic enzymes in human cervical squamous cell carcinoma lines. Nutrients 2018, 10 (7). DOI: https://doi.org/10.3390/nu10070841. DOI: https://doi.org/10.3390/nu10070841

Tyszka-Czochara, M.; Konieczny, P.; Majka, M. Caffeic acid expands anti-tumor effect of metformin in human metastatic cervical carcinoma HTB-34 cells: Implications of AMPK activation and impairment of fatty acids de novo biosynthesis. Int. J. Mol. Sci. 2017, 18 (2). DOI: https://doi.org/10.3390/ijms18020462. DOI: https://doi.org/10.3390/ijms18020462

Chang, K. S.; Tsui, K. H.; Hsu, S. Y.; Sung, H. C.; Lin, Y. H.; Hou, C. P.; Yang, P. S.; Chen, C. L.; Feng, T. H.; Juang, H. H. The Antitumor Effect of Caffeic Acid Phenethyl Ester by Downregulating Mucosa-Associated Lymphoid Tissue 1 via AR/p53/NF-κB Signaling in Prostate Carcinoma Cells. Cancers (Basel) 2022, 14 (2). DOI: https://doi.org/10.3390/cancers14020274. DOI: https://doi.org/10.3390/cancers14020274

Hou, C. P.; Tsui, K. H.; Chang, K. S.; Sung, H. C.; Hsu, S. Y.; Lin, Y. H.; Yang, P. S.; Chen, C. L.; Feng, T. H.; Juang, H. H. Caffeic acid phenethyl ester inhibits the growth of bladder carcinoma cells by upregulating growth differentiation factor 15. Biomed. J. 2022, 45 (5), 763-775. DOI: https://doi.org/10.1016/j.bj.2021.10.006. DOI: https://doi.org/10.1016/j.bj.2021.10.006

Kapare, H.; Nagaraj, S.; Wakalkar, S.; Rathi, K. Caffeic Acid Phenethyl Ester: A Potential Anticancer Bioactive Constituent of Propolis. Curr. Cancer Ther. Rev. 2022, 18 (3), 181-192. DOI: https://doi.org/10.2174/1573394718666220603103458. DOI: https://doi.org/10.2174/1573394718666220603103458

Liang, Y.; Feng, G.; Wu, L.; Zhong, S.; Gao, X.; Tong, Y.; Cui, W.; Qin, Y.; Xu, W.; Xiao, X.; et al. Caffeic acid phenethyl ester suppressed growth and metastasis of nasopharyngeal carcinoma cells by inactivating the NF-κB pathway. Drug Des. Devel. Ther. 2019, 13, 1335-1345. DOI: https://doi.org/10.2147/DDDT.S199182. DOI: https://doi.org/10.2147/DDDT.S199182

Sung, H. C.; Chang, K. S.; Chen, S. T.; Hsu, S. Y.; Lin, Y. H.; Hou, C. P.; Feng, T. H.; Tsui, K. H.; Juang, H. H. Metallothionein 2A with Antioxidant and Antitumor Activity Is Upregulated by Caffeic Acid Phenethyl Ester in Human Bladder Carcinoma Cells. Antioxidants 2022, 11 (8). DOI: https://doi.org/10.3390/antiox11081509. DOI: https://doi.org/10.3390/antiox11081509

Lu, H.; Tian, Z.; Cui, Y.; Liu, Z.; Ma, X. Chlorogenic acid: A comprehensive review of the dietary sources, processing effects, bioavailability, beneficial properties, mechanisms of action, and future directions. Compr. Rev. Food Sci. Food Saf. 2020, 19 (6), 3130-3158. DOI: https://doi.org/10.1111/1541-4337.12620. DOI: https://doi.org/10.1111/1541-4337.12620

Abdullah, M. L.; Al-Shabanah, O.; Hassan, Z. K.; Hafez, M. M. Eugenol-induced autophagy and apoptosis in breast cancer cells via pi3k/akt/foxo3a pathway inhibition. Int. J. Mol. Sci. 2021, 22 (17). DOI: https://doi.org/10.3390/ijms22179243. DOI: https://doi.org/10.3390/ijms22179243

Abdullah, M. L.; Hafez, M. M.; Al-Hoshani, A.; Al-Shabanah, O. Anti-metastatic and anti-proliferative activity of eugenol against triple negative and HER2 positive breast cancer cells. BMC Complement. Altern. Med. 2018, 18 (1). DOI: https://doi.org/10.1186/s12906-018-2392-5. DOI: https://doi.org/10.1186/s12906-018-2392-5

Al-Kharashi, L. A.; Bakheet, T.; AlHarbi, W. A.; Al-Moghrabi, N.; Aboussekhra, A. Eugenol modulates genomic methylation and inactivates breast cancer-associated fibroblasts through E2F1-dependent downregulation of DNMT1/DNMT3A. Mol. Carcinog. 2021, 60 (11), 784-795. DOI: https://doi.org/10.1002/mc.23344. DOI: https://doi.org/10.1002/mc.23344

Bezerra, D. P.; Militão, G. C. G.; De Morais, M. C.; De Sousa, D. P. The dual antioxidant/prooxidant effect of eugenol and its action in cancer development and treatment. Nutrients 2017, 9 (12). DOI: https://doi.org/10.3390/nu9121367. DOI: https://doi.org/10.3390/nu9121367

Choudhury, P.; Barua, A.; Roy, A.; Pattanayak, R.; Bhattacharyya, M.; Saha, P. Eugenol restricts Cancer Stem Cell population by degradation of β-catenin via N-terminal Ser37 phosphorylation-an in vivo and in vitro experimental evaluation. Chem. Biol. Interact. 2020, 316. DOI: https://doi.org/10.1016/j.cbi.2020.108938. DOI: https://doi.org/10.1016/j.cbi.2020.108938

Choudhury, P.; Barua, A.; Roy, A.; Pattanayak, R.; Bhattacharyya, M.; Saha, P. Eugenol emerges as an elixir by targeting β-catenin, the central cancer stem cell regulator in lung carcinogenesis: An: In vivo and in vitro rationale. Food Funct. 2021, 12 (3), 1063-1078. DOI: https://doi.org/10.1039/d0fo02105a. DOI: https://doi.org/10.1039/D0FO02105A

Cui, Z.; Liu, Z.; Zeng, J.; Chen, L.; Wu, Q.; Mo, J.; Zhang, G.; Song, L.; Xu, W.; Zhang, S.; Guo, X. Eugenol inhibits non-small cell lung cancer by repressing expression of NF-κB-regulated TRIM59. Phytother. Res. 2019, 33 (5), 1562-1569. DOI: https://doi.org/10.1002/ptr.6352. DOI: https://doi.org/10.1002/ptr.6352

Das, A.; Harshadha, K.; Dhinesh Kannan, S. K.; Hari Raj, K.; Jayaprakash, B. Evaluation of therapeutic potential of Eugenol-A natural derivative of Syzygium aromaticum on cervical cancer. Asian Pac. J. Cancer Prev. 2018, 19 (7), 1977-1985. DOI: https://doi.org/10.22034/APJCP.2018.19.7.1977.

Fangjun, L.; Zhijia, Y. Tumor suppressive roles of eugenol in human lung cancer cells. Thorac. Cancer 2018, 9 (1), 25-29. DOI: https://doi.org/10.1111/1759-7714.12508. DOI: https://doi.org/10.1111/1759-7714.12508

Fouad, M. A.; Sayed-Ahmed, M. M.; Huwait, E. A.; Hafez, H. F.; Osman, A. M. M. Epigenetic immunomodulatory effect of eugenol and astaxanthin on doxorubicin cytotoxicity in hormonal positive breast Cancer cells. BMC Pharmacol. Toxicol. 2021, 22 (1). DOI: https://doi.org/10.1186/s40360-021-00473-2. DOI: https://doi.org/10.1186/s40360-021-00473-2

Ghodousi-Dehnavi, E.; Hosseini, R. H.; Arjmand, M.; Nasri, S.; Zamani, Z. A Metabolomic Investigation of Eugenol on Colorectal Cancer Cell Line HT-29 by Modifying the Expression of APC, p53, and KRAS Genes. Evid. Based Complement. Alternat. Med. 2021, 2021. DOI: https://doi.org/10.1155/2021/1448206. DOI: https://doi.org/10.1155/2021/1448206

Morsy, H. M.; Ahmed, O. M.; Zoheir, K. M. A.; Abdel-Moneim, A. The anticarcinogenic effect of eugenol on lung cancer induced by diethylnitrosamine/2-acetylaminofluorene in Wistar rats: insight on the mechanisms of action. Apoptosis 2023, 10.1007/s10495-023-01852-2. DOI: https://doi.org/10.1007/s10495-023-01852-2. DOI: https://doi.org/10.1007/s10495-023-01852-2

Padhy, I.; Paul, P.; Sharma, T.; Banerjee, S.; Mondal, A. Molecular Mechanisms of Action of Eugenol in Cancer: Recent Trends and Advancement. Life 2022, 12 (11). DOI: https://doi.org/10.3390/life12111795. DOI: https://doi.org/10.3390/life12111795

Permatasari, H. K.; Effendi, A. B.; Qhabibi, F. R.; Fawwaz, F.; Dominique, A. Eugenol isolated from Syzygium aromaticum inhibits HeLa cancer cell migration by altering epithelial-mesenchymal transition protein regulators. J. Appl. Pharm. Sci. 2021, 11 (5), 49-53. DOI: https://doi.org/10.7324/JAPS.2021.110507. DOI: https://doi.org/10.7324/JAPS.2021.110507

Ranjitkar, S.; Zhang, D.; Sun, F.; Salman, S.; He, W.; Venkitanarayanan, K.; Tulman, E. R.; Tian, X. Cytotoxic effects on cancerous and non-cancerous cells of trans-cinnamaldehyde, carvacrol, and eugenol. Sci. Rep. 2021, 11 (1). DOI: https://doi.org/10.1038/s41598-021-95394-9. DOI: https://doi.org/10.1038/s41598-021-95394-9

Shi, X.; Zhang, W.; Bao, X.; Liu, X.; Yang, M.; Yin, C. Eugenol modulates the NOD1-NF-κB signaling pathway via targeting NF-κB protein in triple-negative breast cancer cells. Front. Endocrinol. 2023, 14. DOI: https://doi.org/10.3389/fendo.2023.1136067. DOI: https://doi.org/10.3389/fendo.2023.1136067

Shirazi, P. T.; Farjadian, S.; Dabbaghmanesh, M. H.; Jonaidi, H.; Alavianmehr, A.; Kalani, M.; Emadi, L. Eugenol: A New Option in Combination Therapy with Sorafenib for the Treatment of Undifferentiated Thyroid Cancer. Iran. J. Allergy Asthma Immunol. 2022, 21 (3), 313-321. DOI: https://doi.org/10.18502/ijaai.v21i3.9804. DOI: https://doi.org/10.18502/ijaai.v21i3.9804

Kumar, N.; Kumar, S.; Abbat, S.; Nikhil, K.; Sondhi, S. M.; Bharatam, P. V.; Roy, P.; Pruthi, V. Ferulic acid amide derivatives as anticancer and antioxidant agents: synthesis, thermal, biological and computational studies. Med. Chem. Res. 2016, 25 (6), 1175-1192. DOI: https://doi.org/10.1007/s00044-016-1562-6. DOI: https://doi.org/10.1007/s00044-016-1562-6

Ani, G.; Tanya, T. Y.; Reneta, T. Antitumor and apoptogenic effects of ferulic acid on cervical carcinoma cells. Res. J. Biotechnol. 2021, 16 (4), 6-11.

Bakholdina, L. A.; Markova, A. A.; Khlebnikov, A. I.; Sevodin, V. P. Cytotoxicity of New Ferulic-Acid Derivatives on Human Colon Carcinoma (HCT116) Cells. Pharm. Chem. J. 2019, 53 (6), 516-520. DOI: https://doi.org/10.1007/s11094-019-02030-y. DOI: https://doi.org/10.1007/s11094-019-02030-y

Cao, Y.; Zhang, H.; Tang, J.; Wang, R. Ferulic Acid Mitigates Growth and Invasion of Esophageal Squamous Cell Carcinoma through Inducing Ferroptotic Cell Death. Dis. Markers 2022, 2022. DOI: https://doi.org/10.1155/2022/4607966. DOI: https://doi.org/10.1155/2022/4607966

Cui, K.; Wu, H.; Fan, J.; Zhang, L.; Li, H.; Guo, H.; Yang, R.; Li, Z. The Mixture of Ferulic Acid and P-Coumaric Acid Suppresses Colorectal Cancer through lncRNA 495810/PKM2 Mediated Aerobic Glycolysis. Int. J. Mol. Sci. 2022, 23 (20). DOI: https://doi.org/10.3390/ijms232012106. DOI: https://doi.org/10.3390/ijms232012106

Damasceno, S. S.; Dantas, B. B.; Ribeiro-Filho, J.; Araújo, D. A. M.; Da Costa, J. G. M. Chemical properties of caffeic and ferulic acids in biological system: Implications in cancer therapy. A review. Curr. Pharm. Des. 2017, 23 (20), 3015-3023. DOI: https://doi.org/10.2174/1381612822666161208145508. DOI: https://doi.org/10.2174/1381612822666161208145508

Dodurga, Y.; Eroğlu, C.; Seçme, M.; Elmas, L.; Avcı, Ç. B.; Şatıroğlu-Tufan, N. L. Anti-proliferative and anti-invasive effects of ferulic acid in TT medullary thyroid cancer cells interacting with URG4/URGCP. Tumour Biol. 2016, 37 (2), 1933-1940. DOI: https://doi.org/10.1007/s13277-015-3984-z. DOI: https://doi.org/10.1007/s13277-015-3984-z

El-Gogary, R. I.; Nasr, M.; Rahsed, L. A.; Hamzawy, M. A. Ferulic acid nanocapsules as a promising treatment modality for colorectal cancer: Preparation and in vitro/in vivo appraisal. Life Sci. 2022, 298. DOI: https://doi.org/10.1016/j.lfs.2022.120500. DOI: https://doi.org/10.1016/j.lfs.2022.120500

ElKhazendar, M.; Chalak, J.; El-Huneidi, W.; Vinod, A.; Abdel-Rahman, W. M.; Abu-Gharbieh, E. Antiproliferative and proapoptotic activities of ferulic acid in breast and liver cancer cell lines. Trop. J. Pharm. Res. 2019, 18 (12), 2571-2576. DOI: https://doi.org/10.4314/tjpr.v18i12.16.

Eroğlu, C.; Seçme, M.; Bağcı, G.; Dodurga, Y. Assessment of the anticancer mechanism of ferulic acid via cell cycle and apoptotic pathways in human prostate cancer cell lines. Tumour Biol. 2015, 36 (12), 9437-9446. DOI: https://doi.org/10.1007/s13277-015-3689-3. DOI: https://doi.org/10.1007/s13277-015-3689-3

Fahrioğlu, U.; Dodurga, Y.; Elmas, L.; Seçme, M. Ferulic acid decreases cell viability and colony formation while inhibiting migration of MIA PaCa-2 human pancreatic cancer cells in vitro. Gene 2016, 576 (1), 476-482. DOI: https://doi.org/10.1016/j.gene.2015.10.061. DOI: https://doi.org/10.1016/j.gene.2015.10.061

Gao, J.; Yu, H.; Guo, W.; Kong, Y.; Gu; Li, Q.; Yang, S.; Zhang, Y.; Wang, Y. The anticancer effects of ferulic acid is associated with induction of cell cycle arrest and autophagy in cervical cancer cells. Cancer Cell Int. 2018, 18 (1). DOI: https://doi.org/10.1186/s12935-018-0595-y. DOI: https://doi.org/10.1186/s12935-018-0595-y

Gupta, A.; Singh, A. K.; Loka, M.; Pandey, A. K.; Bishayee, A. Ferulic acid-mediated modulation of apoptotic signaling pathways in cancer. Adv. Protein Chem. Struct. Biol. 2021, 125, 215-257. DOI: https://doi.org/10.1016/bs.apcsb.2020.12.005. DOI: https://doi.org/10.1016/bs.apcsb.2020.12.005

Luo, L.; Zhu, S.; Tong, Y.; Peng, S. Ferulic acid induces apoptosis of HeLa and caski cervical carcinoma cells by down-regulating the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Med. Sci. Monit. 2020, 26. DOI: https://doi.org/10.12659/MSM.920095. DOI: https://doi.org/10.12659/MSM.920095

Zhang, X.; Lin, D.; Jiang, R.; Li, H.; Wan, J.; Li, H. Ferulic acid exerts antitumor activity and inhibits metastasis in breast cancer cells by regulating epithelial to mesenchymal transition. Oncol. Rep. 2016, 36 (1), 271-278. DOI: https://doi.org/10.3892/or.2016.4804. DOI: https://doi.org/10.3892/or.2016.4804

Dajas, F. Life or death: Neuroprotective and anticancer effects of quercetin. J. Ethnopharmacol. 2012, 143 (2), 383-396. DOI: https://doi.org/10.1016/j.jep.2012.07.005. DOI: https://doi.org/10.1016/j.jep.2012.07.005

Davoodvandi, A.; Shabani Varkani, M.; Clark, C. C. T.; Jafarnejad, S. Quercetin as an anticancer agent: Focus on esophageal cancer. J. Food Biochem. 2020, 44 (9). DOI: https://doi.org/10.1111/jfbc.13374. DOI: https://doi.org/10.1111/jfbc.13374

Khan, F.; Niaz, K.; Maqbool, F.; Hassan, F. I.; Abdollahi, M.; Nagulapalli Venkata, K. C.; Nabavi, S. M.; Bishayee, A. Molecular targets underlying the anticancer effects of quercetin: An update. Nutrients 2016, 8 (9). DOI: https://doi.org/10.3390/nu8090529. DOI: https://doi.org/10.3390/nu8090529

Kubina, R.; Iriti, M.; Kabała-Dzik, A. Anticancer potential of selected flavonols: Fisetin, kaempferol, and quercetin on head and neck cancers. Nutrients 2021, 13 (3), 1-20. DOI: https://doi.org/10.3390/nu13030845. DOI: https://doi.org/10.3390/nu13030845

Rauf, A.; Imran, M.; Khan, I. A.; ur-Rehman, M.; Gilani, S. A.; Mehmood, Z.; Mubarak, M. S. Anticancer potential of quercetin: A comprehensive review. Phytother. Res. 2018, 32 (11), 2109-2130. DOI: https://doi.org/10.1002/ptr.6155. DOI: https://doi.org/10.1002/ptr.6155

Mei, S.; Ma, H.; Chen, X. Anticancer and anti-inflammatory properties of mangiferin: A review of its molecular mechanisms. Food Chem. Toxicol. 2021, 149. DOI: https://doi.org/10.1016/j.fct.2021.111997. DOI: https://doi.org/10.1016/j.fct.2021.111997

Acquaviva, R.; Tomasello, B.; Di Giacomo, C.; Santangelo, R.; Mantia, A. L.; Naletova, I.; Sarpietro, M. G.; Castelli, F.; Malfa, G. A. Protocatechuic acid, a simple plant secondary metabolite, induced apoptosis by promoting oxidative stress through ho-1 downregulation and p21 upregulation in colon cancer cells. Biomolecules 2021, 11 (10). DOI: https://doi.org/10.3390/biom11101485. DOI: https://doi.org/10.3390/biom11101485

Lin, H. H.; Chen, J. H.; Chou, F. P.; Wang, C. J. Protocatechuic acid inhibits cancer cell metastasis involving the down-regulation of Ras/Akt/NF-κB pathway and MMP-2 production by targeting RhoB activation. Br. J. Pharmacol. 2011, 162 (1), 237-254. DOI: https://doi.org/10.1111/j.1476-5381.2010.01022.x. DOI: https://doi.org/10.1111/j.1476-5381.2010.01022.x

Peiffer, D. S.; Zimmerman, N. P.; Wang, L. S.; Ransom, B. W. S.; Carmella, S. G.; Kuo, C. T.; Siddiqui, J.; Chen, J. H.; Oshima, K.; Huang, Y. W.; et al. Chemoprevention of esophageal cancer with black raspberries, their component anthocyanins, and a major anthocyanin metabolite, protocatechuic acid. Cancer Prev. Res. 2014, 7 (6), 574-584. DOI: https://doi.org/10.1158/1940-6207.CAPR-14-0003. DOI: https://doi.org/10.1158/1940-6207.CAPR-14-0003

Tanaka, T.; Tanaka, T.; Tanaka, M. Potential Cancer Chemopreventive Activity of Protocatechuic Acid. J. Exp. Clin. Med. 2011, 3 (1), 27-33. DOI: https://doi.org/10.1016/j.jecm.2010.12.005. DOI: https://doi.org/10.1016/j.jecm.2010.12.005

Tsao, S. M.; Hsia, T. C.; Yin, M. C. Protocatechuic acid inhibits lung cancer cells by modulating FAK, MAPK, and NF- B pathways. Nutr. Cancer 2014, 66 (8), 1331-1341. DOI: https://doi.org/10.1080/01635581.2014.956259. DOI: https://doi.org/10.1080/01635581.2014.956259

Xie, Z.; Guo, Z.; Wang, Y.; Lei, J.; Yu, J. Protocatechuic acid inhibits the growth of ovarian cancer cells by inducing apoptosis and autophagy. Phytother. Res. 2018, 32 (11), 2256-2263. DOI: https://doi.org/10.1002/ptr.6163. DOI: https://doi.org/10.1002/ptr.6163

Yin, M. C.; Lin, C. C.; Wu, H. C.; Tsao, S. M.; Hsu, C. K. Apoptotic effects of protocatechuic acid in human breast, lung, liver, cervix, and prostate cancer cells: Potential mechanisms of action. J. Agric. Food Chem. 2009, 57 (14), 6468-6473. DOI: https://doi.org/10.1021/jf9004466. DOI: https://doi.org/10.1021/jf9004466

Baer-Dubowska, W.; Szaefer, H.; Majchrzak-Celińska, A.; Krajka-Kuźniak, V. Tannic Acid: Specific Form of Tannins in Cancer Chemoprevention and Therapy-Old and New Applications. Curr. Pharmacol. Rep. 2020, 6 (2), 28-37. DOI: https://doi.org/10.1007/s40495-020-00211-y. DOI: https://doi.org/10.1007/s40495-020-00211-y

Bona, N. P.; Pedra, N. S.; Azambuja, J. H.; Soares, M. S. P.; Spohr, L.; Gelsleichter, N. E.; de M. Meine, B.; Sekine, F. G.; Mendonça, L. T.; de Oliveira, F. H.; et al. Tannic acid elicits selective antitumoral activity in vitro and inhibits cancer cell growth in a preclinical model of glioblastoma multiforme. Metab. Brain Dis. 2020, 35 (2), 283-293. DOI: https://doi.org/10.1007/s11011-019-00519-9. DOI: https://doi.org/10.1007/s11011-019-00519-9

Chariyarangsitham, W.; Krungchanuchat, S.; Khuemjun, P.; Pilapong, C. Effect of advanced oxidation and amino acid addition on antioxidant capability, iron chelating property and anti-cancer activity of tannic acid. Arab. J. Chem. 2021, 14 (9). DOI: https://doi.org/10.1016/j.arabjc.2021.103312. DOI: https://doi.org/10.1016/j.arabjc.2021.103312

Chen, M. C.; Annseles Rajula, S.; Bharath Kumar, V.; Hsu, C. H.; Day, C. H.; Chen, R. J.; Wang, T. F.; Viswanadha, V. P.; Li, C. C.; Huang, C. Y. Tannic acid attenuate AKT phosphorylation to inhibit UMUC3 bladder cancer cell proliferation. Mol. Cell. Biochem. 2022, 477 (12), 2863-2869. DOI: https://doi.org/10.1007/s11010-022-04454-9. DOI: https://doi.org/10.1007/s11010-022-04454-9

Hatami, E.; B Nagesh, P. K.; Sikander, M.; Dhasmana, A.; Chauhan, S. C.; Jaggi, M.; Yallapu, M. M. Tannic Acid Exhibits Antiangiogenesis Activity in Nonsmall-Cell Lung Cancer Cells. ACS Omega 2022, 7 (27), 23939-23949. DOI: https://doi.org/10.1021/acsomega.2c02727. DOI: https://doi.org/10.1021/acsomega.2c02727

Nagesh, P. K. B.; Chowdhury, P.; Hatami, E.; Jain, S.; Dan, N.; Kashyap, V. K.; Chauhan, S. C.; Jaggi, M.; Yallapu, M. M. Tannic acid inhibits lipid metabolism and induce ROS in prostate cancer cells. Sci. Rep. 2020, 10 (1). DOI: https://doi.org/10.1038/s41598-020-57932-9. DOI: https://doi.org/10.1038/s41598-020-57932-9

Nagesh, P. K. B.; Hatami, E.; Chowdhury, P.; Kashyap, V. K.; Khan, S.; Hafeez, B. B.; Chauhan, S. C.; Jaggi, M.; Yallapu, M. M. Tannic acid induces endoplasmic reticulum stress-mediated apoptosis in prostate cancer. Cancers (Basel) 2018, 10 (3). DOI: https://doi.org/10.3390/cancers10030068. DOI: https://doi.org/10.3390/cancers10030068

Sp, N.; Kang, D. Y.; Kim, D. H.; Yoo, J. S.; Jo, E. S.; Rugamba, A.; Jang, K. J.; Yang, Y. M. Tannic acid inhibits Non-small Cell Lung Cancer (NSCLC) stemness by inducing G0/G1 Cell cycle arrest and intrinsic apoptosis. Anticancer Res. 2020, 40 (6), 3209-3220. DOI: https://doi.org/10.2196/10.21873/anticanres.14302. DOI: https://doi.org/10.21873/anticanres.14302

Yang, P.; Ding, G. B.; Liu, W.; Fu, R.; Sajid, A.; Li, Z. Tannic acid directly targets pyruvate kinase isoenzyme M2 to attenuate colon cancer cell proliferation. Food Funct. 2018, 9 (11), 5547-5559. DOI: https://doi.org/10.1039/c8fo01161c. DOI: https://doi.org/10.1039/C8FO01161C

Youness, R. A.; Kamel, R.; Elkasabgy, N. A.; Shao, P.; Farag, M. A. Recent advances in tannic acid (gallotannin) anticancer activities and drug delivery systems for efficacy improvement; a comprehensive review. Molecules 2021, 25 (6). DOI: https://doi.org/10.3390/molecules26051486. DOI: https://doi.org/10.3390/molecules26051486

Cadoná, F. C.; Dantas, R. F.; de Mello, G. H.; Silva-Jr, F. P. Natural products targeting into cancer hallmarks: An update on caffeine, theobromine, and (+)-catechin. Crit. Rev. Food Sci. Nutr. 2022, 62 (26), 7222-7241. DOI: https://doi.org/10.1080/10408398.2021.1913091. DOI: https://doi.org/10.1080/10408398.2021.1913091

Shojaei-Zarghani, S.; Rafraf, M.; Yari Khosroushahi, A.; Sheikh-Najafi, S. Effectiveness of theobromine on inhibition of 1,2-dimethylhydrazine-induced rat colon cancer by suppression of the Akt/GSK3β/β-catenin signaling pathway. J. Funct. Foods 2020, 75. DOI: https://doi.org/10.1016/j.jff.2020.104293. DOI: https://doi.org/10.1016/j.jff.2020.104293

Shojaei-Zarghani, S.; Yari Khosroushahi, A.; Rafraf, M. Oncopreventive effects of theanine and theobromine on dimethylhydrazine-induced colon cancer model. Biomed. Pharmacother. 2021, 134. DOI: https://doi.org/10.1016/j.biopha.2020.111140. DOI: https://doi.org/10.1016/j.biopha.2020.111140

De Souza Rosa, L.; Jordão, N. A.; Da Costa Pereira Soares, N.; De Mesquita, J. F.; Monteiro, M.; Teodoro, A. J. Pharmacokinetic, antiproliferative and apoptotic effects of phenolic acids in human colon adenocarcinoma cells using in vitro and in silico approaches. Molecules 2018, 23 (10). DOI: https://doi.org/10.3390/molecules23102569. DOI: https://doi.org/10.3390/molecules23102569

Gong, J.; Zhou, S.; Yang, S. Vanillic acid suppresses HIF-1α expression via inhibition of mTOR/p70S6K/4E-BP1 and Raf/MEK/ERK pathways in human colon cancer HCT116 cells. Int. J. Mol. Sci. 2019, 20 (3). DOI: https://doi.org/10.3390/ijms20030465. DOI: https://doi.org/10.3390/ijms20030465

Velli, S. K.; Sundaram, J.; Murugan, M.; Balaraman, G.; Thiruvengadam, D. Protective effect of vanillic acid against benzo(a)pyrene induced lung cancer in Swiss albino mice. J. Biochem. Mol. Toxicol. 2019, 33 (10). DOI: https://doi.org/10.1002/jbt.22382. DOI: https://doi.org/10.1002/jbt.22382

Wang, M.; Qi, Y.; Sun, Y. Exploring the Antitumor Mechanisms of Zingiberis Rhizoma Combined with Coptidis Rhizoma Using a Network Pharmacology Approach. Biomed Res. Int. 2020, 2020. DOI: https://doi.org/10.1155/2020/8887982. DOI: https://doi.org/10.1155/2020/8887982

Zhu, M.; Tang, X.; Zhu, Z.; Gong, Z.; Tang, W.; Hu, Y.; Cheng, C.; Wang, H.; Sarwar, A.; Chen, Y.; et al. STING activation in macrophages by vanillic acid exhibits antineoplastic potential. Biochem. Pharmacol. 2023, 213. DOI: https://doi.org/10.1016/j.bcp.2023.115618. DOI: https://doi.org/10.1016/j.bcp.2023.115618

Bezerra, D. P.; Soares, A. K. N.; De Sousa, D. P. Overview of the role of vanillin on redox status and cancer development. Oxidative Med. Cell. Longev. 2016, 2016. DOI: https://doi.org/10.1155/2016/9734816. DOI: https://doi.org/10.1155/2016/9734816

Ho, K.; Yazan, L. S.; Ismail, N.; Ismail, M. Apoptosis and cell cycle arrest of human colorectal cancer cell line HT-29 induced by vanillin. Cancer Epidemiol. 2009, 33 (2), 155-160. DOI: https://doi.org/10.1016/j.canep.2009.06.003. DOI: https://doi.org/10.1016/j.canep.2009.06.003

Li, J. M.; Lee, Y. C.; Li, C. C.; Lo, H. Y.; Chen, F. Y.; Chen, Y. S.; Hsiang, C. Y.; Ho, T. Y. Vanillin-Ameliorated Development of Azoxymethane/Dextran Sodium Sulfate-Induced Murine Colorectal Cancer: The Involvement of Proteasome/Nuclear Factor-κB/Mitogen-Activated Protein Kinase Pathways. J. Agric. Food Chem. 2018, 66 (22), 5563-5573. DOI: https://doi.org/10.1021/acs.jafc.8b01582. DOI: https://doi.org/10.1021/acs.jafc.8b01582

Lirdprapamongkol, K.; Kramb, J. P.; Suthiphongchai, T.; Surarit, R.; Srisomsap, C.; Dannhardt, G.; Svasti, J. Vanillin suppresses metastatic potential of human cancer cells through PI3K inhibition and decreases angiogenesis in Vivo. J. Agric. Food Chem. 2009, 57 (8), 3055-3063. DOI: https://doi.org/10.1021/jf803366f. DOI: https://doi.org/10.1021/jf803366f

Lirdprapamongkol, K.; Sakurai, H.; Kawasaki, N.; Choo, M. K.; Saitoh, Y.; Aozuka, Y.; Singhirunnusorn, P.; Ruchirawat, S.; Svasti, J.; Saiki, I. Vanillin suppresses in vitro invasion and in vivo metastasis of mouse breast cancer cells. Eur. J. Pharm. Sci. 2005, 25 (1), 57-65. DOI: https://doi.org/10.1016/j.ejps.2005.01.015. DOI: https://doi.org/10.1016/j.ejps.2005.01.015

Naz, H.; Tarique, M.; Khan, P.; Luqman, S.; Ahamad, S.; Islam, A.; Ahmad, F.; Hassan, M. I. Evidence of vanillin binding to CAMKIV explains the anti-cancer mechanism in human hepatic carcinoma and neuroblastoma cells. Mol. Cell. Biochem. 2018, 438 (1-2), 35-45. DOI: https://doi.org/10.1007/s11010-017-3111-0. DOI: https://doi.org/10.1007/s11010-017-3111-0

Ramadoss, D. P.; Sivalingam, N. Vanillin extracted from Proso and Barnyard millets induce apoptotic cell death in HT-29 human colon cancer cell line. Nutr. Cancer 2020, 72 (8), 1422-1437. DOI: https://doi.org/10.1080/01635581.2019.1672763. DOI: https://doi.org/10.1080/01635581.2019.1672763

Srinual, S.; Chanvorachote, P.; Pongrakhananon, V. Suppression of cancer stem-like phenotypes in NCI-H460 lung cancer cells by vanillin through an Akt-dependent pathway. Int. J. Oncol. 2017, 50 (4), 1341-1351. DOI: https://doi.org/10.3892/ijo.2017.3879. DOI: https://doi.org/10.3892/ijo.2017.3879

Yousuf, M.; Shamsi, A.; Queen, A.; Shahbaaz, M.; Khan, P.; Hussain, A.; Alajmi, M. F.; Rizwanul Haque, Q. M.; Imtaiyaz Hassan, M. Targeting cyclin-dependent kinase 6 by vanillin inhibits proliferation of breast and lung cancer cells: Combined computational and biochemical studies. J. Cell. Biochem. 2021, 122 (8), 897-910. DOI: https://doi.org/10.1002/jcb.29921. DOI: https://doi.org/10.1002/jcb.29921

Liu, J. C.; Chen, P. Y.; Hao, W. R.; Liu, Y. C.; Lyu, P. C.; Hong, H. J. Cafestol Inhibits High-Glucose-Induced Cardiac Fibrosis in Cardiac Fibroblasts and Type 1-Like Diabetic Rats. Evid. Based Complement. Alternat. Med. 2020, 2020. DOI: https://doi.org/10.1155/2020/4503747. DOI: https://doi.org/10.1155/2020/4503747

Mellbye, F. B.; Jeppesen, P. B.; Shokouh, P.; Laustsen, C.; Hermansen, K.; Gregersen, S. Cafestol, a Bioactive Substance in Coffee, Has Antidiabetic Properties in KKAy Mice. J. Nat. Prod. 2017, 80 (8), 2353-2359. DOI: https://doi.org/10.1021/acs.jnatprod.7b00395. DOI: https://doi.org/10.1021/acs.jnatprod.7b00395

Oboh, G.; Agunloye, O. M.; Adefegha, S. A.; Akinyemi, A. J.; Ademiluyi, A. O. Caffeic and chlorogenic acids inhibit key enzymes linked to type 2 diabetes (in vitro): A comparative study. J. Basic Clin. Physiol. Pharmacol. 2015, 26 (2), 165-170. DOI: https://doi.org/10.1515/jbcpp-2013-0141. DOI: https://doi.org/10.1515/jbcpp-2013-0141

Chao, C. Y.; Mong, M. C.; Chan, K. C.; Yin, M. C. Anti-glycative and anti-inflammatory effects of caffeic acid and ellagic acid in kidney of diabetic mice. Mol. Nutr. Food Res. 2010, 54 (3), 388-395. DOI: https://doi.org/10.1002/mnfr.200900087. DOI: https://doi.org/10.1002/mnfr.200900087

Oršolić, N.; Sirovina, D.; Odeh, D.; Gajski, G.; Balta, V.; Šver, L.; Jembrek, M. J. Efficacy of Caffeic acid on diabetes and its complications in the mouse. Molecules 2021, 26 (11). DOI: https://doi.org/10.3390/molecules26113262. DOI: https://doi.org/10.3390/molecules26113262

Xu, W.; Luo, Q.; Wen, X.; Xiao, M.; Mei, Q. Antioxidant and anti-diabetic effects of caffeic acid in a rat model of diabetes. Trop. J. Pharm. Res. 2020, 19 (6), 1227-1232. DOI: https://doi.org/10.4314/tjpr.v19i6.17. DOI: https://doi.org/10.4314/tjpr.v19i6.17

Yusuf, M.; Nasiruddin, M.; Sultana, N.; Badruddeen; Akhtar, J.; Khan, M. I.; Ahmad, M. Regulatory mechanism of caffeic acid on glucose metabolism in diabetes. Res. J. Pharm. Technol. 2019, 12 (10), 4735-4740. DOI: https://doi.org/10.5958/0974-360X.2019.00816.3. DOI: https://doi.org/10.5958/0974-360X.2019.00816.3

Ontawong, A.; Duangjai, A.; Muanprasat, C.; Pasachan, T.; Pongchaidecha, A.; Amornlerdpison, D.; Srimaroeng, C. Lipid-lowering effects of Coffea arabica pulp aqueous extract in Caco-2 cells and hypercholesterolemic rats. Phytomedicine 2019, 52, 187-197. DOI: https://doi.org/10.1016/j.phymed.2018.06.021. DOI: https://doi.org/10.1016/j.phymed.2018.06.021

Pimpley, V.; Patil, S.; Srinivasan, K.; Desai, N.; Murthy, P. S. The chemistry of chlorogenic acid from green coffee and its role in attenuation of obesity and diabetes. Prep. Biochem. Biotechnol. 2020, 50 (10), 969-978. DOI: https://doi.org/10.1080/10826068.2020.1786699. DOI: https://doi.org/10.1080/10826068.2020.1786699

Bagdas, D.; Etoz, B. C.; Gul, Z.; Ziyanok, S.; Inan, S.; Turacozen, O.; Gul, N. Y.; Topal, A.; Cinkilic, N.; Tas, S.; et al. In vivo systemic chlorogenic acid therapy under diabetic conditions: Wound healing effects and cytotoxicity/genotoxicity profile. Food Chem. Toxicol. 2015, 81, 54-61. DOI: https://doi.org/10.1016/j.fct.2015.04.001. DOI: https://doi.org/10.1016/j.fct.2015.04.001

Jin, S.; Chang, C.; Zhang, L.; Liu, Y.; Huang, X.; Chen, Z. Chlorogenic acid improves late diabetes through adiponectin receptor signaling pathways in db/db mice. PLoS One 2015, 10 (4). DOI: https://doi.org/10.1371/journal.pone.0120842. DOI: https://doi.org/10.1371/journal.pone.0120842

Williamson, G. Protection against developing type 2 diabetes by coffee consumption: Assessment of the role of chlorogenic acid and metabolites on glycaemic responses. Food Funct. 2020, 11 (6), 4826-4833. DOI: https://doi.org/10.1039/d0fo01168a. DOI: https://doi.org/10.1039/D0FO01168A

Yan, Y.; Li, Q.; Shen, L.; Guo, K.; Zhou, X. Chlorogenic acid improves glucose tolerance, lipid metabolism, inflammation and microbiota composition in diabetic db/db mice. Front. Endocrinol. 2022, 13. DOI: https://doi.org/10.3389/fendo.2022.1042044. DOI: https://doi.org/10.3389/fendo.2022.1042044

Yan, Y.; Zhou, X.; Guo, K.; Zhou, F.; Yang, H. Use of Chlorogenic Acid against Diabetes Mellitus and Its Complications. J. Immunol. Res. 2020, 2020. DOI: https://doi.org/10.1155/2020/9680508. DOI: https://doi.org/10.1155/2020/9680508

Topal, F. Anticholinergic and antidiabetic effects of isoeugenol from clove (Eugenia caryophylata) oil. Int. J. Food Prop. 2019, 22 (1), 583-592. DOI: https://doi.org/10.1080/10942912.2019.1597882. DOI: https://doi.org/10.1080/10942912.2019.1597882

Park, J. E.; Kim, S. Y.; Han, J. S. Scopoletin stimulates the secretion of insulin via a KATP channel-dependent pathway in INS-1 pancreatic β cells. J. Pharm. Pharmacol. 2022, 74 (9), 1274-1281. DOI: https://doi.org/10.1093/jpp/rgab143. DOI: https://doi.org/10.1093/jpp/rgab143

Jang, J. H.; Park, J. E.; Han, J. S. Scopoletin inhibits α-glucosidase in vitro and alleviates postprandial hyperglycemia in mice with diabetes. Eur. J. Pharmacol. 2018, 834, 152-156. DOI: https://doi.org/10.1016/j.ejphar.2018.07.032. DOI: https://doi.org/10.1016/j.ejphar.2018.07.032

Batra, G. K.; Anand, A.; Sharma, S.; Sharma, S.; Bhansali, S.; Patil, A. N. Scopoletin Improves Glucose Homeostasis in the High-Fructose High-Fat Diet-Induced Diabetes Model in Wistar Rats. J. Med. Food 2023, 26 (4), 270-274. DOI: https://doi.org/10.1089/jmf.2022.K.0153. DOI: https://doi.org/10.1089/jmf.2022.K.0153

Liang, Y.; Zeng, X.; Guo, J.; Liu, H.; He, B.; Lai, R.; Zhu, Q.; Zheng, Z. Scopoletin and umbelliferone from Cortex Mori as protective agents in high glucose-induced mesangial cell as in vitro model of diabetic glomerulosclerosis. Chin. J. Physiol. 2021, 64 (3), 150-158. DOI: https://doi.org/10.4103/cjp.cjp_9_21. DOI: https://doi.org/10.4103/cjp.cjp_9_21

Verma, A.; Dewangan, P.; Kesharwani, D.; Kela, S. P. Hypoglycemic and hypolipidemic activity of scopoletin (coumarin derivative) in streptozotocin induced diabetic rats. Int. J. Pharm. Sci. Rev. Res. 2013, 22 (1), 79-83.

Duangjai, A.; Nuengchamnong, N.; Suphrom, N.; Trisat, K.; Limpeanchob, N.; Saokaew, S. Potential of coffee fruit extract and quinic acid on adipogenesis and lipolysis in 3T3-L1 adipocytes. Kobe J. Med. Sci. 2018, 64 (3), E84-E92.

AlEraky, D. M.; Abuohashish, H. M.; Gad, M. M.; Alshuyukh, M. H.; Bugshan, A. S.; Almulhim, K. S.; Mahmoud, M. M. The Antifungal and Antibiofilm Activities of Caffeine against Candida albicans on Polymethyl Methacrylate Denture Base Material. Biomedicines 2022, 10 (9). DOI: https://doi.org/10.3390/biomedicines10092078. DOI: https://doi.org/10.3390/biomedicines10092078

Saracino, I. M.; Foschi, C.; Pavoni, M.; Spigarelli, R.; Valerii, M. C.; Spisni, E. Antifungal Activity of Natural Compounds vs. Candida spp.: A Mixture of Cinnamaldehyde and Eugenol Shows Promising In Vitro Results. Antibiotics 2022, 11 (1). DOI: https://doi.org/10.3390/antibiotics11010073. DOI: https://doi.org/10.3390/antibiotics11010073

Biernasiuk, A.; Baj, T.; Malm, A. Clove Essential Oil and Its Main Constituent, Eugenol, as Potential Natural Antifungals against Candida spp. Alone or in Combination with Other Antimycotics Due to Synergistic Interactions. Molecules 2023, 28 (1). DOI: https://doi.org/10.3390/molecules28010215. DOI: https://doi.org/10.3390/molecules28010215

Cai, R.; Hu, M.; Zhang, Y.; Niu, C.; Yue, T.; Yuan, Y.; Wang, Z. Antifungal activity and mechanism of citral, limonene and eugenol against Zygosaccharomyces rouxii. LWT 2019, 106, 50-56. DOI: https://doi.org/10.1016/j.lwt.2019.02.059. DOI: https://doi.org/10.1016/j.lwt.2019.02.059

Gupta, P.; Mishra, P.; Mehra, L.; Rastogi, K.; Prasad, R.; Mittal, G.; Poluri, K. M. Eugenol-acacia gum-based bifunctional nanofibers as a potent antifungal transdermal substitute. Nanomedicine 2021, 16 (25), 2269-2289. DOI: https://doi.org/10.2217/nnm-2021-0274. DOI: https://doi.org/10.2217/nnm-2021-0274

Hassanpour, P.; Shams-Ghahfarokhi, M.; Razzaghi-Abyaneh, M. Antifungal activity of eugenol on Cryptococcus neoformans biological activity and Cxt1p gene expression. Curr. Med. Mycol. 2020, 6 (1), 9-14. DOI: https://doi.org/10.18502/CMM.6.1.2502. DOI: https://doi.org/10.18502/cmm.6.1.2502

Zhao, Y.; Wang, Q.; Wu, X.; Jiang, M.; Jin, H.; Tao, K.; Hou, T. Unraveling the polypharmacology of a natural antifungal product, eugenol, against Rhizoctonia solani. Pest Manag. Sci. 2021, 77 (7), 3469-3483. DOI: https://doi.org/10.1002/ps.6400. DOI: https://doi.org/10.1002/ps.6400

Goswami, L.; Gupta, L.; Paul, S.; Vermani, M.; Vijayaraghavan, P.; Bhattacharya, A. K. Design and synthesis of eugenol/isoeugenol glycoconjugates and other analogues as antifungal agents against Aspergillus fumigatus. RSC Med. Chem. 2022, 13 (8), 955-962. DOI: https://doi.org/10.1039/d2md00138a. DOI: https://doi.org/10.1039/D2MD00138A

Pinheiro, L. S.; Sousa, J. P.; Barreto, N. A.; Lima, A. L. A.; Dantas, T. B.; Pérez, A. L. A. L.; Menezes, C. P.; Abrantes, J. P.; Filho, A. A. O.; Lima, E. O. Investigation of antifungal activity and mode of action of isoeugenol against strains of Cryptococcus neoformans. Lat. Am. J. Pharm. 2017, 36 (11), 2220-2225.

Cui, W.; Du, K. Y.; Ling, Y. X.; Yang, C. J. Activity of eugenol derivatives against Fusarium graminearum Q1 strain and screening of isoeugenol mixtures. J. Plant Pathol. 2021, 103 (3), 915-921. DOI: https://doi.org/10.1007/s42161-021-00875-5. DOI: https://doi.org/10.1007/s42161-021-00875-5

Medeiros, D.; Oliveira-Júnior, J.; Nóbrega, J.; Cordeiro, L.; Jardim, J.; Souza, H.; Silva, G.; Athayde-Filho, P.; Barbosa-Filho, J.; Scotti, L.; Lima, E. Isoeugenol and hybrid acetamides against candida albicans isolated from the oral cavity. Pharmaceuticals 2020, 13 (10), 1-13. DOI: https://doi.org/10.3390/ph13100291. DOI: https://doi.org/10.3390/ph13100291

Fitzgerald, D. J.; Stratford, M.; Gasson, M. J.; Narbad, A. Structure-function analysis of the vanillin molecule and its antifungal properties. J. Agric. Food Chem. 2005, 53 (5), 1769-1775. DOI: https://doi.org/10.1021/jf048575t. DOI: https://doi.org/10.1021/jf048575t

Li, Q.; Zhu, X.; Xie, Y.; Zhong, Y. o-Vanillin, a promising antifungal agent, inhibits Aspergillus flavus by disrupting the integrity of cell walls and cell membranes. Appl. Microbiol. Biotechnol. 2021, 105 (12), 5147-5158. DOI: https://doi.org/10.1007/s00253-021-11371-2. DOI: https://doi.org/10.1007/s00253-021-11371-2

Li, Q.; Zhu, X.; Zhao, Y.; Xie, Y. The antifungal activity of o-vanillin against Aspergillus flavus via disrupting ergosterol biosynthesis and promoting oxidative stress, and an RNA-seq analysis thereof. LWT 2022, 164. DOI: https://doi.org/10.1016/j.lwt.2022.113635. DOI: https://doi.org/10.1016/j.lwt.2022.113635

Weng, W. T.; Kuo, P. C.; Brown, D. A.; Scofield, B. A.; Furnas, D.; Paraiso, H. C.; Wang, P. Y.; Yu, I. C.; Yen, J. H. 4-Ethylguaiacol modulates neuroinflammation and Th1/Th17 differentiation to ameliorate disease severity in experimental autoimmune encephalomyelitis. J. Neuroinflammation 2021, 18 (1). DOI: https://doi.org/10.1186/s12974-021-02143-w. DOI: https://doi.org/10.1186/s12974-021-02143-w

Weng, W. T.; Kuo, P. C.; Scofield, B. A.; Paraiso, H. C.; Brown, D. A.; Yu, I. C.; Yen, J. H. 4-Ethylguaiacol Modulates Neuroinflammation and Promotes Heme Oxygenase-1 Expression to Ameliorate Brain Injury in Ischemic Stroke. Front. Immunol. 2022, 13. DOI: https://doi.org/10.3389/fimmu.2022.887000. DOI: https://doi.org/10.3389/fimmu.2022.887000

Zhao, D. R.; Jiang, Y. S.; Sun, J. Y.; Li, H. H.; Luo, X. L.; Zhao, M. M. Anti-inflammatory Mechanism Involved in 4-Ethylguaiacol-Mediated Inhibition of LPS-Induced Inflammation in THP-1 Cells. J. Agric. Food Chem. 2019, 67 (4), 1230-1243. DOI: https://doi.org/10.1021/acs.jafc.8b06263. DOI: https://doi.org/10.1021/acs.jafc.8b06263

Rahimi, M. R.; Semenova, E. A.; Larin, A. K.; Kulemin, N. A.; Generozov, E. V.; Łubkowska, B.; Ahmetov, I. I.; Golpasandi, H. The ADORA2A TT Genotype Is Associated with Anti-Inflammatory Effects of Caffeine in Response to Resistance Exercise and Habitual Coffee Intake. Nutrients 2023, 15 (7). DOI: https://doi.org/10.3390/nu15071634. DOI: https://doi.org/10.3390/nu15071634

Mei, S.; Chen, X. Combination of HPLC–orbitrap-MS/MS and network pharmacology to identify the anti-inflammatory phytochemicals in the coffee leaf extracts. Food Front. 2023, 10.1002/fft2.248. DOI: https://doi.org/10.1002/fft2.248. DOI: https://doi.org/10.1002/fft2.248

Lu, R.; Wang, Y. G.; Qu, Y.; Wang, S. X.; Peng, C.; You, H.; Zhu, W.; Chen, A. Dihydrocaffeic acid improves IL-1β-induced inflammation and cartilage degradation via inhibiting NF-κB and MAPK signalling pathways. Bone Joint Res. 2023, 12 (4), 259-273. DOI: https://doi.org/10.1302/2046-3758.124.BJR-2022-0384.R1. DOI: https://doi.org/10.1302/2046-3758.124.BJR-2022-0384.R1

Mateen, S.; Rehman, M. T.; Shahzad, S.; Naeem, S. S.; Faizy, A. F.; Khan, A. Q.; Khan, M. S.; Husain, F. M.; Moin, S. Anti-oxidant and anti-inflammatory effects of cinnamaldehyde and eugenol on mononuclear cells of rheumatoid arthritis patients. Eur. J. Pharmacol. 2019, 852, 14-24. DOI: https://doi.org/10.1016/j.ejphar.2019.02.031. DOI: https://doi.org/10.1016/j.ejphar.2019.02.031

Barboza, J. N.; da Silva Maia Bezerra Filho, C.; Silva, R. O.; Medeiros, J. V. R.; de Sousa, D. P. An overview on the anti-inflammatory potential and antioxidant profile of eugenol. Oxidative Med. Cell. Longev. 2018, 2018. DOI: https://doi.org/10.1155/2018/3957262. DOI: https://doi.org/10.1155/2018/3957262

De Araújo Lopes, A.; Da Fonseca, F. N.; Rocha, T. M.; De Freitas, L. B.; Araújo, E. V. O.; Wong, D. V. T.; Júnior, R. C. P. L.; Leal, L. K. A. M. Eugenol as a promising molecule for the treatment of dermatitis: Antioxidant and anti-inflammatory activities and its nanoformulation. Oxidative Med. Cell. Longev. 2018, 2018. DOI: https://doi.org/10.1155/2018/8194849. DOI: https://doi.org/10.1155/2018/8194849

El-kady, A. M.; Ahmad, A. A.; Hassan, T. M.; El-Deek, H. E. M.; Fouad, S. S.; Althagfan, S. S. Eugenol, a potential schistosomicidal agent with anti-inflammatory and antifibrotic effects against Schistosoma mansoni, induced liver pathology. Infect. Drug Resist. 2019, 12, 709-719. DOI: https://doi.org/10.2147/IDR.S196544. DOI: https://doi.org/10.2147/IDR.S196544

Esmaeili, F.; Rajabnejhad, S.; Partoazar, A. R.; Mehr, S. E.; Faridi-Majidi, R.; Sahebgharani, M.; Syedmoradi, L.; Rajabnejhad, M. R.; Amani, A. Anti-inflammatory effects of eugenol nanoemulsion as a topical delivery system. Pharm. Dev. Technol. 2016, 21 (7), 887-893. DOI: https://doi.org/10.3109/10837450.2015.1078353. DOI: https://doi.org/10.3109/10837450.2015.1078353

Huang, X.; Liu, Y.; Lu, Y.; Ma, C. Anti-inflammatory effects of eugenol on lipopolysaccharide-induced inflammatory reaction in acute lung injury via regulating inflammation and redox status. Int. Immunopharmacol. 2015, 26 (1), 265-271. DOI: https://doi.org/10.1016/j.intimp.2015.03.026. DOI: https://doi.org/10.1016/j.intimp.2015.03.026

Mir, S. M.; Ravuri, H. G.; Pradhan, R. K.; Narra, S.; Kumar, J. M.; Kuncha, M.; Kanjilal, S.; Sistla, R. Ferulic acid protects lipopolysaccharide-induced acute kidney injury by suppressing inflammatory events and upregulating antioxidant defenses in Balb/c mice. Biomed. Pharmacother. 2018, 100, 304-315. DOI: https://doi.org/10.1016/j.biopha.2018.01.169. DOI: https://doi.org/10.1016/j.biopha.2018.01.169

Yin, Z. N.; Wu, W. J.; Sun, C. Z.; Liu, H. F.; Chen, W. B.; Zhan, Q. P.; Lei, Z. G.; Xin, X.; Ma, J. J.; Yao, K.; et al. Antioxidant and Anti-inflammatory Capacity of Ferulic Acid Released from Wheat Bran by Solid-state Fermentation of Aspergillus niger. Biomed. Environ. Sci. 2019, 32 (1), 11-21. DOI: https://doi.org/10.3967/bes2019.002.

Funakoshi-Tago, M.; Matsutaka, M.; Hokimoto, S.; Kobata, K.; Tago, K.; Tamura, H. Coffee ingredients, hydroquinone, pyrocatechol, and 4-ethylcatechol exhibit anti-inflammatory activity through inhibiting NF-κB and activating Nrf2. J. Funct. Foods 2022, 90. DOI: https://doi.org/10.1016/j.jff.2022.104980. DOI: https://doi.org/10.1016/j.jff.2022.104980

Abazari, M. F.; Nasiri, N.; Karizi, S. Z.; Nejati, F.; Haghiaminjan, H.; Norouzi, S.; Piri, P.; Estakhr, L.; Faradonbeh, D. R.; Kohandani, M.; et al. An updated review of various medicinal applications of p-coumaric acid: From antioxidative and anti-inflammatory properties to effects on cell cycle and proliferation. Mini-Rev. Med. Chem. 2021, 21 (15), 2187-2201. DOI: https://doi.org/10.2174/1389557521666210114163024. DOI: https://doi.org/10.2174/1389557521666210114163024

Da Silva, E. C. O.; Dos Santos, F. M.; Ribeiro, A. R. B.; De Souza, S. T.; Barreto, E.; Da Silva Fonseca, E. J. Drug-induced anti-inflammatory response in A549 cells, as detected by Raman spectroscopy: A comparative analysis of the actions of dexamethasone and: p -coumaric acid. Analyst 2019, 144 (5), 1622-1631. DOI: https://doi.org/10.1039/c8an01887a. DOI: https://doi.org/10.1039/C8AN01887A

Lee, M.; Rho, H. S.; Choi, K. Anti-inflammatory Effects of a P-coumaric Acid and Kojic Acid Derivative in LPS-stimulated RAW264.7 Macrophage Cells. Biotechnol. Bioprocess Eng. 2019, 24 (4), 653-657. DOI: https://doi.org/10.1007/s12257-018-0492-1. DOI: https://doi.org/10.1007/s12257-018-0492-1

Moradi, M.; Farbood, Y.; Mard, S. A.; Dianat, M.; Goudarzi, G.; Khorsandi, L.; Seyedian, S. S. p-Coumaric acid has pure anti-inflammatory characteristics against hepatopathy caused by ischemia-reperfusion in the liver and dust exposure. Iran. J. Basic Med. Sci. 2022, 26 (2), 164-175. DOI: https://doi.org/10.22038/IJBMS.2022.66192.14554.

Pragasam, S. J.; Venkatesan, V.; Rasool, M. Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation 2013, 36 (1), 169-176. DOI: https://doi.org/10.1007/s10753-012-9532-8. DOI: https://doi.org/10.1007/s10753-012-9532-8

Venkatesan, A.; Samy, J. V. R. A.; Balakrishnan, K.; Natesan, V.; Kim, S. J. In vitro Antioxidant, Anti-inflammatory, Antimicrobial, and Antidiabetic Activities of Synthesized Chitosan-loaded p-Coumaric Acid Nanoparticles. Curr. Pharm. Biotechnol. 2023, 24 (9), 1178-1194. DOI: https://doi.org/10.2174/1389201023666220822112923. DOI: https://doi.org/10.2174/1389201023666220822112923

Allen, S.; Khattab, A.; Vassallo, M.; Kwan, J. Inflammation and muscle weakness in COPD: Considering a renewed role for Theophylline? Curr. Respir. Med. Rev. 2018, 14 (1), 35-41. DOI: https://doi.org/10.2174/1573398X14666180525113544. DOI: https://doi.org/10.2174/1573398X14666180525113544

Bin, Y.; Xiao, Y.; Huang, D.; Ma, Z.; Liang, Y.; Bai, J.; Zhang, W.; Liang, Q.; Zhang, J.; Zhong, X.; He, Z. Theophylline inhibits cigarette smoke-induced inflammation in skeletal muscle by upregulating hdac2 expression and decreasing nf-κb activation. Am. J. Physiol. Lung Cell. Mol. Physiol. 2019, 316 (1), L197-L205. DOI: https://doi.org/10.1152/ajplung.00005.2018. DOI: https://doi.org/10.1152/ajplung.00005.2018

Eid, N. S.; O’Hagan, A.; Bickel, S.; Morton, R.; Jacobson, S.; Myers, J. A. Anti-inflammatory dosing of theophylline in the treatment of status asthmaticus in children. J. Asthma Allergy 2016, 9, 183-189. DOI: https://doi.org/10.2147/JAA.S113747. DOI: https://doi.org/10.2147/JAA.S113747

Talmon, M.; Massara, E.; Brunini, C.; Fresu, L. G. Comparison of anti-inflammatory mechanisms between doxofylline and theophylline in human monocytes. Pulm. Pharmacol. Ther. 2019, 59. DOI: https://doi.org/10.1016/j.pupt.2019.101851. DOI: https://doi.org/10.1016/j.pupt.2019.101851

Urbanova, A.; Kertys, M.; Simekova, M.; Mikolka, P.; Kosutova, P.; Mokra, D.; Mokry, J. Bronchodilator and anti-inflammatory action of theophylline in a model of ovalbumin-induced allergic inflammation. Adv. Exp. Med. Biol. 2016, 935, 53-62. DOI: https://doi.org/10.1007/5584_2016_31. DOI: https://doi.org/10.1007/5584_2016_31

Bains, M.; Kaur, J.; Akhtar, A.; Kuhad, A.; Sah, S. P. Anti-inflammatory effects of ellagic acid and vanillic acid against quinolinic acid-induced rat model of Huntington's disease by targeting IKK-NF-κB pathway. Eur. J. Pharmacol. 2022, 934. DOI: https://doi.org/10.1016/j.ejphar.2022.175316. DOI: https://doi.org/10.1016/j.ejphar.2022.175316

Calixto-Campos, C.; Carvalho, T. T.; Hohmann, M. S. N.; Pinho-Ribeiro, F. A.; Fattori, V.; Manchope, M. F.; Zarpelon, A. C.; Baracat, M. M.; Georgetti, S. R.; Casagrande, R.; Verri, W. A. Vanillic Acid Inhibits Inflammatory Pain by Inhibiting Neutrophil Recruitment, Oxidative Stress, Cytokine Production, and NFκB Activation in Mice. J. Nat. Prod. 2015, 78 (8), 1799-1808. DOI: https://doi.org/10.1021/acs.jnatprod.5b00246. DOI: https://doi.org/10.1021/acs.jnatprod.5b00246

Hu, R.; Wu, S.; Li, B.; Tan, J.; Yan, J.; Wang, Y.; Tang, Z.; Liu, M.; Fu, C.; Zhang, H.; He, J. Dietary ferulic acid and vanillic acid on inflammation, gut barrier function and growth performance in lipopolysaccharide-challenged piglets. Anim. Nutr. 2022, 8 (1), 144-152. DOI: https://doi.org/10.1016/j.aninu.2021.06.009. DOI: https://doi.org/10.1016/j.aninu.2021.06.009

Ibrahim, S. S.; Abd-allah, H. “Spanlastic nanovesicles for enhanced ocular delivery of vanillic acid: design, in vitro characterization, and in vivo anti-inflammatory evaluation”. Int. J. Pharm. 2022, 625. DOI: https://doi.org/10.1016/j.ijpharm.2022.122068. DOI: https://doi.org/10.1016/j.ijpharm.2022.122068

Kim, M. C.; Kim, S. J.; Kim, D. S.; Jeon, Y. D.; Park, S. J.; Lee, H. S.; Um, J. Y.; Hong, S. H. Vanillic acid inhibits inflammatory mediators by suppressing NF-κB in lipopolysaccharide-stimulated mouse peritoneal macrophages. Immunopharmacol. Immunotoxicol. 2011, 33 (3), 525-532. DOI: https://doi.org/10.3109/08923973.2010.547500. DOI: https://doi.org/10.3109/08923973.2010.547500

Ma, Z.; Huang, Z.; Zhang, L.; Li, X.; Xu, B.; Xiao, Y.; Shi, X.; Zhang, H.; Liao, T.; Wang, P. Vanillic Acid Reduces Pain-Related Behavior in Knee Osteoarthritis Rats Through the Inhibition of NLRP3 Inflammasome-Related Synovitis. Front. Pharmacol. 2021, 11. DOI: https://doi.org/10.3389/fphar.2020.599022. DOI: https://doi.org/10.3389/fphar.2020.599022

Zhao, J.; Yang, Y. Vanillic acid alleviates lipopolysaccharides-induced endoplasmic reticulum stress and inflammation in human lung fibroblasts by `inhibiting MAPK and NF-κB pathways. Qual. Assur. Saf. Crops Foods. 2022, 14 (1), 55-63. DOI: https://doi.org/10.15586/QAS.V14I1.1018. DOI: https://doi.org/10.15586/qas.v14i1.1018

Ziadlou, R.; Barbero, A.; Martin, I.; Wang, X.; Qin, L.; Alini, M.; Grad, S. Anti‐inflammatory and chondroprotective effects of vanillic acid and epimedin C in human osteoarthritic chondrocytes. Biomolecules 2020, 10 (6), 1-28. DOI: https://doi.org/10.3390/biom10060932. DOI: https://doi.org/10.3390/biom10060932

Bezerra-Filho, C. S. M.; Barboza, J. N.; Souza, M. T. S.; Sabry, P.; Ismail, N. S. M.; de Sousa, D. P. Therapeutic potential of vanillin and its main metabolites to regulate the inflammatory response and oxidative stress. Mini-Rev. Med. Chem. 2019, 19 (20), 1681-1693. DOI: https://doi.org/10.2174/1389557519666190312164355. DOI: https://doi.org/10.2174/1389557519666190312164355

Cheng, H. M.; Chen, F. Y.; Li, C. C.; Lo, H. Y.; Liao, Y. F.; Ho, T. Y.; Hsiang, C. Y. Oral Administration of Vanillin Improves Imiquimod-Induced Psoriatic Skin Inflammation in Mice. J. Agric. Food Chem. 2017, 65 (47), 10233-10242. DOI: https://doi.org/10.1021/acs.jafc.7b04259. DOI: https://doi.org/10.1021/acs.jafc.7b04259

Costantini, E.; Sinjari, B.; Falasca, K.; Reale, M.; Caputi, S.; Jagarlapodii, S.; Murmura, G. Assessment of the Vanillin Anti-Inflammatory and Regenerative Potentials in Inflamed Primary Human Gingival Fibroblast. Mediators Inflamm. 2021, 2021. DOI: https://doi.org/10.1155/2021/5562340. DOI: https://doi.org/10.1155/2021/5562340

3Kim, M. E.; Na, J. Y.; Park, Y. D.; Lee, J. S. Anti-Neuroinflammatory Effects of Vanillin Through the Regulation of Inflammatory Factors and NF-κB Signaling in LPS-Stimulated Microglia. Appl. Biochem. Biotechnol. 2019, 187 (3), 884-893. DOI: https://doi.org/10.1007/s12010-018-2857-5. DOI: https://doi.org/10.1007/s12010-018-2857-5

Liu, X.; Yang, J.; Li, J.; Xu, C.; Jiang, W. Vanillin Attenuates Cadmium-Induced Lung Injury Through Inhibition of Inflammation and Lung Barrier Dysfunction Through Activating AhR. Inflammation 2021, 44 (6), 2193-2202. DOI: https://doi.org/10.1007/s10753-021-01492-1. DOI: https://doi.org/10.1007/s10753-021-01492-1

Yan, X.; Liu, D. F.; Zhang, X. Y.; Liu, D.; Xu, S. Y.; Chen, G. X.; Huang, B. X.; Ren, W. Z.; Wang, W.; Fu, S. P.; Liu, J. X. Vanillin protects dopaminergic neurons against inflammation-mediated cell death by inhibiting ERK1/2, P38 and the NF-κB signaling pathway. Int. J. Mol. Sci. 2017, 18 (2). DOI: https://doi.org/10.3390/ijms18020389. DOI: https://doi.org/10.3390/ijms18020389

Zhao, D.; Jiang, Y.; Sun, J.; Li, H.; Huang, M.; Sun, X.; Zhao, M. Elucidation of The Anti-Inflammatory Effect of Vanillin In Lps-Activated THP-1 Cells. J. Food Sci. 2019, 84 (7), 1920-1928. DOI: https://doi.org/10.1111/1750-3841.14693. DOI: https://doi.org/10.1111/1750-3841.14693

Jung, H. J.; Song, Y. S.; Lim, C. J.; Park, E. H. Anti-angiogenic, anti-inflammatory and anti-nociceptive activities of vanillyl alcohol. Arch. Pharmacal Res. 2008, 31 (10), 1275-1279. DOI: https://doi.org/10.1007/s12272-001-2106-1. DOI: https://doi.org/10.1007/s12272-001-2106-1

Cho, A. S.; Jeon, S. M.; Kim, M. J.; Yeo, J.; Seo, K. I.; Choi, M. S.; Lee, M. K. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem. Toxicol. 2010, 48 (3), 937-943. DOI: https://doi.org/10.1016/j.fct.2010.01.003. DOI: https://doi.org/10.1016/j.fct.2010.01.003

He, X.; Zheng, S.; Sheng, Y.; Miao, T.; Xu, J.; Xu, W.; Huang, K.; Zhao, C. Chlorogenic acid ameliorates obesity by preventing energy balance shift in high-fat diet induced obese mice. J. Sci. Food Agric. 2021, 101 (2), 631-637. DOI: https://doi.org/10.1002/jsfa.10675. DOI: https://doi.org/10.1002/jsfa.10675

Kumar, R.; Sharma, A.; Iqbal, M. S.; Srivastava, J. K. Therapeutic promises of chlorogenic acid with special emphasis on its anti-obesity property. Curr. Mol. Pharmacol. 2020, 13 (1), 7-16. DOI: https://doi.org/10.2174/1874467212666190716145210. DOI: https://doi.org/10.2174/1874467212666190716145210

Wang, Z.; Lam, K. L.; Hu, J.; Ge, S.; Zhou, A.; Zheng, B.; Zeng, S.; Lin, S. Chlorogenic acid alleviates obesity and modulates gut microbiota in high-fat-fed mice. Food Sci. Nutr. 2019, 7 (2), 579-588. DOI: https://doi.org/10.1002/fsn3.868. DOI: https://doi.org/10.1002/fsn3.868

Baek, J. H.; Kim, N. J.; Song, J. K.; Chun, K. H. Kahweol inhibits lipid accumulation and induces Glucose-uptake through activation of AMP-activated protein kinase (AMPK). BMB Rep. 2017, 50 (11), 566-571. DOI: https://doi.org/10.5483/BMBRep.2017.50.11.031. DOI: https://doi.org/10.5483/BMBRep.2017.50.11.031

Farias-Pereira, R.; Park, C. S.; Park, Y. Kahweol Reduces Food Intake of Caenorhabditis elegans. J. Agric. Food Chem. 2020, 68 (36), 9683-9689. DOI: https://doi.org/10.1021/acs.jafc.0c03030. DOI: https://doi.org/10.1021/acs.jafc.0c03030

Kim, J. S.; Lee, S. G.; Kang, Y. J.; kwon, T. K.; Nam, J. O. Kahweol inhibits adipogenesis of 3T3-L1 adipocytes through downregulation of PPARγ. Nat. Prod. Res. 2018, 32 (10), 1216-1219. DOI: https://doi.org/10.1080/14786419.2017.1326039. DOI: https://doi.org/10.1080/14786419.2017.1326039

Agunloye, O. M.; Oboh, G.; Ademiluyi, A. O.; Ademosun, A. O.; Akindahunsi, A. A.; Oyagbemi, A. A.; Omobowale, T. O.; Ajibade, T. O.; Adedapo, A. A. Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: Mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats. Biomed. Pharmacother. 2019, 109, 450-458. DOI: https://doi.org/10.1016/j.biopha.2018.10.044. DOI: https://doi.org/10.1016/j.biopha.2018.10.044

Bıçakçı, N.; Karaboğa, İ.; Dökmeci, A. H.; Güzel, S.; Fidanol Erboğa, Z. Cardioprotective effect of caffeic acid phenethyl ester on cardiac contusion following blunt chest trauma in rats. Biotech. Histochem. 2019, 94 (6), 442-448. DOI: https://doi.org/10.1080/10520295.2019.1586999. DOI: https://doi.org/10.1080/10520295.2019.1586999

Kumaran, K. S.; Prince, P. S. M. Protective effect of caffeic acid on cardiac markers and lipid peroxide metabolism in cardiotoxic rats: An in vivo and in vitro study. Metabolism 2010, 59 (8), 1172-1180. DOI: https://doi.org/10.1016/j.metabol.2009.11.010. DOI: https://doi.org/10.1016/j.metabol.2009.11.010

Salau, V. F.; Erukainure, O. L.; Islam, M. S. Caffeic Acid Protects against Iron-Induced Cardiotoxicity by Suppressing Angiotensin-Converting Enzyme Activity and Modulating Lipid Spectrum, Gluconeogenesis and Nucleotide Hydrolyzing Enzyme Activities. Biol. Trace Elem. Res. 2021, 199 (3), 1052-1061. DOI: https://doi.org/10.1007/s12011-020-02227-3. DOI: https://doi.org/10.1007/s12011-020-02227-3

Silva, H.; Lopes, N. M. F. Cardiovascular Effects of Caffeic Acid and Its Derivatives: A Comprehensive Review. Front. Physiol. 2020, 11. DOI: https://doi.org/10.3389/fphys.2020.595516. DOI: https://doi.org/10.3389/fphys.2020.595516

Banitalebi, E.; Rahimi, A.; Faramarzi, M.; Mardaniyan Ghahfarrokhi, M. The effects of elastic resistance band training and green coffee bean extract supplement on novel combined indices of cardiometabolic risk in obese women. Res. Pharm. Sci. 2019, 14 (5), 414-423. DOI: https://doi.org/10.4103/1735-5362.268202. DOI: https://doi.org/10.4103/1735-5362.268202

Caro-Gómez, E.; Sierra, J. A.; Escobar, J. S.; Álvarez-Quintero, R.; Naranjo, M.; Medina, S.; Velásquez-Mejía, E. P.; Tabares-Guevara, J. H.; Jaramillo, J. C.; León-Varela, Y. M.; et al. Green coffee extract improves cardiometabolic parameters and modulates gut microbiota in high-fat-diet-fed ApoE -/- mice. Nutrients 2019, 11 (3). DOI: https://doi.org/10.3390/nu11030497. DOI: https://doi.org/10.3390/nu11030497

Lara-Guzmán, O. J.; Álvarez, R.; Muñoz-Durango, K. Changes in the plasma lipidome of healthy subjects after coffee consumption reveal potential cardiovascular benefits: A randomized controlled trial. Free Radic. Biol. Med. 2021, 176, 345-355. DOI: https://doi.org/10.1016/j.freeradbiomed.2021.10.012. DOI: https://doi.org/10.1016/j.freeradbiomed.2021.10.012

Suzuki, A.; Nomura, T.; Jokura, H.; Kitamura, N.; Saiki, A.; Fujii, A. Chlorogenic acid-enriched green coffee bean extract affects arterial stiffness assessed by the cardio-ankle vascular index in healthy men: a pilot study. Int. J. Food Sci. Nutr. 2019, 70 (7), 901-908. DOI: https://doi.org/10.1080/09637486.2019.1585763. DOI: https://doi.org/10.1080/09637486.2019.1585763

Baeza, G.; Bachmair, E. M.; Wood, S.; Mateos, R.; Bravo, L.; De Roos, B. The colonic metabolites dihydrocaffeic acid and dihydroferulic acid are more effective inhibitors of in vitro platelet activation than their phenolic precursors. Food Funct. 2017, 8 (3), 1333-1342. DOI: https://doi.org/10.1039/c6fo01404f. DOI: https://doi.org/10.1039/C6FO01404F

Alam, M. A.; Sernia, C.; Brown, L. Ferulic acid improves cardiovascular and kidney structure and function in hypertensive rats. J. Cardiovasc. Pharmacol. 2013, 61 (3), 240-249. DOI: https://doi.org/10.1097/FJC.0b013e31827cb600. DOI: https://doi.org/10.1097/FJC.0b013e31827cb600

402. Li, C.; Chen, L.; Song, M.; Fang, Z.; Zhang, L.; Coffie, J. W.; Zhang, L.; Ma, L.; Wang, Q.; Yang, W.; et al. Ferulic acid protects cardiomyocytes from TNF-α/cycloheximide-induced apoptosis by regulating autophagy. Arch. Pharmacal Res. 2020, 43 (8), 863-874. DOI: https://doi.org/10.1007/s12272-020-01252-z. DOI: https://doi.org/10.1007/s12272-020-01252-z

4Monceaux, K.; Gressette, M.; Karoui, A.; Pires Da Silva, J.; Piquereau, J.; Ventura-Clapier, R.; Garnier, A.; Mericskay, M.; Lemaire, C. Ferulic Acid, Pterostilbene, and Tyrosol Protect the Heart from ER-Stress-Induced Injury by Activating SIRT1-Dependent Deacetylation of eIF2α. Int. J. Mol. Sci. 2022, 23 (12). DOI: https://doi.org/10.3390/ijms23126628. DOI: https://doi.org/10.3390/ijms23126628

Neto-Neves, E. M.; Filho, C. D. S. M. B.; Dejani, N. N.; de Sousa, D. P. Ferulic acid and cardiovascular health: Therapeutic and preventive potential. Mini-Rev. Med. Chem. 2021, 21 (13), 1625-1637. DOI: https://doi.org/10.2174/1389557521666210105122841. DOI: https://doi.org/10.2174/1389557521666210105122841

Pandi, A.; Raghu, M. H.; Chandrashekar, N.; Kalappan, V. M. Cardioprotective effects of Ferulic acid against various drugs and toxic agents. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11 (1). DOI: https://doi.org/10.1186/s43088-022-00273-5. DOI: https://doi.org/10.1186/s43088-022-00273-5

Salau, V. F.; Erukainure, O. L.; Olofinsan, K. A.; Msomi, N. Z.; Ijomone, O. K.; Islam, M. S. Ferulic acid mitigates diabetic cardiomyopathy via modulation of metabolic abnormalities in cardiac tissues of diabetic rats. Fundam. Clin. Pharmacol. 2023, 37 (1), 44-59. DOI: https://doi.org/10.1111/fcp.12819. DOI: https://doi.org/10.1111/fcp.12819

Zhang, X. X.; Zhao, D. S.; Wang, J.; Zhou, H.; Wang, L.; Mao, J. L.; He, J. X. The treatment of cardiovascular diseases: A review of ferulic acid and its derivatives. Pharmazie 2021, 76 (2-3), 55-60. DOI: https://doi.org/10.1691/ph.2021.0958.

Xing, D.; Yoo, C.; Gonzalez, D.; Jenkins, V.; Nottingham, K.; Dickerson, B.; Leonard, M.; Ko, J.; Faries, M.; Kephart, W.; et al. Dose-response of paraxanthine on cognitive function: A double blind, placebo controlled, crossover trial. Nutrients 2021, 13 (12). DOI: https://doi.org/10.3390/nu13124478. DOI: https://doi.org/10.3390/nu13124478

Yoo, C.; Xing, D.; Gonzalez, D.; Jenkins, V.; Nottingham, K.; Dickerson, B.; Leonard, M.; Ko, J.; Faries, M.; Kephart, W.; et al. Acute paraxanthine ingestion improves cognition and short-term memory and helps sustain attention in a double-blind, placebo-controlled, crossover trial. Nutrients 2021, 13 (11). DOI: https://doi.org/10.3390/nu13113980. DOI: https://doi.org/10.3390/nu13113980

Choi, J. R.; Kim, J. H.; Lee, S.; Cho, E. J.; Kim, H. Y. Protective effects of protocatechuic acid against cognitive impairment in an amyloid beta-induced Alzheimer's disease mouse model. Food Chem. Toxicol. 2020, 144. DOI: https://doi.org/10.1016/j.fct.2020.111571. DOI: https://doi.org/10.1016/j.fct.2020.111571

Muley, M. M.; Thakare, V. N.; Patil, R. R.; Bafna, P. A.; Naik, S. R. Amelioration of cognitive, motor and endogenous defense functions with silymarin, piracetam and protocatechuic acid in the cerebral global ischemic rat model. Life Sci. 2013, 93 (1), 51-57. DOI: https://doi.org/10.1016/j.lfs.2013.05.020. DOI: https://doi.org/10.1016/j.lfs.2013.05.020

Song, Y.; Cui, T.; Xie, N.; Zhang, X.; Qian, Z.; Liu, J. Protocatechuic acid improves cognitive deficits and attenuates amyloid deposits, inflammatory response in aged AβPP/PS1 double transgenic mice. Int. Immunopharmacol. 2014, 20 (1), 276-281. DOI: https://doi.org/10.1016/j.intimp.2014.03.006. DOI: https://doi.org/10.1016/j.intimp.2014.03.006

Yin, X.; Zhang, X.; Lv, C.; Li, C.; Yu, Y.; Wang, X.; Han, F. Protocatechuic acid ameliorates neurocognitive functions impairment induced by chronic intermittent hypoxia. Sci. Rep. 2015, 5. DOI: https://doi.org/10.1038/srep14507. DOI: https://doi.org/10.1038/srep14507

Gao, L.; Ge, W.; Peng, C.; Guo, J.; Chen, N.; He, L. Association between Dietary Theobromine and Cognitive Function in a Representative American Population: A Cross-Sectional Study. J. Prev. Alzheimers Dis. 2022, 9 (3), 449-457. DOI: https://doi.org/10.14283/jpad.2022.39. DOI: https://doi.org/10.14283/jpad.2022.39

Mendiola-Precoma, J.; Padilla, K.; Rodríguez-Cruz, A.; Berumen, L. C.; Miledi, R.; García-Alcocer, G. Theobromine-induced changes in A1 purinergic receptor gene expression and distribution in a rat brain Alzheimer's disease model. J. Alzheimer’s Dis. 2017, 55 (3), 1273-1283. DOI: https://doi.org/10.3233/JAD-160569. DOI: https://doi.org/10.3233/JAD-160569

Singh, J. C. H.; Kakalij, R. M.; Kshirsagar, R. P.; Kumar, B. H.; Komakula, S. S. B.; Diwan, P. V. Cognitive effects of vanillic acid against streptozotocin-induced neurodegeneration in mice. Pharm. Biol. 2015, 53 (5), 630-636. DOI: https://doi.org/10.3109/13880209.2014.935866. DOI: https://doi.org/10.3109/13880209.2014.935866

Ul Amin, F.; Shah, S. A.; Kim, M. O. Vanillic acid attenuates Aβ1-42-induced oxidative stress and cognitive impairment in mice. Sci. Rep. 2017, 7. DOI: https://doi.org/10.1038/srep40753. DOI: https://doi.org/10.1038/srep40753

Al Asmari, A.; Al Shahrani, H.; Al Masri, N.; Al Faraidi, A.; Elfaki, I.; Arshaduddin, M. Vanillin abrogates ethanol induced gastric injury in rats via modulation of gastric secretion, oxidative stress and inflammation. Toxicol. Rep. 2016, 3, 105-113. DOI: https://doi.org/10.1016/j.toxrep.2015.11.001. DOI: https://doi.org/10.1016/j.toxrep.2015.11.001

Ciciliato, M. P.; de Souza, M. C.; Tarran, C. M.; de Castilho, A. L. T.; Vieira, A. J.; Rozza, A. L. Anti-Inflammatory Effect of Vanillin Protects the Stomach against Ulcer Formation. Pharmaceutics 2022, 14 (4). DOI: https://doi.org/10.3390/pharmaceutics14040755. DOI: https://doi.org/10.3390/pharmaceutics14040755

Mu, H. N.; Li, Q.; Fan, J. Y.; Pan, C. S.; Liu, Y. Y.; Yan, L.; Sun, K.; Hu, B. H.; Huang, D. D.; Zhao, X. R.; et al. Caffeic acid attenuates rat liver injury after transplantation involving PDIA3-dependent regulation of NADPH oxidase. Free Radic. Biol. Med. 2018, 129, 202-214. DOI: https://doi.org/10.1016/j.freeradbiomed.2018.09.009. DOI: https://doi.org/10.1016/j.freeradbiomed.2018.09.009

Mu, H. N.; Zhou, Q.; Yang, R. Y.; Tang, W. Q.; Li, H. X.; Wang, S. M.; Li, J.; Chen, W. X.; Dong, J. Caffeic acid prevents non-alcoholic fatty liver disease induced by a high-fat diet through gut microbiota modulation in mice. Food Res. Int. 2021, 143. DOI: https://doi.org/10.1016/j.foodres.2021.110240. DOI: https://doi.org/10.1016/j.foodres.2021.110240

Pang, C.; Shi, L.; Sheng, Y.; Zheng, Z.; Wei, H.; Wang, Z.; Ji, L. Caffeic acid attenuated acetaminophen-induced hepatotoxicity by inhibiting ERK1/2-mediated early growth response-1 transcriptional activation. Chem. Biol. Interact. 2016, 260, 186-195. DOI: https://doi.org/10.1016/j.cbi.2016.10.009. DOI: https://doi.org/10.1016/j.cbi.2016.10.009

Pang, C.; Zheng, Z.; Shi, L.; Sheng, Y.; Wei, H.; Wang, Z.; Ji, L. Caffeic acid prevents acetaminophen-induced liver injury by activating the Keap1-Nrf2 antioxidative defense system. Free Radic. Biol. Med. 2016, 91, 236-246. DOI: https://doi.org/10.1016/j.freeradbiomed.2015.12.024. DOI: https://doi.org/10.1016/j.freeradbiomed.2015.12.024

Sánchez-Medina, A.; Redondo-Puente, M.; Dupak, R.; Bravo-Clemente, L.; Goya, L.; Sarriá, B. Colonic Coffee Phenols Metabolites, Dihydrocaffeic, Dihydroferulic, and Hydroxyhippuric Acids Protect Hepatic Cells from TNF-α-Induced Inflammation and Oxidative Stress. Int. J. Mol. Sci. 2023, 24 (2). DOI: https://doi.org/10.3390/ijms24021440. DOI: https://doi.org/10.3390/ijms24021440

Gressner, O. A. About coffee, cappuccino and connective tissue growth factor-Or how to protect your liver!? Environ. Toxicol. Pharmacol. 2009, 28 (1), 1-10. DOI: https://doi.org/10.1016/j.etap.2009.02.005. DOI: https://doi.org/10.1016/j.etap.2009.02.005

Gressner, O. A.; Lahme, B.; Siluschek, M.; Gressner, A. M. Identification of paraxanthine as the most potent caffeine-derived inhibitor of connective tissue growth factor expression in liver parenchymal cells. Liver Int. 2009, 29 (6), 886-897. DOI: https://doi.org/10.1111/j.1478-3231.2009.01987.x. DOI: https://doi.org/10.1111/j.1478-3231.2009.01987.x

Klemmer, I.; Yagi, S.; Gressner, O. A. Oral application of 1,7-dimethylxanthine (paraxanthine) attenuates the formation of experimental cholestatic liver fibrosis. Hepatol. Res. 2011, 41 (11), 1094-1109. DOI: https://doi.org/10.1111/j.1872-034X.2011.00856.x. DOI: https://doi.org/10.1111/j.1872-034X.2011.00856.x

Wei, D.; Wu, S.; Liu, J.; Zhang, X.; Guan, X.; Gao, L.; Xu, Z. Theobromine ameliorates nonalcoholic fatty liver disease by regulating hepatic lipid metabolism via mtor signaling pathway in vivo and in vitro. Can. J. Physiol. Pharmacol. 2021, 99 (8), 775-785. DOI: https://doi.org/10.1139/cjpp-2020-0259. DOI: https://doi.org/10.1139/cjpp-2020-0259

Ben Saad, H.; Driss, D.; Ben Amara, I.; Boudawara, O.; Boudawara, T.; Ellouz Chaabouni, S.; Mounir Zeghal, K.; Hakim, A. Altered hepatic mRNA expression of immune response-associated DNA damage in mice liver induced by potassium bromate: Protective role of vanillin. Environ. Toxicol. 2016, 31 (12), 1796-1807. DOI: https://doi.org/10.1002/tox.22181. DOI: https://doi.org/10.1002/tox.22181

Ghanim, A. M. H.; Younis, N. S.; Metwaly, H. A. Vanillin augments liver regeneration effectively in hioacetamide induced liver fibrosis rat model. Life Sci. 2021, 286. DOI: https://doi.org/10.1016/j.lfs.2021.120036. DOI: https://doi.org/10.1016/j.lfs.2021.120036

Liang, J. A.; Wu, S. L.; Lo, H. Y.; Hsiang, C. Y.; Ho, T. Y. Vanillin inhibits matrix metalloproteinase-9 expression through down-regulation of nuclear factor-κB signaling pathway in human hepatocellular carcinoma cells. Mol. Pharmacol. 2009, 75 (1), 151-157. DOI: https://doi.org/10.1124/mol.108.049502. DOI: https://doi.org/10.1124/mol.108.049502

Makni, M.; Chtourou, Y.; Fetoui, H.; Garoui, E. M.; Boudawara, T.; Zeghal, N. Evaluation of the antioxidant, anti-inflammatory and hepatoprotective properties of vanillin in carbon tetrachloride-treated rats. Eur. J. Pharmacol. 2011, 668 (1-2), 133-139. DOI: https://doi.org/10.1016/j.ejphar.2011.07.001. DOI: https://doi.org/10.1016/j.ejphar.2011.07.001

Abdelrahman, R. S.; El-Tanbouly, G. S. Protocatechuic acid protects against thioacetamide-induced chronic liver injury and encephalopathy in mice via modulating mTOR, p53 and the IL-6/ IL-17/ IL-23 immunoinflammatory pathway. Toxicol. Appl. Pharmacol. 2022, 440. DOI: https://doi.org/10.1016/j.taap.2022.115931. DOI: https://doi.org/10.1016/j.taap.2022.115931

Salama, A.; Elgohary, R.; Amin, M. M.; Elwahab, S. A. Immunomodulatory effect of protocatechuic acid on cyclophosphamide induced brain injury in rat: Modulation of inflammosomes NLRP3 and SIRT1. Eur. J. Pharmacol. 2022, 932. DOI: https://doi.org/10.1016/j.ejphar.2022.175217. DOI: https://doi.org/10.1016/j.ejphar.2022.175217

Adeyanju, A. A.; Molehin, O. R.; Asejeje, F. O.; Oyenuga, V.; Etokakpan, R. U. Protocatechuic acid through modulation of signaling pathways and oxidative stress exerts protective effects in rat model of carbon tetrachloride-induced renal and reproductive toxicities. Comp. Clin. Path. 2022, 31 (3), 465-474. DOI: https://doi.org/10.1007/s00580-022-03345-1. DOI: https://doi.org/10.1007/s00580-022-03345-1

Kassab, R. B.; Theyab, A.; Al-Ghamdy, A. O.; Algahtani, M.; Mufti, A. H.; Alsharif, K. F.; Abdella, E. M.; Habotta, O. A.; Omran, M. M.; Lokman, M. S.; et al. Protocatechuic acid abrogates oxidative insults, inflammation, and apoptosis in liver and kidney associated with monosodium glutamate intoxication in rats. Environ. Sci. Pollut. Res. 2022, 29 (8), 12208-12221. DOI: https://doi.org/10.1007/s11356-021-16578-4. DOI: https://doi.org/10.1007/s11356-021-16578-4

Lin, C. Y.; Tsai, S. J.; Huang, C. S.; Yin, M. C. Antiglycative effects of protocatechuic acid in the kidneys of diabetic mice. J. Agric. Food Chem. 2011, 59 (9), 5117-5124. DOI: https://doi.org/10.1021/jf200103f. DOI: https://doi.org/10.1021/jf200103f

Salama, A. A. A.; Elgohary, R.; Fahmy, M. I. Protocatechuic acid ameliorates lipopolysaccharide-induced kidney damage in mice via downregulation of TLR-4-mediated IKBKB/NF-κB and MAPK/Erk signaling pathways. J. Appl. Toxicol. 2023, 10.1002/jat.4447. DOI: https://doi.org/10.1002/jat.4447. DOI: https://doi.org/10.1002/jat.4447

Yamabe, N.; Park, J. Y.; Lee, S.; Cho, E. J.; Lee, S.; Kang, K. S.; Hwang, G. S.; Kim, S. N.; Kim, H. Y.; Shibamoto, T. Protective effects of protocatechuic acid against cisplatin-induced renal damage in rats. J. Funct. Foods 2015, 19, 20-27. DOI: https://doi.org/10.1016/j.jff.2015.08.028. DOI: https://doi.org/10.1016/j.jff.2015.08.028

Chattaraj, K. G.; Paul, S. Inclusion of Theobromine Modifies Uric Acid Aggregation with Possible Changes in Melamine-Uric Acid Clusters Responsible for Kidney Stones. J. Phys. Chem. B 2019, 123 (49), 10483-10504. DOI: https://doi.org/10.1021/acs.jpcb.9b08487. DOI: https://doi.org/10.1021/acs.jpcb.9b08487

Hernandez, Y.; Costa-Bauza, A.; Calvó, P.; Benejam, J.; Sanchis, P.; Grases, F. Comparison of two dietary supplements for treatment of uric acid renal lithiasis: Citrate vs. citrate + theobromine. Nutrients 2020, 12 (7), 1-8. DOI: https://doi.org/10.3390/nu12072012. DOI: https://doi.org/10.3390/nu12072012

Julià, F.; Costa-Bauza, A.; Berga, F.; Grases, F. Effect of theobromine on dissolution of uric acid kidney stones. World J. Urol. 2022, 40 (8), 2105-2111. DOI: https://doi.org/10.1007/s00345-022-04059-3. DOI: https://doi.org/10.1007/s00345-022-04059-3

Papadimitriou, A.; Silva, K. C.; Peixoto, E. B. M. I.; Borges, C. M.; de Faria, J. M. L.; de Faria, J. B. L. Theobromine increases NAD+/Sirt-1 activity and protects the kidney under diabetic conditions. Am. J. Physiol. Ren. Physiol. 2015, 308 (3), F209-F225. DOI: https://doi.org/10.1152/ajprenal.00252.2014. DOI: https://doi.org/10.1152/ajprenal.00252.2014

Prediger, R. D. S. Effects of caffeine in Parkinson's disease: From neuroprotection to the management of motor and non-motor symptoms. J. Alzheimer’s Dis. 2010, 20 (SUPPL.1), S205-S220. DOI: https://doi.org/10.3233/JAD-2010-091459. DOI: https://doi.org/10.3233/JAD-2010-091459

Arendash, G. W.; Cao, C. Caffeine and coffee as therapeutics against Alzheimer's disease. J. Alzheimer’s Dis. 2010, 20 (SUPPL.1), S117-S126. DOI: https://doi.org/10.3233/JAD-2010-091249. DOI: https://doi.org/10.3233/JAD-2010-091249

Chu, Y. F.; Chang, W. H.; Black, R. M.; Liu, J. R.; Sompol, P.; Chen, Y.; Wei, H.; Zhao, Q.; Cheng, I. H. Crude caffeine reduces memory impairment and amyloid β1-42 levels in an Alzheimer's mouse model. Food Chem. 2012, 135 (3), 2095-2102. DOI: https://doi.org/10.1016/j.foodchem.2012.04.148. DOI: https://doi.org/10.1016/j.foodchem.2012.04.148

Di Martino, E.; Bocchetta, E.; Tsuji, S.; Mukai, T.; Harris, R. A.; Blomgren, K.; Ådén, U. Defining a Time Window for Neuroprotection and Glia Modulation by Caffeine After Neonatal Hypoxia-Ischaemia. Mol. Neurobiol. 2020, 57 (5), 2194-2205. DOI: https://doi.org/10.1007/s12035-020-01867-9. DOI: https://doi.org/10.1007/s12035-020-01867-9

Endesfelder, S.; Weichelt, U.; Strauß, E.; Schlör, A.; Sifringer, M.; Scheuer, T.; Bührer, C.; Schmitz, T. Neuroprotection by caffeine in hyperoxia-induced neonatal brain injury. Int. J. Mol. Sci. 2017, 18 (1). DOI: https://doi.org/10.3390/ijms18010187. DOI: https://doi.org/10.3390/ijms18010187

Farrokhi, M. R.; Emamghoreishi, M.; Amiri, A.; Keshavarz, M. Neuroprotective effects of caffeine against beta-amyliod neurotoxicity: The involvement of glycogen synthase kinase-3β protein. Physiol. Pharmacol. (Iran) 2019, 23 (3), 150-153.

Ikram, M.; Park, T. J.; Ali, T.; Kim, M. O. Antioxidant and neuroprotective effects of caffeine against Alzheimer’s and parkinson’s disease: Insight into the role of Nrf-2 and A2AR signaling. Antioxidants 2020, 9 (9), 1-21. DOI: https://doi.org/10.3390/antiox9090902. DOI: https://doi.org/10.3390/antiox9090902

Karuppagounder, S. S.; Uthaythas, S.; Govindarajulu, M.; Ramesh, S.; Parameshwaran, K.; Dhanasekaran, M. Caffeine, a natural methylxanthine nutraceutical, exerts dopaminergic neuroprotection. Neurochem. Int. 2021, 148. DOI: https://doi.org/10.1016/j.neuint.2021.105066. DOI: https://doi.org/10.1016/j.neuint.2021.105066

Khadrawy, Y. A.; Salem, A. M.; El-Shamy, K. A.; Ahmed, E. K.; Fadl, N. N.; Hosny, E. N. Neuroprotective and Therapeutic Effect of Caffeine on the Rat Model of Parkinson’s Disease Induced by Rotenone. J. Diet. Suppl. 2017, 14 (5), 553-572. DOI: https://doi.org/10.1080/19390211.2016.1275916. DOI: https://doi.org/10.1080/19390211.2016.1275916

Kolahdouzan, M.; Hamadeh, M. J. The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neurosci. Ther. 2017, 23 (4), 272-290. DOI: https://doi.org/10.1111/cns.12684. DOI: https://doi.org/10.1111/cns.12684

Pereira-Figueiredo, D.; Nascimento, A. A.; Cunha-Rodrigues, M. C.; Brito, R.; Calaza, K. C. Caffeine and Its Neuroprotective Role in Ischemic Events: A Mechanism Dependent on Adenosine Receptors. Cell. Mol. Neurobiol. 2022, 42 (6), 1693-1725. DOI: https://doi.org/10.1007/s10571-021-01077-4. DOI: https://doi.org/10.1007/s10571-021-01077-4

Xu, K.; Di Luca, D. G.; Orrú, M.; Xu, Y.; Chen, J. F.; Schwarzschild, M. A. Neuroprotection by caffeine in the MPTP model of parkinson's disease and its dependence on adenosine A2A receptors. Neuroscience 2016, 322, 129-137. DOI: https://doi.org/10.1016/j.neuroscience.2016.02.035. DOI: https://doi.org/10.1016/j.neuroscience.2016.02.035

Xu, K.; Xu, Y. H.; Chen, J. F.; Schwarzschild, M. A. Neuroprotection by caffeine: Time course and role of its metabolites in the MPTP model of Parkinson's disease. Neuroscience 2010, 167 (2), 475-481. DOI: https://doi.org/10.1016/j.neuroscience.2010.02.020. DOI: https://doi.org/10.1016/j.neuroscience.2010.02.020

Yan, R.; Zhang, J.; Park, H. J.; Park, E. S.; Oh, S.; Zheng, H.; Junn, E.; Voronkov, M.; Stock, J. B.; Mouradian, M. M. Synergistic neuroprotection by coffee components eicosanoyl-5-hydroxytryptamide and caffeine in models of Parkinson’s disease and DLB. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (51), E12053-E12062. DOI: https://doi.org/10.1073/pnas.1813365115. DOI: https://doi.org/10.1073/pnas.1813365115

Yelanchezian, Y. M. M.; Waldvogel, H. J.; Faull, R. L. M.; Kwakowsky, A. Neuroprotective Effect of Caffeine in Alzheimer’s Disease. Molecules 2022, 27 (12). DOI: https://doi.org/10.3390/molecules27123737. DOI: https://doi.org/10.3390/molecules27123737

Zhou, X.; Zhang, L. The Neuroprotective Effects of Moderate and Regular Caffeine Consumption in Alzheimer's Disease. Oxidative Med. Cell. Longev. 2021, 2021. DOI: https://doi.org/10.1155/2021/5568011. DOI: https://doi.org/10.1155/2021/5568011

Tan, E. K.; Chua, E.; Fook-Chong, S. M.; Teo, Y. Y.; Yuen, Y.; Tan, L.; Zhao, Y. Association between caffeine intake and risk of Parkinson's disease among fast and slow metabolizers. Pharmacogenet. Genomics 2007, 17 (11), 1001-1005. DOI: https://doi.org/10.1097/FPC.0b013e3282f09265. DOI: https://doi.org/10.1097/FPC.0b013e3282f09265

Alves-Martinez, P.; Atienza-Navarro, I.; Vargas-Soria, M.; Carranza-Naval, M. J.; Infante-Garcia, C.; Benavente-Fernandez, I.; Del Marco, A.; Lubian-Lopez, S.; Garcia-Alloza, M. Caffeine Restores Neuronal Damage and Inflammatory Response in a Model of Intraventricular Hemorrhage of the Preterm Newborn. Front. Microbiol. 2022, 10. DOI: https://doi.org/10.3389/fcell.2022.908045. DOI: https://doi.org/10.3389/fcell.2022.908045

Heise, J.; Schmitz, T.; Bührer, C.; Endesfelder, S. Protective Effects of Early Caffeine Administration in Hyperoxia-Induced Neurotoxicity in the Juvenile Rat. Antioxidants 2023, 12 (2). DOI: https://doi.org/10.3390/antiox12020295. DOI: https://doi.org/10.3390/antiox12020295

Kim, E.; Robinson, N. M.; Newman, B. M. A Brewed Awakening: Neuropsychiatric Effects of Caffeine in Older Adults. Clin. Geriatr. Med. 2022, 38 (1), 133-144. DOI: https://doi.org/10.1016/j.cger.2021.07.009. DOI: https://doi.org/10.1016/j.cger.2021.07.009

Pohanka, M. Role of Caffeine in the Age-related Neurodegenerative Diseases: A Review. Mini-Rev. Med. Chem. 2022, 22 (21), 2726-2735. DOI: https://doi.org/10.2174/1389557522666220413103529. DOI: https://doi.org/10.2174/1389557522666220413103529

Ruggiero, M.; Calvello, R.; Porro, C.; Messina, G.; Cianciulli, A.; Panaro, M. A. Neurodegenerative Diseases: Can Caffeine Be a Powerful Ally to Weaken Neuroinflammation? Int. J. Mol. Sci. 2022, 23 (21). DOI: https://doi.org/10.3390/ijms232112958. DOI: https://doi.org/10.3390/ijms232112958

Basu Mallik, S.; Mudgal, J.; Nampoothiri, M.; Hall, S.; Dukie, S. A.; Grant, G.; Rao, C. M.; Arora, D. Caffeic acid attenuates lipopolysaccharide-induced sickness behaviour and neuroinflammation in mice. Neurosci. Lett. 2016, 632, 218-223. DOI: https://doi.org/10.1016/j.neulet.2016.08.044. DOI: https://doi.org/10.1016/j.neulet.2016.08.044

Saenno, R.; Dornlakorn, O.; Anosri, T.; Kaewngam, S.; Sirichoat, A.; Aranarochana, A.; Pannangrong, W.; Wigmore, P.; Welbat, J. U. Caffeic Acid Alleviates Memory and Hippocampal Neurogenesis Deficits in Aging Rats induced by D‐Galactose. Nutrients 2022, 14 (10). DOI: https://doi.org/10.3390/nu14102169. DOI: https://doi.org/10.3390/nu14102169

Zaitone, S. A.; Ahmed, E.; Elsherbiny, N. M.; Mehanna, E. T.; El-Kherbetawy, M. K.; ElSayed, M. H.; Alshareef, D. M.; Moustafa, Y. M. Caffeic acid improves locomotor activity and lessens inflammatory burden in a mouse model of rotenone-induced nigral neurodegeneration: Relevance to Parkinson's disease therapy. Pharmacol. Rep. 2019, 71 (1), 32-41. DOI: https://doi.org/10.1016/j.pharep.2018.08.004. DOI: https://doi.org/10.1016/j.pharep.2018.08.004

Heitman, E.; Ingram, D. K. Cognitive and neuroprotective effects of chlorogenic acid. Nutr. Neurosci. 2017, 20 (1), 32-39. DOI: https://doi.org/10.1179/1476830514Y.0000000146. DOI: https://doi.org/10.1179/1476830514Y.0000000146

Kumar, G.; Mukherjee, S.; Paliwal, P.; Singh, S. S.; Birla, H.; Singh, S. P.; Krishnamurthy, S.; Patnaik, R. Neuroprotective effect of chlorogenic acid in global cerebral ischemia-reperfusion rat model. Naunyn-Schmiedeberg's Arch. Pharmacol. 2019, 392 (10), 1293-1309. DOI: https://doi.org/10.1007/s00210-019-01670-x. DOI: https://doi.org/10.1007/s00210-019-01670-x

Kwon, S. H.; Lee, H. K.; Kim, J. A.; Hong, S. I.; Kim, H. C.; Jo, T. H.; Park, Y. I.; Lee, C. K.; Kim, Y. B.; Lee, S. Y.; Jang, C. G. Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur. J. Pharmacol. 2010, 649 (1-3), 210-217. DOI: https://doi.org/10.1016/j.ejphar.2010.09.001. DOI: https://doi.org/10.1016/j.ejphar.2010.09.001

Liberato, J. L.; Rosa, M. N.; Miranda, M. C. R.; Lopes, J. L. C.; Lopes, N. P.; Gobbo-Neto, L.; Fontana, A. C. K.; Dos Santos, W. F. Neuroprotective Properties of Chlorogenic Acid and 4,5-Caffeoylquinic Acid from Brazilian arnica (Lychnophora ericoides) after Acute Retinal Ischemia. Planta Med. 2023, 89 (2), 183-193. DOI: https://doi.org/10.1055/a-1903-2387. DOI: https://doi.org/10.1055/a-1903-2387

Liu, Y.; Wang, F.; Li, Z.; Mu, Y.; Yong, V. W.; Xue, M. Neuroprotective Effects of Chlorogenic Acid in a Mouse Model of Intracerebral Hemorrhage Associated with Reduced Extracellular Matrix Metalloproteinase Inducer. Biomolecules 2022, 12 (8). DOI: https://doi.org/10.3390/biom12081020. DOI: https://doi.org/10.3390/biom12081020

Metwally, D. M.; Alajmi, R. A.; El-Khadragy, M. F.; Yehia, H. M.; Al-Megrin, W. A.; Akabawy, A. M. A.; Amin, H. K.; Abdel Moneim, A. E. Chlorogenic acid confers robust neuroprotection against arsenite toxicity in mice by reversing oxidative stress, inflammation, and apoptosis. J. Funct. Foods 2020, 75. DOI: https://doi.org/10.1016/j.jff.2020.104202. DOI: https://doi.org/10.1016/j.jff.2020.104202

Rebai, O.; Belkhir, M.; Sanchez-Gomez, M. V.; Matute, C.; Fattouch, S.; Amri, M. Differential Molecular Targets for Neuroprotective Effect of Chlorogenic Acid and its Related Compounds Against Glutamate Induced Excitotoxicity and Oxidative Stress in Rat Cortical Neurons. Neurochem. Res. 2017, 42 (12), 3559-3572. DOI: https://doi.org/10.1007/s11064-017-2403-9. DOI: https://doi.org/10.1007/s11064-017-2403-9

Sharma, N.; Soni, R.; Sharma, M.; Chatterjee, S.; Parihar, N.; Mukarram, M.; kale, R.; Sayyed, A. A.; Behera, S. K.; Khairnar, A. Chlorogenic Acid: a Polyphenol from Coffee Rendered Neuroprotection Against Rotenone-Induced Parkinson’s Disease by GLP-1 Secretion. Mol. Neurobiol. 2022, 59 (11), 6834-6856. DOI: https://doi.org/10.1007/s12035-022-03005-z. DOI: https://doi.org/10.1007/s12035-022-03005-z

Singh, S. S.; Rai, S. N.; Birla, H.; Zahra, W.; Rathore, A. S.; Dilnashin, H.; Singh, R.; Singh, S. P. Neuroprotective Effect of Chlorogenic Acid on Mitochondrial Dysfunction-Mediated Apoptotic Death of da Neurons in a Parkinsonian Mouse Model. Oxidative Med. Cell. Longev. 2020, 2020. DOI: https://doi.org/10.1155/2020/6571484. DOI: https://doi.org/10.1155/2020/6571484

Zheng, Y.; Li, L.; Chen, B.; Fang, Y.; Lin, W.; Zhang, T.; Feng, X.; Tao, X.; Wu, Y.; Fu, X.; Lin, Z. Chlorogenic acid exerts neuroprotective effect against hypoxia-ischemia brain injury in neonatal rats by activating Sirt1 to regulate the Nrf2-NF-κB signaling pathway. Cell Commun. Signal. 2022, 20 (1). DOI: https://doi.org/10.1186/s12964-022-00860-0. DOI: https://doi.org/10.1186/s12964-022-00860-0

Lee, K.; Lee, B. J.; Bu, Y. Protective effects of dihydrocaffeic acid, a coffee component metabolite, on a focal cerebral ischemia rat model. Molecules 2015, 20 (7), 11930-11940. DOI: https://doi.org/10.3390/molecules200711930. DOI: https://doi.org/10.3390/molecules200711930

Alharthy, K. M.; Balaha, M. F.; Devi, S.; Altharawi, A.; Yusufoglu, H. S.; Aldossari, R. M.; Alam, A.; Giacomo, V. D. Ameliorative Effects of Isoeugenol and Eugenol against Impaired Nerve Function and Inflammatory and Oxidative Mediators in Diabetic Neuropathic Rats. Biomedicines 2023, 11 (4). DOI: https://doi.org/10.3390/biomedicines11041203. DOI: https://doi.org/10.3390/biomedicines11041203

Ren, Z.; Li, Y.; Zhang, R.; Li, Y.; Yang, Z.; Yang, H. Ferulic acid exerts neuroprotective effects against cerebral ischemia/reperfusion-induced injury via antioxidant and anti-apoptotic mechanisms in vitro and in vivo. Int. J. Mol. Med. 2017, 40 (5), 1444-1456. DOI: https://doi.org/10.3892/ijmm.2017.3127. DOI: https://doi.org/10.3892/ijmm.2017.3127

Di Giacomo, S.; Percaccio, E.; Gullì, M.; Romano, A.; Vitalone, A.; Mazzanti, G.; Gaetani, S.; Di Sotto, A. Recent Advances in the Neuroprotective Properties of Ferulic Acid in Alzheimer’s Disease: A Narrative Review. Nutrients 2022, 14 (18). DOI: https://doi.org/10.3390/nu14183709. DOI: https://doi.org/10.3390/nu14183709

Dong, X.; Huang, R. Ferulic acid: An extraordinarily neuroprotective phenolic acid with anti-depressive properties. Phytomedicine 2022, 105. DOI: https://doi.org/10.1016/j.phymed.2022.154355. DOI: https://doi.org/10.1016/j.phymed.2022.154355

Hassanzadeh, P.; Arbabi, E.; Atyabi, F.; Dinarvand, R. Ferulic acid, a phenolic compound with therapeutic effects in neuropsychiatric disorders, stimulates the production of nerve growth factor and endocannabinoids in rat brain. Physiol. Pharmacol. (Iran) 2017, 21 (4), 279-294.

Liu, G.; Nie, Y.; Huang, C.; Zhu, G.; Zhang, X.; Hu, C.; Li, Z.; Gao, Y.; Ma, Z. Ferulic acid produces neuroprotection against radiation-induced neuroinflammation by affecting NLRP3 inflammasome activation. Int. J. Radiat. Biol. 2022, 98 (9), 1442-1451. DOI: https://doi.org/10.1080/09553002.2022.2055798. DOI: https://doi.org/10.1080/09553002.2022.2055798

Liu, Y. M.; Shen, J. D.; Xu, L. P.; Li, H. B.; Li, Y. C.; Yi, L. T. Ferulic acid inhibits neuro-inflammation in mice exposed to chronic unpredictable mild stress. Int. Immunopharmacol. 2017, 45, 128-134. DOI: https://doi.org/10.1016/j.intimp.2017.02.007. DOI: https://doi.org/10.1016/j.intimp.2017.02.007

Long, T.; Wu, Q.; Wei, J.; Tang, Y.; He, Y. N.; He, C. L.; Chen, X.; Yu, L.; Yu, C. L.; Law, B. Y.; et al. Ferulic Acid Exerts Neuroprotective Effects via Autophagy Induction in C. elegans and Cellular Models of Parkinson’s Disease. Oxidative Med. Cell. Longev. 2022, 2022. DOI: https://doi.org/10.1155/2022/3723567. DOI: https://doi.org/10.1155/2022/3723567

Ojha, S.; Javed, H.; Azimullah, S.; Khair, S. B. A.; Haque, M. E. Neuroprotective potential of ferulic acid in the rotenone model of Parkinson’s disease. Drug Des. Devel. Ther. 2015, 9, 5499-5510. DOI: https://doi.org/10.2147/DDDT.S90616. DOI: https://doi.org/10.2147/DDDT.S90616

Singh, S.; Arthur, R.; Upadhayay, S.; Kumar, P. Ferulic acid ameliorates neurodegeneration via the Nrf2/ARE signalling pathway: A Review. Pharmacol. Res. Mod. Chin. Med. 2022, 5. DOI: https://doi.org/10.1016/j.prmcm.2022.100190. DOI: https://doi.org/10.1016/j.prmcm.2022.100190

Thapliyal, S.; Singh, T.; Handu, S.; Bisht, M.; Kumari, P.; Arya, P.; Srivastava, P.; Gandham, R. A Review on Potential Footprints of Ferulic Acid for Treatment of Neurological Disorders. Neurochem. Res. 2021, 46 (5), 1043-1057. DOI: https://doi.org/10.1007/s11064-021-03257-6. DOI: https://doi.org/10.1007/s11064-021-03257-6

Yin, C. L.; Lu, R. G.; Zhu, J. F.; Huang, H. M.; Liu, X.; Li, Q. F.; Mo, Y. Y.; Zhu, H. J.; Chin, B.; Wu, J. X.; et al. The study of neuroprotective effect of ferulic acid based on cell metabolomics. Eur. J. Pharmacol. 2019, 864. DOI: https://doi.org/10.1016/j.ejphar.2019.172694. DOI: https://doi.org/10.1016/j.ejphar.2019.172694

Prasad, S. N. Neuroprotective efficacy of eugenol and isoeugenol in acrylamide-induced neuropathy in rats: Behavioral and biochemical evidence. Neurochem. Res. 2013, 38 (2), 330-345. DOI: https://doi.org/10.1007/s11064-012-0924-9. DOI: https://doi.org/10.1007/s11064-012-0924-9

Costentin, J. Main neurotropic and psychotropic effects of methylxanthines (caffeine, theophylline, theobromine, paraxanthine). PSN 2010, 8 (4), 182-186. DOI: https://doi.org/10.1007/s11836-010-0141-z. DOI: https://doi.org/10.1007/s11836-010-0141-z

Crotty, G. F.; Maciuca, R.; Macklin, E. A.; Wang, J.; Montalban, M.; Davis, S. S.; Alkabsh, J. I.; Bakshi, R.; Chen, X.; Ascherio, A.; et al. Association of caffeine and related analytes with resistance to Parkinson disease among LRRK2 mutation carriers: A metabolomic study. Neurology 2020, 95 (24), e3428-e3437. DOI: https://doi.org/10.1212/WNL.0000000000010863. DOI: https://doi.org/10.1212/WNL.0000000000010863

Guerreiro, S.; Toulorge, D.; Hirsch, E.; Marien, M.; Sokoloff, P.; Michel, P. P. Paraxanthine, the primary metabolite of caffeine, provides protection against dopaminergic cell death via stimulation of ryanodine receptor channels. Mol. Pharmacol. 2008, 74 (4), 980-989. DOI: https://doi.org/10.1124/mol.108.048207. DOI: https://doi.org/10.1124/mol.108.048207

Matsumura, N.; Kinoshita, C.; Bhadhprasit, W.; Nakaki, T.; Aoyama, K. A purine derivative, paraxanthine, promotes cysteine uptake for glutathione synthesis. J. Pharmacol. Sci. 2023, 151 (1), 37-45. DOI: https://doi.org/10.1016/j.jphs.2022.11.001. DOI: https://doi.org/10.1016/j.jphs.2022.11.001

Adedara, I. A.; Fasina, O. B.; Ayeni, M. F.; Ajayi, O. M.; Farombi, E. O. Protocatechuic acid ameliorates neurobehavioral deficits via suppression of oxidative damage, inflammation, caspase-3 and acetylcholinesterase activities in diabetic rats. Food Chem. Toxicol. 2019, 125, 170-181. DOI: https://doi.org/10.1016/j.fct.2018.12.040. DOI: https://doi.org/10.1016/j.fct.2018.12.040

Al Olayan, E. M.; Aloufi, A. S.; AlAmri, O. D.; El-Habit, O. H.; Abdel Moneim, A. E. Protocatechuic acid mitigates cadmium-induced neurotoxicity in rats: Role of oxidative stress, inflammation and apoptosis. Sci. Total Environ. 2020, 723. DOI: https://doi.org/10.1016/j.scitotenv.2020.137969. DOI: https://doi.org/10.1016/j.scitotenv.2020.137969

Hornedo-Ortega, R.; Álvarez-Fernández, M. A.; Cerezo, A. B.; Richard, T.; Troncoso, A. M.; Garcia-Parrilla, M. C. Protocatechuic Acid: Inhibition of Fibril Formation, Destabilization of Preformed Fibrils of Amyloid-β and α-Synuclein, and Neuroprotection. J. Agric. Food Chem. 2016, 64 (41), 7722-7732. DOI: https://doi.org/10.1021/acs.jafc.6b03217. DOI: https://doi.org/10.1021/acs.jafc.6b03217

Kale, S.; Sarode, L. P.; Kharat, A.; Ambulkar, S.; Prakash, A.; Sakharkar, A. J.; Ugale, R. R. Protocatechuic Acid Prevents Early Hour Ischemic Reperfusion Brain Damage by Restoring Imbalance of Neuronal Cell Death and Survival Proteins. J. Stroke Cerebrovasc. Dis. 2021, 30 (2). DOI: https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105507. DOI: https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105507

Kangtao; Yangqian; Bais, S. Neuroprotective effect of protocatechuic acid through MAO-B inhibition in aluminium chloride induced dementia of alzheimer’s type in rats. Int. J. Pharmacol. 2018, 14 (6), 879-888. DOI: https://doi.org/10.3923/ijp.2018.879.888. DOI: https://doi.org/10.3923/ijp.2018.879.888

Kho, A. R.; Choi, B. Y.; Lee, S. H.; Hong, D. K.; Lee, S. H.; Jeong, J. H.; Park, K. H.; Song, H. K.; Choi, H. C.; Suh, S. W. Effects of protocatechuic acid (PCA) on global cerebral ischemia-induced hippocampal neuronal death. Int. J. Mol. Sci. 2018, 19 (5). DOI: https://doi.org/10.3390/ijms19051420. DOI: https://doi.org/10.3390/ijms19051420

Krzysztoforska, K.; Mirowska-Guzel, D.; Widy-Tyszkiewicz, E. Pharmacological effects of protocatechuic acid and its therapeutic potential in neurodegenerative diseases: Review on the basis of in vitro and in vivo studies in rodents and humans. Nutr. Neurosci. 2019, 22 (2), 72-82. DOI: https://doi.org/10.1080/1028415X.2017.1354543. DOI: https://doi.org/10.1080/1028415X.2017.1354543

Lee, S. H.; Choi, B. Y.; Kho, A. R.; Jeong, J. H.; Hong, D. K.; Lee, S. H.; Lee, S. Y.; Lee, M. W.; Song, H. K.; Choi, H. C.; Suh, S. W. Protective effects of protocatechuic acid on seizure-induced neuronal death. Int. J. Mol. Sci. 2018, 19 (1). DOI: https://doi.org/10.3390/ijms19010187. DOI: https://doi.org/10.3390/ijms19010187

Lee, S. H.; Choi, B. Y.; Lee, S. H.; Kho, A. R.; Jeong, J. H.; Hong, D. K.; Suh, S. W. Administration of protocatechuic acid reduces traumatic brain injury-induced neuronal death. Int. J. Mol. Sci. 2017, 18 (12). DOI: https://doi.org/10.3390/ijms18122510. DOI: https://doi.org/10.3390/ijms18122510

Li, H.; Zheng, T.; Lian, F.; Xu, T.; Yin, W.; Jiang, Y. Anthocyanin-rich blueberry extracts and anthocyanin metabolite protocatechuic acid promote autophagy-lysosomal pathway and alleviate neurons damage in in vivo and in vitro models of Alzheimer's disease. Nutrition 2022, 93. DOI: https://doi.org/10.1016/j.nut.2021.111473. DOI: https://doi.org/10.1016/j.nut.2021.111473

Mert, H.; Kerem, Ö.; Mıs, L.; Yıldırım, S.; Mert, N. Effects of protocatechuic acid against cisplatin-induced neurotoxicity in rat brains: an experimental study. Int. J. Neurosci. 2022, 10.1080/00207454.2022.2147430. DOI: https://doi.org/10.1080/00207454.2022.2147430. DOI: https://doi.org/10.1080/00207454.2022.2147430

Winter, A. N.; Brenner, M. C.; Punessen, N.; Snodgrass, M.; Byars, C.; Arora, Y.; Linseman, D. A. Comparison of the Neuroprotective and Anti-Inflammatory Effects of the Anthocyanin Metabolites, Protocatechuic Acid and 4-Hydroxybenzoic Acid. Oxidative Med. Cell. Longev. 2017, 2017. DOI: https://doi.org/10.1155/2017/6297080. DOI: https://doi.org/10.1155/2017/6297080

Zhang, H. N.; An, C. N.; Zhang, H. N.; Pu, X. P. Protocatechuic acid inhibits neurotoxicity induced by MPTP in vivo. Neurosci. Lett. 2010, 474 (2), 99-103. DOI: https://doi.org/10.1016/j.neulet.2010.03.016. DOI: https://doi.org/10.1016/j.neulet.2010.03.016

Zhang, Z.; Li, G.; Szeto, S. S. W.; Chong, C. M.; Quan, Q.; Huang, C.; Cui, W.; Guo, B.; Wang, Y.; Han, Y.; et al. Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radic. Biol. Med. 2015, 84, 331-343. DOI: https://doi.org/10.1016/j.freeradbiomed.2015.02.030. DOI: https://doi.org/10.1016/j.freeradbiomed.2015.02.030

Lee, M.; McGeer, E. G.; McGeer, P. L. Quercetin, not caffeine, is a major neuroprotective component in coffee. Neurobiol. Aging 2016, 46, 113-123. DOI: https://doi.org/10.1016/j.neurobiolaging.2016.06.015. DOI: https://doi.org/10.1016/j.neurobiolaging.2016.06.015

Alvarez-Arellano, L.; Salazar-García, M.; Corona, J. C. Neuroprotective effects of Quercetin in pediatric neurological diseases. Molecules 2020, 25 (23). DOI: https://doi.org/10.3390/molecules25235597. DOI: https://doi.org/10.3390/molecules25235597

Barreca, D.; Bellocco, E.; D’Onofrio, G.; Nabavi, S. F.; Daglia, M.; Rastrelli, L.; Nabavi, S. M. Neuroprotective effects of quercetin: From chemistry to medicine. CNS Neurol. Disord. Drug Targets 2016, 15 (8), 964-975. DOI: https://doi.org/10.2174/1871527315666160813175406. DOI: https://doi.org/10.2174/1871527315666160813175406

Bhat, I. U. H.; Bhat, R. Quercetin: A bioactive compound imparting cardiovascular and neuroprotective benefits: Scope for exploring fresh produce, their wastes, and by-products. Biology 2021, 10 (7). DOI: https://doi.org/10.3390/biology10070586. DOI: https://doi.org/10.3390/biology10070586

Chiang, M. C.; Tsai, T. Y.; Wang, C. J. The Potential Benefits of Quercetin for Brain Health: A Review of Anti-Inflammatory and Neuroprotective Mechanisms. Int. J. Mol. Sci. 2023, 24 (7). DOI: https://doi.org/10.3390/ijms24076328. DOI: https://doi.org/10.3390/ijms24076328

Costa, L. G.; Garrick, J. M.; Roquè, P. J.; Pellacani, C. Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More. Oxidative Med. Cell. Longev. 2016, 2016. DOI: https://doi.org/10.1155/2016/2986796. DOI: https://doi.org/10.1155/2016/2986796

Fideles, S. O. M.; de Cássia Ortiz, A.; Buchaim, D. V.; de Souza Bastos Mazuqueli Pereira, E.; Parreira, M. J. B. M.; de Oliveira Rossi, J.; da Cunha, M. R.; de Souza, A. T.; Soares, W. C.; Buchaim, R. L. Influence of the Neuroprotective Properties of Quercetin on Regeneration and Functional Recovery of the Nervous System. Antioxidants 2023, 12 (1). DOI: https://doi.org/10.3390/antiox12010149. DOI: https://doi.org/10.3390/antiox12010149

Khan, H.; Ullah, H.; Aschner, M.; Cheang, W. S.; Akkol, E. K. Neuroprotective effects of quercetin in alzheimer’s disease. Biomolecules 2020, 10 (1). DOI: https://doi.org/10.3390/biom10010059. DOI: https://doi.org/10.3390/biom10010059

Ossola, B.; Kääriäinen, T. M.; Männistö, P. T. The multiple faces of quercetin in neuroprotection. Expert Opin. Drug Saf. 2009, 8 (4), 397-409. DOI: https://doi.org/10.1517/14740330903026944. DOI: https://doi.org/10.1517/14740330903026944

Zhang, L.; Ma, J.; Yang, F.; Li, S.; Ma, W.; Chang, X.; Yang, L. Neuroprotective Effects of Quercetin on Ischemic Stroke: A Literature Review. Front. Pharmacol. 2022, 13. DOI: https://doi.org/10.3389/fphar.2022.854249. DOI: https://doi.org/10.3389/fphar.2022.854249

Luo, L.; Sun, T.; Yang, L.; Liu, A.; Liu, Q. Q.; Tian, Q. Q.; Wang, Y.; Zhao, M. G.; Yang, Q. Scopoletin ameliorates anxiety-like behaviors in complete Freund's adjuvant-induced mouse model. Mol. Brain 2020, 13 (1). DOI: https://doi.org/10.1186/s13041-020-0560-2. DOI: https://doi.org/10.1186/s13041-020-0560-2

Lee, J. H.; Ki, T. L.; Jae, H. Y.; Nam, I. B.; Dae, K. K. Acetylcholinesterase inhibitors from the twigs of Vaccinium oldhami miquel. Arch. Pharmacol. Res. 2004, 27 (1), 53-56. DOI: https://doi.org/10.1007/BF02980046. DOI: https://doi.org/10.1007/BF02980046

Gay, N. H.; Suwanjang, W.; Ruankham, W.; Songtawee, N.; Wongchitrat, P.; Prachayasittikul, V.; Prachayasittikul, S.; Phopin, K. Butein, isoliquiritigenin, and scopoletin attenuate neurodegenerationviaantioxidant enzymes and SIRT1/ADAM10 signaling pathway. RSC Adv. 2020, 10 (28), 16593-16606. DOI: https://doi.org/10.1039/c9ra06056a. DOI: https://doi.org/10.1039/C9RA06056A

Kashyap, P.; Ram, H.; Shukla, S. D.; Kumar, S. Scopoletin: Antiamyloidogenic, Anticholinesterase, and Neuroprotective Potential of a Natural Compound Present in Argyreia speciosa Roots by In Vitro and In Silico Study. Neurosci. Insights 2020, 15. DOI: https://doi.org/10.1177/2633105520937693. DOI: https://doi.org/10.1177/2633105520937693

Pradhan, P.; Majhi, O.; Biswas, A.; Joshi, V. K.; Sinha, D. Enhanced accumulation of reduced glutathione by Scopoletin improves survivability of dopaminergic neurons in Parkinson’s model. Cell Death Dis. 2020, 11 (9). DOI: https://doi.org/10.1038/s41419-020-02942-8. DOI: https://doi.org/10.1038/s41419-020-02942-8

Zhang, W.; Zhao, W.; Ge, C.; Li, X.; Sun, Z. Scopoletin Attenuates Intracerebral Hemorrhage-Induced Brain Injury and Improves Neurological Performance in Rats. Neuroimmunomodulation 2021, 28 (2), 74-81. DOI: https://doi.org/10.1159/000505731. DOI: https://doi.org/10.1159/000505731

Ashafaq, M.; Tabassum, H.; Parvez, S. Modulation of Behavioral Deficits and Neurodegeneration by Tannic Acid in Experimental Stroke Challenged Wistar Rats. Mol. Neurobiol. 2017, 54 (8), 5941-5951. DOI: https://doi.org/10.1007/s12035-016-0096-8. DOI: https://doi.org/10.1007/s12035-016-0096-8

Gerzson, M. F. B.; Bona, N. P.; Soares, M. S. P.; Teixeira, F. C.; Rahmeier, F. L.; Carvalho, F. B.; da Cruz Fernandes, M.; Onzi, G.; Lenz, G.; Gonçales, R. A.; et al. Tannic Acid Ameliorates STZ-Induced Alzheimer’s Disease-Like Impairment of Memory, Neuroinflammation, Neuronal Death and Modulates Akt Expression. Neurotox. Res. 2020, 37 (4), 1009-1017. DOI: https://doi.org/10.1007/s12640-020-00167-3. DOI: https://doi.org/10.1007/s12640-020-00167-3

Hasanvand, A.; Hosseinzadeh, A.; Saeedavi, M.; Goudarzi, M.; Basir, Z.; Mehrzadi, S. Neuroprotective effects of tannic acid against kainic acid-induced seizures in mice. Hum. Exp. Toxicol. 2022, 41. DOI: https://doi.org/10.1177/09603271221093989. DOI: https://doi.org/10.1177/09603271221093989

Kim, S. W.; Kim, D. B.; Kim, H. S. Neuroprotective effects of tannic acid in the postischemic brain via direct chelation of Zn2+. Anim. Cells Syst. 2022, 26 (4), 183-191. DOI: https://doi.org/10.1080/19768354.2022.2113915. DOI: https://doi.org/10.1080/19768354.2022.2113915

Salman, M.; Tabassum, H.; Parvez, S. Tannic Acid Provides Neuroprotective Effects Against Traumatic Brain Injury Through the PGC-1α/Nrf2/HO-1 Pathway. Mol. Neurobiol. 2020, 57 (6), 2870-2885. DOI: https://doi.org/10.1007/s12035-020-01924-3. DOI: https://doi.org/10.1007/s12035-020-01924-3

Wu, Y.; Zhong, L.; Yu, Z.; Qi, J. Anti-neuroinflammatory effects of tannic acid against lipopolysaccharide-induced BV2 microglial cells via inhibition of NF-κB activation. Drug Dev. Res. 2019, 80 (2), 262-268. DOI: https://doi.org/10.1002/ddr.21490. DOI: https://doi.org/10.1002/ddr.21490

Bhat, J. A.; Gupta, S.; Kumar, M. Neuroprotective effects of theobromine in transient global cerebral ischemia-reperfusion rat model. Biochem. Biophys. Res. Commun. 2021, 571, 74-80. DOI: https://doi.org/10.1016/j.bbrc.2021.07.051. DOI: https://doi.org/10.1016/j.bbrc.2021.07.051

Bhat, J. A.; Kumar, M. Neuroprotective Effects of Theobromine in permanent bilateral common carotid artery occlusion rat model of cerebral hypoperfusion. Metab. Brain Dis. 2022, 37 (6), 1787-1801. DOI: https://doi.org/10.1007/s11011-022-00995-6. DOI: https://doi.org/10.1007/s11011-022-00995-6

Shanahan, P.; O'Sullivan, J.; Tipton, K. F.; Kinsella, G. K.; Ryan, B. J.; Henehan, G. T. M. Theobromine and related methylxanthines as inhibitors of Primary Amine Oxidase. J. Food Biochem. 2019, 43 (2). DOI: https://doi.org/10.1111/jfbc.12697. DOI: https://doi.org/10.1111/jfbc.12697

Dhanalakshmi, C.; Janakiraman, U.; Manivasagam, T.; Justin Thenmozhi, A.; Essa, M. M.; Kalandar, A.; Khan, M. A. S.; Guillemin, G. J. Vanillin Attenuated Behavioural Impairments, Neurochemical Deficts, Oxidative Stress and Apoptosis Against Rotenone Induced Rat Model of Parkinson’s Disease. Neurochem. Res. 2016, 41 (8), 1899-1910. DOI: https://doi.org/10.1007/s11064-016-1901-5. DOI: https://doi.org/10.1007/s11064-016-1901-5

Dhanalakshmi, C.; Manivasagam, T.; Nataraj, J.; Justin Thenmozhi, A.; Essa, M. M. Neurosupportive Role of Vanillin, a Natural Phenolic Compound, on Rotenone Induced Neurotoxicity in SH-SY5Y Neuroblastoma Cells. Evid. Based Complement. Alternat. Med. 2015, 2015. DOI: https://doi.org/10.1155/2015/626028. DOI: https://doi.org/10.1155/2015/626028

Iannuzzi, C.; Liccardo, M.; Sirangelo, I. Overview of the Role of Vanillin in Neurodegenerative Diseases and Neuropathophysiological Conditions. Int. J. Mol. Sci. 2023, 24 (3). DOI: https://doi.org/10.3390/ijms24031817. DOI: https://doi.org/10.3390/ijms24031817

Lan, X. B.; Wang, Q.; Yang, J. M.; Ma, L.; Zhang, W. J.; Zheng, P.; Sun, T.; Niu, J. G.; Liu, N.; Yu, J. Q. Neuroprotective effect of Vanillin on hypoxic-ischemic brain damage in neonatal rats. Biomed. Pharmacother. 2019, 118. DOI: https://doi.org/10.1016/j.biopha.2019.109196. DOI: https://doi.org/10.1016/j.biopha.2019.109196

Rani, L.; Ghosh, B.; Ahmad, M. H.; Mondal, A. C. Evaluation of Potential Neuroprotective Effects of Vanillin Against MPP+/MPTP-Induced Dysregulation of Dopaminergic Regulatory Mechanisms in SH-SY5Y Cells and a Mouse Model of Parkinson’s Disease. Mol. Neurobiol. 2023, 10.1007/s12035-023-03358-z. DOI: https://doi.org/10.1007/s12035-023-03358-z. DOI: https://doi.org/10.21203/rs.3.rs-1706462/v1

Huang, S. M.; Hsu, C. L.; Chuang, H. C.; Shih, P. H.; Wu, C. H.; Yen, G. C. Inhibitory effect of vanillic acid on methylglyoxal-mediated glycation in apoptotic Neuro-2A cells. Neurotoxicology 2008, 29 (6), 1016-1022. DOI: https://doi.org/10.1016/j.neuro.2008.07.002. DOI: https://doi.org/10.1016/j.neuro.2008.07.002

Khoshnam, S. E.; Sarkaki, A.; Rashno, M.; Farbood, Y. Memory deficits and hippocampal inflammation in cerebral hypoperfusion and reperfusion in male rats: Neuroprotective role of vanillic acid. Life Sci. 2018, 211, 126-132. DOI: https://doi.org/10.1016/j.lfs.2018.08.065. DOI: https://doi.org/10.1016/j.lfs.2018.08.065

Siddiqui, S.; Kamal, A.; Khan, F.; Jamali, K. S.; Saify, Z. S. Gallic and vanillic acid suppress inflammation and promote myelination in an in vitro mouse model of neurodegeneration. Mol. Biol. Rep. 2019, 46 (1), 997-1011. DOI: https://doi.org/10.1007/s11033-018-4557-1. DOI: https://doi.org/10.1007/s11033-018-4557-1

Ullah, R.; Ikram, M.; Park, T. J.; Ahmad, R.; Saeed, K.; Alam, S. I.; Rehman, I. U.; Khan, A.; Khan, I.; Jo, M. G.; Kim, M. O. Vanillic acid, a bioactive phenolic compound, counteracts lps-induced neurotoxicity by regulating c-jun n-terminal kinase in mouse brain. Int. J. Mol. Sci. 2021, 22 (1), 1-21. DOI: https://doi.org/10.3390/ijms22010361. DOI: https://doi.org/10.3390/ijms22010361

Kim, I. S.; Choi, D. K.; Jung, H. J. Neuroprotective effects of vanillyl alcohol in gastrodia elata blume through suppression of oxidative stress and anti-apoptotic activity in toxin-induced dopaminergic MN9D cells. Molecules 2011, 16 (7), 5349-5361. DOI: https://doi.org/10.3390/molecules16075349. DOI: https://doi.org/10.3390/molecules16075349

Agunloye, O. M.; Oboh, G. Hypercholesterolemia, angiotensin converting enzyme and ecto-enzymes of purinergic system: Ameliorative properties of caffeic and chlorogenic acid in hypercholesterolemic rats. J. Food Biochem. 2018, 42 (5). DOI: https://doi.org/10.1111/jfbc.12604. DOI: https://doi.org/10.1111/jfbc.12604

Farias-Pereira, R.; Oshiro, J.; Kim, K. H.; Park, Y. Green coffee bean extract and 5-O-caffeoylquinic acid regulate fat metabolism in Caenorhabditis elegans. J. Funct. Foods 2018, 48, 586-593. DOI: https://doi.org/10.1016/j.jff.2018.07.049. DOI: https://doi.org/10.1016/j.jff.2018.07.049

Adem, Ş.; Eyupoglu, V.; Sarfraz, I.; Rasul, A.; Zahoor, A. F.; Ali, M.; Abdalla, M.; Ibrahim, I. M.; Elfiky, A. A. Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: CAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomedicine 2021, 85. DOI: https://doi.org/10.1016/j.phymed.2020.153310. DOI: https://doi.org/10.1016/j.phymed.2020.153310

Degotte, G.; Pirotte, B.; Frédérich, M.; Francotte, P. Potential of Caffeic Acid Derivatives as Antimalarial Leads. Lett. Drug Des. Discovery 2022, 19 (9), 823-836. DOI: https://doi.org/10.2174/1570180819666220202160247. DOI: https://doi.org/10.2174/1570180819666220202160247

Ekeuku, S. O.; Pang, K. L.; Chin, K. Y. Effects of caffeic acid and its derivatives on bone: A systematic review. Drug Des. Devel. Ther. 2021, 15, 259-275. DOI: https://doi.org/10.2147/DDDT.S287280. DOI: https://doi.org/10.2147/DDDT.S287280

Elkamhawy, A.; Oh, N. K.; Gouda, N. A.; Abdellattif, M. H.; Alshammari, S. O.; Abourehab, M. A. S.; Alshammari, Q. A.; Belal, A.; Kim, M.; Al-Karmalawy, A. A.; Lee, K. Novel Hybrid Indole-Based Caffeic Acid Amide Derivatives as Potent Free Radical Scavenging Agents: Rational Design, Synthesis, Spectroscopic Characterization, In Silico and In Vitro Investigations. Metabolites 2023, 13 (2). DOI: https://doi.org/10.3390/metabo13020141. DOI: https://doi.org/10.3390/metabo13020141

Huang, C. W.; Lee, S. Y.; Wei, T. T.; Kuo, Y. H.; Wu, S. T.; Ku, H. C. A novel caffeic acid derivative prevents renal remodeling after ischemia/reperfusion injury. Biomed. Pharmacother. 2021, 142. DOI: https://doi.org/10.1016/j.biopha.2021.112028. DOI: https://doi.org/10.1016/j.biopha.2021.112028

Jöhrer, K.; Galarza Pérez, M.; Kircher, B.; Çiçek, S. S. Flavones, Flavonols, Lignans, and Caffeic Acid Derivatives from Dracocephalum moldavica and Their In Vitro Effects on Multiple Myeloma and Acute Myeloid Leukemia. Int. J. Mol. Sci. 2022, 23 (22). DOI: https://doi.org/10.3390/ijms232214219. DOI: https://doi.org/10.3390/ijms232214219

Khan, F.; Bamunuarachchi, N. I.; Tabassum, N.; Kim, Y. M. Caffeic Acid and Its Derivatives: Antimicrobial Drugs toward Microbial Pathogens. J. Agric. Food Chem. 2021, 69 (10), 2979-3004. DOI: https://doi.org/10.1021/acs.jafc.0c07579. DOI: https://doi.org/10.1021/acs.jafc.0c07579

Kim, C. K.; Yu, J.; Le, D.; Han, S.; Yu, S.; Lee, M. Anti-inflammatory activity of caffeic acid derivatives from Ilex rotunda. Int. Immunopharmacol. 2023, 115. DOI: https://doi.org/10.1016/j.intimp.2022.109610. DOI: https://doi.org/10.1016/j.intimp.2022.109610

Lee, S. Y.; Kuo, Y. H.; Du, C. X.; Huang, C. W.; Ku, H. C. A novel caffeic acid derivative prevents angiotensin II-induced cardiac remodeling. Biomed. Pharmacother. 2023, 162. DOI: https://doi.org/10.1016/j.biopha.2023.114709. DOI: https://doi.org/10.1016/j.biopha.2023.114709

Peng, X.; Wu, G.; Zhao, A.; Huang, K.; Chai, L.; Natarajan, B.; Yang, S.; Chen, H.; Lin, C. Synthesis of novel caffeic acid derivatives and their protective effect against hydrogen peroxide induced oxidative stress via Nrf2 pathway. Life Sci. 2020, 247. DOI: https://doi.org/10.1016/j.lfs.2020.117439. DOI: https://doi.org/10.1016/j.lfs.2020.117439

Wu, M. Y.; Liu, C. C.; Lee, S. C.; Kuo, Y. H.; Hsieh, T. J. N-Octyl Caffeamide, a Caffeic Acid Amide Derivative, Prevents Progression of Diabetes and Hepatic Steatosis in High-Fat Diet Induced Obese Mice. Int. J. Mol. Sci. 2022, 23 (16). DOI: https://doi.org/10.3390/ijms23168948. DOI: https://doi.org/10.3390/ijms23168948

Zeng, Y. F.; Su, Y. L.; Liu, W. L.; Chen, H. G.; Zeng, S. G.; Zhou, H. B.; Chen, W. M.; Zheng, J. X.; Sun, P. H. Design and synthesis of caffeic acid derivatives and evaluation of their inhibitory activity against Pseudomonas aeruginosa. Med. Chem. Res. 2022, 31 (1), 177-194. DOI: https://doi.org/10.1007/s00044-021-02810-w. DOI: https://doi.org/10.1007/s00044-021-02810-w

Abu-Hashem, A. A.; Hussein, H. A. R. Synthesis and antitumor activity of new pyrimidine and caffeine derivatives. Lett. Drug Des. Discovery 2015, 12 (6), 471-478. DOI: https://doi.org/10.2174/1570180812666150429234237. DOI: https://doi.org/10.2174/1570180812666150429234237

Andrs, M.; Muthna, D.; Rezacova, M.; Seifrtova, M.; Siman, P.; Korabecny, J.; Benek, O.; Dolezal, R.; Soukup, O.; Jun, D.; Kuca, K. Novel caffeine derivatives with antiproliferative activity. RSC Adv. 2016, 6 (39), 32534-32539. DOI: https://doi.org/10.1039/c5ra22889a. DOI: https://doi.org/10.1039/C5RA22889A

Boulaamane, Y.; Ibrahim, M. A. A.; Britel, M. R.; Maurady, A. In silico studies of natural product-like caffeine derivatives as potential MAO-B inhibitors/AA2AR antagonists for the treatment of Parkinson's disease. J. Integr. Bioinform. 2022, 19 (4). DOI: https://doi.org/10.1515/jib-2021-0027. DOI: https://doi.org/10.1515/jib-2021-0027

Jasiewicz, B.; Sierakowska, A.; Wandyszewska, N.; Warżajtis, B.; Rychlewska, U.; Wawrzyniak, R.; Mrówczyńska, L. Antioxidant properties of thio-caffeine derivatives: Identification of the newly synthesized 8-[(pyrrolidin-1-ylcarbonothioyl)sulfanyl]caffeine as antioxidant and highly potent cytoprotective agent. Bioorg. Med. Chem. Lett. 2016, 26 (16), 3994-3998. DOI: https://doi.org/10.1016/j.bmcl.2016.06.091. DOI: https://doi.org/10.1016/j.bmcl.2016.06.091

Mitkov, J.; Kondeva-Burdina, M.; Zlatkov, A. Synthesis and preliminary hepatotoxicity evaluation of new caffeine-8-(2-thio)-propanoic hydrazid-hydrazone derivatives. Pharmacia 2019, 66 (3), 99-106. DOI: https://doi.org/10.3897/pharmacia.66.e37263. DOI: https://doi.org/10.3897/pharmacia.66.e37263

Navid Soltani Rad, M.; Behrouz, S.; Zokaei, K.; Behrouz, M.; Ghanbariasad, A.; Zarenezhad, E. Synthesis of some novel 8-(4-Alkylpiperazinyl) caffeine derivatives as potent anti-Leishmania agents. Bioorg. Chem. 2022, 128. DOI: https://doi.org/10.1016/j.bioorg.2022.106062. DOI: https://doi.org/10.1016/j.bioorg.2022.106062

Reddy, A. B.; Hymavathi, R. V.; Swamy, G. N.; Sadiku, E. R. Triazino-caffeine derivatives by intramolecular cyclization: Synthesis, characterization and antimicrobial studies. Lett. Org. Chem. 2018, 15 (6), 540-545. DOI: https://doi.org/10.2174/1570178614666171010161357. DOI: https://doi.org/10.2174/1570178614666171010161357

Reshetnikov, D. V.; Burova, L. G.; Rybalova, T. V.; Bondareva, E. A.; Patrushev, S. S.; Evstropov, A. N.; Shults, E. E. Synthesis and Antibacterial Activity of Caffeine Derivatives Containing Amino-Acid Fragments. Chem. Nat. Compd. 2022, 58 (5), 908-915. DOI: https://doi.org/10.1007/s10600-022-03826-3. DOI: https://doi.org/10.1007/s10600-022-03826-3

Sierakowska, A.; Jasiewicz, B.; Piosik, Ł.; Mrówczyńska, L. New C8-substituted caffeine derivatives as promising antioxidants and cytoprotective agents in human erythrocytes. Sci. Rep. 2023, 13 (1). DOI: https://doi.org/10.1038/s41598-022-27205-8. DOI: https://doi.org/10.1038/s41598-022-27205-8

Hwang, S. H.; Zuo, G.; Wang, Z.; Lim, S. S. Novel aldose reductase inhibitory and antioxidant chlorogenic acid derivatives obtained by heat treatment of chlorogenic acid and amino acids. Food Chem. 2018, 266, 449-457. DOI: https://doi.org/10.1016/j.foodchem.2018.06.053. DOI: https://doi.org/10.1016/j.foodchem.2018.06.053

Jo, H.; Zhou, Y.; Viji, M.; Choi, M.; Lim, J. Y.; Sim, J.; Rhee, J.; Kim, Y.; Seo, S. Y.; Kim, W. J.; et al. Synthesis, biological evaluation, and metabolic stability of chlorogenic acid derivatives possessing thiazole as potent inhibitors of α-MSH-stimulated melanogenesis. Bioorg. Med. Chem. Lett. 2017, 27 (21), 4854-4857. DOI: https://doi.org/10.1016/j.bmcl.2017.09.044. DOI: https://doi.org/10.1016/j.bmcl.2017.09.044

Kataria, R.; Khatkar, A. In-silico design, synthesis, ADMET studies and biological evaluation of novel derivatives of Chlorogenic acid against Urease protein and H. Pylori bacterium. BMC Chemistry 2019, 13 (3). DOI: https://doi.org/10.1186/s13065-019-0556-0. DOI: https://doi.org/10.1186/s13065-019-0556-0

Liu, Z.; Mohsin, A.; Wang, Z.; Zhu, X.; Zhuang, Y.; Cao, L.; Guo, M.; Yin, Z. Enhanced Biosynthesis of Chlorogenic Acid and Its Derivatives in Methyl-Jasmonate-Treated Gardenia jasminoides Cells: A Study on Metabolic and Transcriptional Responses of Cells. Front. bioeng. biotechnol. 2021, 8. DOI: https://doi.org/10.3389/fbioe.2020.604957. DOI: https://doi.org/10.3389/fbioe.2020.604957

Mei, Y.; Pan, D.; Jiang, Y.; Zhang, W.; Yao, X.; Dai, Y.; Yu, Y.; Yao, X. Target discovery of chlorogenic acid derivatives from the flower buds of Lonicera macranthoides and their MAO B inhibitory mechanism. Fitoterapia 2019, 134, 297-304. DOI: https://doi.org/10.1016/j.fitote.2018.12.009. DOI: https://doi.org/10.1016/j.fitote.2018.12.009

Wang, S.; Li, Y.; Huang, D.; Chen, S.; Xia, Y.; Zhu, S. The inhibitory mechanism of chlorogenic acid and its acylated derivatives on α-amylase and α-glucosidase. Food Chem. 2022, 372. DOI: https://doi.org/10.1016/j.foodchem.2021.131334. DOI: https://doi.org/10.1016/j.foodchem.2021.131334

Wang, S.; Li, Y.; Meng, X.; Chen, S.; Huang, D.; Xia, Y.; Zhu, S. Antioxidant activities of chlorogenic acid derivatives with different acyl donor chain lengths and their stabilities during in vitro simulated gastrointestinal digestion. Food Chem. 2021, 357. DOI: https://doi.org/10.1016/j.foodchem.2021.129904. DOI: https://doi.org/10.1016/j.foodchem.2021.129904

Yang, J. Q.; Zeng, F. K.; Li, G.; Xu, T. S.; Shu, B. Synthesis and bioactivity evaluation of novel chlorogenic acid derivatives containing amide group. Chin. Pharm. J. 2016, 51 (4), 264-268. DOI: https://doi.org/10.11669/cpj.2016.04.003.

Abdou, A.; Elmakssoudi, A.; El Amrani, A.; JamalEddine, J.; Dakir, M. Recent advances in chemical reactivity and biological activities of eugenol derivatives. Med. Chem. Res. 2021, 30 (5), 1011-1030. DOI: https://doi.org/10.1007/s00044-021-02712-x. DOI: https://doi.org/10.1007/s00044-021-02712-x

Abdou, A.; Idouaarame, S.; Salah, M.; Nor, N.; Zahm, S.; El Makssoudi, A.; Mazoir, N.; Benharref, A.; Dari, A.; Eddine, J. J.; et al. Phytochemical Study: Molecular Docking of Eugenol Derivatives as Antioxidant and Antimicrobial Agents. Lett. Org. Chem. 2022, 19 (9), 774-783. DOI: https://doi.org/10.2174/1570178619666220111112125. DOI: https://doi.org/10.2174/1570178619666220111112125

Alam, M. M. Synthesis and anticancer activity of novel Eugenol derivatives against breast cancer cells. Nat. Prod. Res. 2023, 37 (10), 1632-1640. DOI: https://doi.org/10.1080/14786419.2022.2103809. DOI: https://doi.org/10.1080/14786419.2022.2103809

Alam, M. M.; Elbehairi, S. E. I.; Shati, A. A.; Hussien, R. A.; Alfaifi, M. Y.; Malebari, A. M.; Asad, M.; Elhenawy, A. A.; Asiri, A. M.; Mahzari, A. M.; et al. Design, synthesis and biological evaluation of new eugenol derivatives containing 1,3,4-oxadiazole as novel inhibitors of thymidylate synthase. New J. Chem. 2023, 47 (10), 5021-5032. DOI: https://doi.org/10.1039/d2nj05711e. DOI: https://doi.org/10.1039/D2NJ05711E

Anjum, N. F.; Purohit, M. N.; Yogish Kumar, H.; Ramya, K.; Javid, S.; Salahuddin, M. D.; Prashantha Kumar, B. R. Semisynthetic Derivatives of Eugenol and their Biological Properties: A Fleeting Look at the Promising Molecules. J. Biol. Active Prod. Nat. 2020, 10 (5), 379-404. DOI: https://doi.org/10.1080/22311866.2020.1837674. DOI: https://doi.org/10.1080/22311866.2020.1837674

Anjum, N. F.; Shanmugarajan, D.; Prashantha Kumar, B. R.; Faizan, S.; Durai, P.; Raju, R. M.; Javid, S.; Purohit, M. N. Novel Derivatives of Eugenol as a New Class of PPARγ Agonists in Treating Inflammation: Design, Synthesis, SAR Analysis and In Vitro Anti-Inflammatory Activity. Molecules 2023, 28 (9). DOI: https://doi.org/10.3390/molecules28093899. DOI: https://doi.org/10.3390/molecules28093899

Anjum, N. F.; Shanmugarajan, D.; Shivaraju, V. K.; Faizan, S.; Naishima, N. L.; Prashantha Kumar, B. R.; Javid, S.; Purohit, M. N. Novel derivatives of eugenol as potent anti-inflammatory agents via PPARγ agonism: rational design, synthesis, analysis, PPARγ protein binding assay and computational studies. RSC Adv. 2022, 12 (26), 16966-16978. DOI: https://doi.org/10.1039/d2ra02116a. DOI: https://doi.org/10.1039/D2RA02116A

Arianie, L.; Supriatna, M. I.; Kazal, N.; Widodo, N.; Warsito, W.; Iftitah, E. D. Synthesis, In vitro, and In silico Studies of Methyl Eugenol Derivatives for Plasmodium falciparum Inhibitor. Trop. J. Nat. Prod. Res. 2022, 6 (9), 1446-1454. DOI: https://doi.org/10.26538/tjnpr/v6i9.19. DOI: https://doi.org/10.26538/tjnpr/v5i10.19

Dutra, J. A. P.; Maximino, S. C.; Gonçalves, R.; Morais, P. A. B.; de Lima Silva, W.; Rodrigues, R. P.; Neto, Á. C.; Júnior, V. L.; de Souza Borges, W.; Kitagawa, R. R. Anti-Candida, docking studies, and in vitro metabolism-mediated cytotoxicity evaluation of Eugenol derivatives. Chem. Biol. Drug Des. 2023, 101 (2), 350-363. DOI: https://doi.org/10.1111/cbdd.14131. DOI: https://doi.org/10.1111/cbdd.14131

Elattar, E. M.; Galala, A. A.; Saad, H. E. A.; Badria, F. A. Hyaluronidase Inhibitory Activity and In Silico Docking Study of New Eugenol 1,2,3-triazole Derivatives. Chem. Select 2022, 7 (42). DOI: https://doi.org/10.1002/slct.202202194. DOI: https://doi.org/10.1002/slct.202202194

Fernandes, M. J. G.; Pereira, R. B.; Pereira, D. M.; Fortes, A. G.; Castanheira, E. M. S.; Gonçalves, M. S. T. New eugenol derivatives with enhanced insecticidal activity. Int. J. Mol. Sci. 2020, 21 (23), 1-14. DOI: https://doi.org/10.3390/ijms21239257. DOI: https://doi.org/10.3390/ijms21239257

Lima, Â. M. A.; de Paula, W. T.; Leite, I. C. H. L.; Gazolla, P. A. R.; de Abreu, L. M.; Fonseca, V. R.; Romão, W.; Lacerda, V.; de Queiroz, V. T.; Teixeira, R. R.; Costa, A. V. Synthesis of Eugenol-Fluorinated Triazole Derivatives and Evaluation of Their Fungicidal Activity. J. Braz. Chem. Soc. 2022, 33 (10), 1200-1210. DOI: https://doi.org/10.21577/0103-5053.20220040. DOI: https://doi.org/10.21577/0103-5053.20220040

Maurya, A. K.; Agarwal, K.; Gupta, A. C.; Saxena, A.; Nooreen, Z.; Tandon, S.; Ahmad, A.; Bawankule, D. U. Synthesis of eugenol derivatives and its anti-inflammatory activity against skin inflammation. Nat. Prod. Res. 2020, 34 (2), 251-260. DOI: https://doi.org/10.1080/14786419.2018.1528585. DOI: https://doi.org/10.1080/14786419.2018.1528585

Maximino, S. C.; Dutra, J. A. P.; Rodrigues, R. P.; Gonçalves, R. C. R.; Morais, P. A. B.; Ventura, J. A.; Schuenck, R. P.; Júnior, V. L.; Kitagawa, R. R.; Borges, W. S. Synthesis of eugenol derivatives and evaluation of their antifungal activity against fusarium solani f. Sp. piperis. Curr. Pharm. Des. 2020, 26 (14), 1532-1542. DOI: https://doi.org/10.2174/1381612826666200403120448. DOI: https://doi.org/10.2174/1381612826666200403120448

Moraes, A. M.; da Silva, E. T.; Wardell, J. L.; de Souza, M. V. N. Synthesis and First-Time Assessment of o-Eugenol Derivatives against Mycobacterium tuberculosis. Chem. Nat. Compd. 2020, 56 (4), 633-638. DOI: https://doi.org/10.1007/s10600-020-03110-2. DOI: https://doi.org/10.1007/s10600-020-03110-2

Muniz, D. F.; dos Santos Barbosa, C. R.; de Menezes, I. R. A.; de Sousa, E. O.; Pereira, R. L. S.; Júnior, J. T. C.; Pereira, P. S.; de Matos, Y. M. L. S.; da Costa, R. H. S.; de Morais Oliveira-Tintino, C. D.; et al. In vitro and in silico inhibitory effects of synthetic and natural eugenol derivatives against the NorA efflux pump in Staphylococcus aureus. Food Chem. 2021, 337. DOI: https://doi.org/10.1016/j.foodchem.2020.127776. DOI: https://doi.org/10.1016/j.foodchem.2020.127776

Nour, H.; Abdou, A.; Belaidi, S.; Jamal, J.; Elmakssoudi, A.; Dakir, M.; Chtita, S. Discovery of promising cholinesterase inhibitors for Alzheimer's disease treatment through DFT, docking, and molecular dynamics studies of eugenol derivatives. J. Chin. Chem. Soc. 2022, 69 (9), 1534-1551. DOI: https://doi.org/10.1002/jccs.202200195. DOI: https://doi.org/10.1002/jccs.202200195

Nunes, D. O. S.; Vinturelle, R.; Martins, F. J.; dos Santos, T. F.; Valverde, A. L.; Ribeiro, C. M. R.; Castro, H. C.; Folly, E. Biotechnological Potential of Eugenol and Thymol Derivatives Against Staphylococcus aureus from Bovine Mastitis. Curr. Microbiol. 2021, 78 (5), 1846-1855. DOI: https://doi.org/10.1007/s00284-021-02344-9. DOI: https://doi.org/10.1007/s00284-021-02344-9

Pelozo, M. F.; Lima, G. F. S.; Cordeiro, C. F.; Silva, L. S.; Caldas, I. S.; Carvalho, D. T.; Lavorato, S. N.; Hawkes, J. A.; Franco, L. L. Synthesis of new hybrid derivatives from metronidazole and eugenol analogues as trypanocidal agents. J. Pharm. Pharm. Sci. 2021, 24, 421-434. DOI: https://doi.org/10.18433/jpps31839. DOI: https://doi.org/10.18433/jpps31839

Teixeira, R. R.; Rodrigues Gazolla, P. A.; Borsodi, M. P. G.; Castro Ferreira, M. M.; Andreazza Costa, M. C.; Costa, A. V.; Cabral Abreu Grijó, B.; Rossi Bergmann, B.; Lima, W. P. Eugenol derivatives with 1,2,3-triazole moieties: Oral treatment of cutaneous leishmaniasis and a quantitative structure-activity relationship model for their leishmanicidal activity. Exp. Parasitol. 2022, 238. DOI: https://doi.org/10.1016/j.exppara.2022.108269. DOI: https://doi.org/10.1016/j.exppara.2022.108269

Wu, J.; Yin, W.; Zhang, Y.; Ye, H.; Li, Y.; Tian, J.; Huang, Z.; Zhang, Y. Design and synthesis of the ring-opened derivative of 3-n-butylphthalide-ferulic acid-glucose trihybrids as potential anti-ischemic agents. Chin. Chem. Lett. 2020, 31 (7), 1881-1886. DOI: https://doi.org/10.1016/j.cclet.2020.02.031. DOI: https://doi.org/10.1016/j.cclet.2020.02.031

Wu, Y.; Shi, Y. G.; Zheng, X. L.; Dang, Y. L.; Zhu, C. M.; Zhang, R. R.; Fu, Y. Y.; Zhou, T. Y.; Li, J. H. Lipophilic ferulic acid derivatives protect PC12 cells against oxidative damage: Via modulating β-amyloid aggregation and activating Nrf2 enzymes. Food Funct. 2020, 11 (5), 4707-4718. DOI: https://doi.org/10.1039/d0fo00800a. DOI: https://doi.org/10.1039/D0FO00800A

Yuan, T.; Wang, Z.; Lan, S.; Gan, X. Design, synthesis, antiviral activity, and mechanisms of novel ferulic acid derivatives containing amide moiety. Bioorg. Chem. 2022, 128. DOI: https://doi.org/10.1016/j.bioorg.2022.106054. DOI: https://doi.org/10.1016/j.bioorg.2022.106054

Xie, Y.; Liu, Y.; Sun, J.; Zheng, L. Synthesis of mitochondria-targeted ferulic acid amide derivatives with antioxidant, anti-inflammatory activities and inducing mitophagy. Bioorg. Chem. 2022, 127. DOI: https://doi.org/10.1016/j.bioorg.2022.106037. DOI: https://doi.org/10.1016/j.bioorg.2022.106037

Kolaj, I.; Wang, Y.; Ye, K.; Meek, A.; Liyanage, S. I.; Santos, C.; Weaver, D. F. Ferulic acid amide derivatives with varying inhibition of amyloid-β oligomerization and fibrillization. Bioorg. Med. Chem. 2021, 43. DOI: https://doi.org/10.1016/j.bmc.2021.116247. DOI: https://doi.org/10.1016/j.bmc.2021.116247

Wang, F.; Peng, Q.; Liu, J.; Alolga, R. N.; Zhou, W. A novel ferulic acid derivative attenuates myocardial cell hypoxia reoxygenation injury through a succinate dehydrogenase dependent antioxidant mechanism. Eur. J. Pharmacol. 2019, 856, 172417. DOI: https://doi.org/10.1016/j.ejphar.2019.172417. DOI: https://doi.org/10.1016/j.ejphar.2019.172417

Montaser, A.; Huttunen, J.; Ibrahim, S. A.; Huttunen, K. M. Astrocyte-Targeted Transporter-Utilizing Derivatives of Ferulic Acid Can Have Multifunctional Effects Ameliorating Inflammation and Oxidative Stress in the Brain. Oxidative Med. Cell. Longev. 2019, 2019. DOI: https://doi.org/10.1155/2019/3528148. DOI: https://doi.org/10.1155/2019/3528148

Khatkar, A.; Nanda, A.; Kumar, P.; Narasimhan, B. Synthesis and antimicrobial evaluation of ferulic acid derivatives. Res. Chem. Intermed. 2015, 41 (1), 299-309. DOI: https://doi.org/10.1007/s11164-013-1192-2. DOI: https://doi.org/10.1007/s11164-013-1192-2

Drăgan, M.; Stan, C. D.; Iacob, A. T.; Dragostin, O. M.; Boancă, M.; Lupuşoru, C. E.; Zamfir, C. L.; Profire, L. Biological evaluation of azetidine-2-one derivatives of ferulic acid as promising anti-inflammatory agents. Processes 2020, 8 (11), 1-19. DOI: https://doi.org/10.3390/pr8111401. DOI: https://doi.org/10.3390/pr8111401

Drăgan, M.; Stan, C. D.; Iacob, A.; Profire, L. Assessment of in vitro antioxidant and anti-inflammatory activities of new azetidin-2-one derivatives of ferulic acid. Farmacia 2016, 64 (5), 717-721.

Lan, J. S.; Zeng, R. F.; Jiang, X. Y.; Hou, J. W.; Liu, Y.; Hu, Z. H.; Li, H. X.; Li, Y.; Xie, S. S.; Ding, Y.; Zhang, T. Design, synthesis and evaluation of novel ferulic acid derivatives as multi-target-directed ligands for the treatment of Alzheimer's disease. Bioorg. Chem. 2020, 94. DOI: https://doi.org/10.1016/j.bioorg.2019.103413. DOI: https://doi.org/10.1016/j.bioorg.2019.103413

Gan, X.; Zhang, W.; Lan, S.; Hu, D. Novel Cyclized Derivatives of Ferulic Acid as Potential Antiviral Agents through Activation of Photosynthesis. J. Agric. Food Chem. 2023, 71 (3), 1369-1380. DOI: https://doi.org/10.1021/acs.jafc.2c06422. DOI: https://doi.org/10.1021/acs.jafc.2c06422

Sang, Z.; Wang, K.; Han, X.; Cao, M.; Tan, Z.; Liu, W. Design, Synthesis, and Evaluation of Novel Ferulic Acid Derivatives as Multi-Target-Directed Ligands for the Treatment of Alzheimer's Disease. ACS Chem. Neurosci. 2019, 10 (2), 1008-1024. DOI: https://doi.org/10.1021/acschemneuro.8b00530. DOI: https://doi.org/10.1021/acschemneuro.8b00530

Jung, J. S.; Yan, J. J.; Li, H. M.; Sultan, M. T.; Yu, J.; Lee, H. S.; Shin, K. J.; Song, D. K. Protective effects of a dimeric derivative of ferulic acid in animal models of Alzheimer's disease. Eur. J. Pharmacol. 2016, 782, 30-34. DOI: https://doi.org/10.1016/j.ejphar.2016.04.047. DOI: https://doi.org/10.1016/j.ejphar.2016.04.047

Yue, S. J.; Zhang, P. X.; Zhu, Y.; Li, N. G.; Chen, Y. Y.; Li, J. J.; Zhang, S.; Jin, R. Y.; Yan, H.; Shi, X. Q.; et al. A ferulic acid derivative FXS-3 inhibits proliferation and metastasis of human lung cancer A549 cells via positive JNK signaling pathway and negative ERK/p38, AKt/mTOR and MEK/ERK signaling pathways. Molecules 2019, 24 (11). DOI: https://doi.org/10.3390/molecules24112165. DOI: https://doi.org/10.3390/molecules24112165

Pinheiro, P. G.; Santiago, G. M. P.; da Silva, F. E. F.; de Araújo, A. C. J.; de Oliveira, C. R. T.; Freitas, P. R.; Rocha, J. E.; Neto, J. B. D. A.; da Silva, M. M. C.; Tintino, S. R.; et al. Ferulic acid derivatives inhibiting Staphylococcus aureus tetK and MsrA efflux pumps. Biotechnol. Rep. 2022, 34. DOI: https://doi.org/10.1016/j.btre.2022.e00717. DOI: https://doi.org/10.1016/j.btre.2022.e00717

Pinheiro, P.; Santiago, G.; Da Silva, F.; De Araujo, A.; De Oliveira, C.; Freitas, P.; Rocha, J.; De Araujo Neto, J.; Da Silva, M.; Tintino, S.; et al. Antibacterial activity and inhibition against Staphylococcus aureus NorA efflux pump by ferulic acid and its esterified derivatives. Asian Pac. J. Trop. Biomed. 2021, 11 (9), 405-413. DOI: https://doi.org/10.4103/2221-1691.321130. DOI: https://doi.org/10.4103/2221-1691.321130

Kong, H.; Fu, X.; Chang, X.; Ding, Z.; Yu, Y.; Xu, H.; Wang, R.; Shan, Y.; Ding, S. The ester derivatives of ferulic acid exhibit strong inhibitory effect on the growth of Alternaria alternata in vitro and in vivo. Postharvest Biol. Technol. 2023, 196. DOI: https://doi.org/10.1016/j.postharvbio.2022.112158. DOI: https://doi.org/10.1016/j.postharvbio.2022.112158

Zhang, P. X.; Lin, H.; Qu, C.; Tang, Y. P.; Li, N. G.; Kai, J.; Shang, G.; Li, B.; Zhang, L.; Yan, H.; et al. Design, synthesis, and in vitro antiplatelet aggregation activities of ferulic acid derivatives. J. Chem. 2015, 2015, 1-7. DOI: https://doi.org/10.1155/2015/376527. DOI: https://doi.org/10.1155/2015/376527

Li, W.; Li, N.; Tang, Y.; Li, B.; Liu, L.; Zhang, X.; Fu, H.; Duan, J. A. Biological activity evaluation and structure-activity relationships analysis of ferulic acid and caffeic acid derivatives for anticancer. Bioorg. Med. Chem. Lett. 2012, 22 (19), 6085-6088. DOI: https://doi.org/10.1016/j.bmcl.2012.08.038. DOI: https://doi.org/10.1016/j.bmcl.2012.08.038

Wang, F.; Yang, L.; Huang, K.; Li, X.; Hao, X.; Stöckigt, J.; Zhao, Y. Preparation of ferulic acid derivatives and evaluation of their xanthine oxidase inhibition activity. Nat. Prod. Res. 2007, 21 (3), 196-202. DOI: https://doi.org/10.1080/14786410601129648. DOI: https://doi.org/10.1080/14786410601129648

Serafim, T. L.; Carvalho, F. S.; Marques, M. P. M.; Calheiros, R.; Silva, T.; Garrido, J.; Milhazes, N.; Borges, F.; Roleira, F.; Silva, E. T.; et al. Lipophilic caffeic and ferulic acid derivatives presenting cytotoxicity against human breast cancer cells. Chem. Res. Toxicol. 2011, 24 (5), 763-774. DOI: https://doi.org/10.1021/tx200126r. DOI: https://doi.org/10.1021/tx200126r

Adeyemi, O. S.; Atolani, O.; Banerjee, P.; Arolasafe, G.; Preissner, R.; Etukudoh, P.; Ibraheem, O. Computational and experimental validation of antioxidant properties of synthesized bioactive ferulic acid derivatives. Int. J. Food Prop. 2018, 21 (1), 101-113. DOI: https://doi.org/10.1080/10942912.2018.1439958. DOI: https://doi.org/10.1080/10942912.2018.1439958

Kikugawa, M.; Tsutsuki, H.; Ida, T.; Nakajima, H.; Ihara, H.; Sakamoto, T. Water-soluble ferulic acid derivatives improve amyloid-β-induced neuronal cell death and dysmnesia through inhibition of amyloid-β aggregation. Biosci. Biotechnol. Biochem. 2016, 80 (3), 547-553A. DOI: https://doi.org/10.1080/09168451.2015.1107463. DOI: https://doi.org/10.1080/09168451.2015.1107463

Malik, S. A.; Ali, K. F.; Dawood, A. H. Synthesis, Characterization, and Preliminary Evaluation of Ferulic Acid Derivatives Containing Heterocyclic Moiety. J. Med. Chem. Sci. 2023, 6 (6), 1444-1456. DOI: https://doi.org/10.26655/JMCHEMSCI.2023.6.24. DOI: https://doi.org/10.26655/JMCHEMSCI.2023.6.24

Machado, K. C.; Oliveira, G. L. S.; Islam, M. T.; Junior, A. L. G.; De Sousa, D. P.; Freitas, R. M. Anticonvulsant and behavioral effects observed in mice following treatment with an ester derivative of ferulic acid: Isopentyl ferulate. Chem. Biol. Interact. 2015, 242, 273-279. DOI: https://doi.org/10.1016/j.cbi.2015.10.003. DOI: https://doi.org/10.1016/j.cbi.2015.10.003

Bautista-Aguilera, O. M.; Alonso, J. M.; Catto, M.; Iriepa, I.; Knez, D.; Gobec, S.; Marco-Contelles, J. N-Hydroxy-N-Propargylamide Derivatives of Ferulic Acid: Inhibitors of Cholinesterases and Monoamine Oxidases. Molecules 2022, 27 (21). DOI: https://doi.org/10.3390/molecules27217437. DOI: https://doi.org/10.3390/molecules27217437

Sang, Z.; Pan, W.; Wang, K.; Ma, Q.; Yu, L.; Yang, Y.; Bai, P.; Leng, C.; Xu, Q.; Li, X.; et al. Design, synthesis and evaluation of novel ferulic acid-O-alkylamine derivatives as potential multifunctional agents for the treatment of Alzheimer's disease. Eur. J. Med. Chem. 2017, 130, 379-392. DOI: https://doi.org/10.1016/j.ejmech.2017.02.039. DOI: https://doi.org/10.1016/j.ejmech.2017.02.039

Cui, M. Y.; Xiao, M. W.; Xu, L. J.; Chen, Y.; Liu, A. L.; Ye, J.; Hu, A. X. Bioassay of ferulic acid derivatives as influenza neuraminidase inhibitors. Arch. Pharm. 2020, 353 (1). DOI: https://doi.org/10.1002/ardp.201900174. DOI: https://doi.org/10.1002/ardp.201900174

Adeyemi, O. S.; Awakan, O. J.; Atolani, O.; Iyeye, C. O.; Oweibo, O. O.; Adejumo, O. J.; Ibrahim, A.; Batiha, G. E. S. New ferulic acid derivatives protect against carbon tetrachloride-induced liver injury in rats. Open Biochem. J. 2019, 13 (1), 13-22. DOI: https://doi.org/10.2174/1874091X01913010013. DOI: https://doi.org/10.2174/1874091X01913010013

Yuan, T.; Wang, Z.; Liu, D.; Zeng, H.; Liang, J.; Hu, D.; Gan, X. Ferulic acid derivatives with piperazine moiety as potential antiviral agents. Pest Manag. Sci. 2022, 78 (4), 1749-1758. DOI: https://doi.org/10.1002/ps.6794. DOI: https://doi.org/10.1002/ps.6794

Pellerito, C.; Emanuele, S.; Ferrante, F.; Celesia, A.; Giuliano, M.; Fiore, T. Tributyltin(IV) ferulate, a novel synthetic ferulic acid derivative, induces autophagic cell death in colon cancer cells: From chemical synthesis to biochemical effects. J. Inorg. Biochem. 2020, 205, 110999. DOI: https://doi.org/10.1016/j.jinorgbio.2020.110999. DOI: https://doi.org/10.1016/j.jinorgbio.2020.110999

Guzmán-López, E. G.; Reina, M.; Hernández-Ayala, L. F.; Galano, A. Rational Design of Multifunctional Ferulic Acid Derivatives Aimed for Alzheimer's and Parkinson's Diseases. Antioxidants 2023; 12 (6), 1256, DOI: https://doi.org/10.3390/antiox12061256. DOI: https://doi.org/10.3390/antiox12061256

Basas-Jaumandreu, J.; López, J.; De Las Heras, F. X. C. Resorcinol and m-guaiacol alkylated derivatives and asymmetrical secondary alcohols in the leaves from Tamarix canariensis. Phytochem. Lett. 2014, 10, 240-248. DOI: https://doi.org/10.1016/j.phytol.2014.10.009. DOI: https://doi.org/10.1016/j.phytol.2014.10.009

Ordoudi, S. A.; Tsimidou, M. Z.; Vafiadis, A. P.; Bakalbassis, E. G. Structure-DPPH• scavenging activity relationships: Parallel study of catechol and guaiacol acid derivatives. J. Agric. Food Chem. 2006, 54 (16), 5763-5768. DOI: https://doi.org/10.1021/jf060132x. DOI: https://doi.org/10.1021/jf060132x

Premkumar, J.; Sampath, P.; Sanjay, R.; Chandrakala, A.; Rajagopal, D. Synthetic Guaiacol Derivatives as Promising Myeloperoxidase Inhibitors Targeting Atherosclerotic Cardiovascular Disease. ChemMedChem 2020, 15 (13), 1187-1199. DOI: https://doi.org/10.1002/cmdc.202000084. DOI: https://doi.org/10.1002/cmdc.202000084

Bhagat, S. D.; Mathur, R. K.; Siddhanta, N. N. Synthesis of New Derivatives of Eugenol and Isoeugenol. J. Chem. amp; Eng. Data 1982, 27 (2), 209-210. DOI: https://doi.org/10.1021/je00028a033. DOI: https://doi.org/10.1021/je00028a033

Nafie, M. S.; Elghazawy, N. H.; Owf, S. M.; Arafa, K.; Abdel-Rahman, M. A.; Arafa, R. K. Control of ER-positive breast cancer by ERα expression inhibition, apoptosis induction, cell cycle arrest using semisynthetic isoeugenol derivatives. Chem. Biol. Interact. 2022, 351. DOI: https://doi.org/10.1016/j.cbi.2021.109753. DOI: https://doi.org/10.1016/j.cbi.2021.109753

Shen, K. P.; Chang, W. T.; Lin, H. L.; Chu, L. W.; Chen, I. J.; Wu, B. N. Structure-activity relationships of isoeugenol-based chlorophenylpiperazine derivatives on serotonergic/adrenergic receptor, platelet aggregation, and lipid peroxidation. Drug Dev. Res. 2010, 71 (5), 285-293. DOI: https://doi.org/10.1002/ddr.20373. DOI: https://doi.org/10.1002/ddr.20373

Zuhrufa, Z.; Julianto, T. S. Molecular Interaction Analysis of COX-2 against Aryl Amino Alcohol Derivatives from Isoeugenol as Anti Breast Cancer using Molecular Docking. Bull. Chem. React. Eng. Catal. 2021, 16 (3), 581-587. DOI: https://doi.org/10.9767/BCREC.16.3.10324.581-587. DOI: https://doi.org/10.9767/bcrec.16.3.10324.581-587

Lu, W.; Wang, F.; Zhang, T.; Dong, J.; Gao, H.; Su, P.; Shi, Y.; Zhang, J. Search for novel histone deacetylase inhibitors. Part II: Design and synthesis of novel isoferulic acid derivatives. Bioorg. Med. Chem. 2014, 22 (9), 2707-2713. DOI: https://doi.org/10.1016/j.bmc.2014.03.019. DOI: https://doi.org/10.1016/j.bmc.2014.03.019

Merlani, M.; Barbakadze, V.; Amiranashvili, L.; Gogilashvili, L. Synthesis of new dihydroxylated derivatives of ferulic and isoferulic acids. Bull. Georgian Natl. Acad. Sci. 2018, 12 (4), 119-124.

Ekowati, J.; Diyah, N. W.; Syahrani, A. Synthesis and antiplatelet activities of some derivatives of p-coumaric acid. Chem. Chem. Technol. 2019, 13 (3), 296-302. DOI: https://doi.org/10.23939/chcht13.03.296. DOI: https://doi.org/10.23939/chcht13.03.296

Khatkar, A.; Nanda, A.; Kumar, P.; Narasimhan, B. Synthesis, antimicrobial evaluation and QSAR studies of p-coumaric acid derivatives. Arab. J. Chem. 2017, 10, S3804-S3815. DOI: https://doi.org/10.1016/j.arabjc.2014.05.018. DOI: https://doi.org/10.1016/j.arabjc.2014.05.018

Lopes, S. P.; Castillo, Y. P.; Monteiro, M. L.; de Menezes, R. R. P. P. B.; Almeida, R. N.; Martins, A. M. C.; de Sousa, D. P. Trypanocidal mechanism of action and in silico studies of p-coumaric acid derivatives. Int. J. Mol. Sci. 2019, 20 (23). DOI: https://doi.org/10.3390/ijms20235916. DOI: https://doi.org/10.3390/ijms20235916

Lopes, S. P.; Yepe, L. M.; Pérez-Castillo, Y.; Robledo, S. M.; De Sousa, D. P. Alkyl and aryl derivatives based on p-coumaric acid modification and inhibitory action against leishmania braziliensis and plasmodium falciparum. Molecules 2020, 25 (14). DOI: https://doi.org/10.3390/molecules25143178. DOI: https://doi.org/10.3390/molecules25143178

Rodrigues, D. M.; Portapilla, G. B.; de Sicco, G. S.; da Silva, I. F. R.; de Albuquerque, S.; Bastos, J. K.; Campo, V. L. Novel synthetic derivatives of cinnamic and p-coumaric acids with antiproliferative effect on breast MCF-7 tumor cells. Nat. Prod. Res. 2023, 10.1080/14786419.2023.2177992. DOI: https://doi.org/10.1080/14786419.2023.2177992. DOI: https://doi.org/10.1080/14786419.2023.2177992

Shirai, A.; Kajiura, M.; Matsumura, K.; Omasa, T. Improved photobactericidal activity of ultraviolet-a light in combination with isomerizable p-coumaric acid derivatives. Biocontrol Sci. 2015, 20 (4), 231-238. DOI: https://doi.org/10.4265/bio.20.231. DOI: https://doi.org/10.4265/bio.20.231

Reina, M.; Guzmán-López, E. G.; Romeo, I.; Marino, T.; Russo, N.; Galano, A. Computationally designed: P -coumaric acid analogs: Searching for neuroprotective antioxidants. New J. Chem. 2021, 45 (32), 14369-14380. DOI: https://doi.org/10.1039/d1nj01235e. DOI: https://doi.org/10.1039/D1NJ01235E

Cho, J.; Jung, H.; Kang, D. Y.; Sp, N.; Shin, W.; Lee, J.; Park, B. G.; Kang, Y. A.; Jang, K. J.; Bae, S. W. The Skin-Whitening and Antioxidant Effects of Protocatechuic Acid (PCA) Derivatives in Melanoma and Fibroblast Cell Lines. Curr. Issues Mol. Biol. 2023, 45 (3), 2157-2169. DOI: https://doi.org/10.3390/cimb45030138. DOI: https://doi.org/10.3390/cimb45030138

Lu, F. J.; Tseng, S. N.; Li, M. L.; Shih, S. R. In vitro anti-influenza virus activity of synthetic humate analogues derived from protocatechuic acid. Arch. Virol. 2002, 147 (2), 273-284. DOI: https://doi.org/10.1007/s705-002-8319-5. DOI: https://doi.org/10.1007/s705-002-8319-5

Reis, B.; Martins, M.; Barreto, B.; Milhazes, N.; Garrido, E. M.; Silva, P.; Garrido, J.; Borges, F. Structure-property-activity relationship of phenolic acids and derivatives. Protocatechuic acid alkyl esters. J. Agric. Food Chem. 2010, 58 (11), 6986-6993. DOI: https://doi.org/10.1021/jf100569j. DOI: https://doi.org/10.1021/jf100569j

Saito, S.; Kawabata, J. Effects of electron-withdrawing substituents on DPPH radical scavenging reactions of protocatechuic acid and its analogues in alcoholic solvents. Tetrahedron 2005, 61 (34), 8101-8108. DOI: https://doi.org/10.1016/j.tet.2005.06.040. DOI: https://doi.org/10.1016/j.tet.2005.06.040

Sheng, G. H.; Zhou, Q. C.; Hu, X. M.; Wang, C. F.; Chen, X. F.; Xue, D.; Yan, K.; Ding, S. S.; Wang, J.; Du, Z. Y.; et al. Synthesis, structure, urease inhibitory, and cytotoxic activities of two complexes with protocatechuic acid derivative and phenanthroline. J. Coord. Chem. 2015, 68 (9), 1571-1582. DOI: https://doi.org/10.1080/00958972.2015.1023718. DOI: https://doi.org/10.1080/00958972.2015.1023718

Sheng, G. H.; Zhou, Q. C.; Sun, J.; Cheng, X. S.; Qian, S. S.; Zhang, C. Y.; You, Z. L.; Zhu, H. L. Synthesis, structure, and urease inhibitory activities of three binuclear copper(II) complexes with protocatechuic acid derivative. J. Coord. Chem. 2014, 67 (7), 1265-1278. DOI: https://doi.org/10.1080/00958972.2014.910597. DOI: https://doi.org/10.1080/00958972.2014.910597

Wei, J.; Liu, K.; Du, C.; Zhou, Y.; Lin, C. A Novel Mannich Derivative of Protocatechuic Acid: Synthesis, Crystal Structure and Antioxidant Activity. Proc. Natl. Acad. Sci. India Sect. A - Phys. Sci. 2017, 87 (2), 181-188. DOI: https://doi.org/10.1007/s40010-017-0356-7. DOI: https://doi.org/10.1007/s40010-017-0356-7

Cai, X.; Yang, J.; Zhou, J.; Lu, W.; Hu, C.; Gu, Z.; Huo, J.; Wang, X.; Cao, P. Synthesis and biological evaluation of scopoletin derivatives. Bioorg. Med. Chem. 2013, 21 (1), 84-92. DOI: https://doi.org/10.1016/j.bmc.2012.10.059. DOI: https://doi.org/10.1016/j.bmc.2012.10.059

Khunnawutmanotham, N.; Chimnoi, N.; Saparpakorn, P.; Techasakul, S. Synthesis and anti-acetylcholinesterase activity of scopoletin derivatives. Bioorg. Chem. 2016, 65, 137-145. DOI: https://doi.org/10.1016/j.bioorg.2015.12.002. DOI: https://doi.org/10.1016/j.bioorg.2015.12.002

Liu, C.; Zheng, P.; Wang, H.; Wei, Y.; Wang, C.; Hao, S. Design and Synthesis of Scopoletin Sulfonate Derivatives as Potential Insecticidal Agents. Molecules 2023, 28 (2). DOI: https://doi.org/10.3390/molecules28020530. DOI: https://doi.org/10.3390/molecules28020530

Liu, W.; Hua, J.; Zhou, J.; Zhang, H.; Zhu, H.; Cheng, Y.; Gust, R. Synthesis and in vitro antitumor activity of novel scopoletin derivatives. Bioorg. Med. Chem. Lett. 2012, 22 (15), 5008-5012. DOI: https://doi.org/10.1016/j.bmcl.2012.06.014. DOI: https://doi.org/10.1016/j.bmcl.2012.06.014

Lu, X.; Zhu, C.; Zhang, C.; Li, X.; Yu, Z.; Zhang, Z.; Shi, X. Design, synthesis and biological evaluation of 3-aryl-7-hydroxy scopoletin derivatives as autophagy activators against tumorigenesis. Eur. J. Med. Chem. 2022, 244. DOI: https://doi.org/10.1016/j.ejmech.2022.114805. DOI: https://doi.org/10.1016/j.ejmech.2022.114805

Luo, J.; Lai, T.; Guo, T.; Chen, F.; Zhang, L.; Ding, W.; Zhang, Y. Synthesis and acaricidal activities of scopoletin phenolic ether derivatives: Qsar, molecular docking study and in silico Adme predictions. Molecules 2018, 23 (5). DOI: https://doi.org/10.3390/molecules23050995. DOI: https://doi.org/10.3390/molecules23050995

Shi, W.; Zhang, J.; Bao, N.; Guan, F.; Chen, L.; Sun, J. Design, synthesis, and cytotoxic evaluation of novel scopoletin derivatives. Chem. Biol. Drug Des. 2018, 91 (2), 641-646. DOI: https://doi.org/10.1111/cbdd.13120. DOI: https://doi.org/10.1111/cbdd.13120

Shi, Z.; Chen, L.; Sun, J. Novel scopoletin derivatives kill cancer cells by inducing mitochondrial depolarization and apoptosis. Anticancer Agents Med. Chem. 2021, 21 (14), 1774-1782. DOI: https://doi.org/10.2174/1871520621666201207094416. DOI: https://doi.org/10.2174/1871520621666201207094416

Shi, Z.; Li, N.; Chen, C.; Wang, Y.; Lei, Z.; Chen, L.; Sun, J. Novel NO-releasing scopoletin derivatives induce cell death via mitochondrial apoptosis pathway and cell cycle arrest. Eur. J. Med. Chem. 2020, 200. DOI: https://doi.org/10.1016/j.ejmech.2020.112386. DOI: https://doi.org/10.1016/j.ejmech.2020.112386

Yu, N.; Li, N.; Wang, K.; Deng, Q.; Lei, Z.; Sun, J.; Chen, L. Design, synthesis and biological activity evaluation of novel scopoletin-NO donor derivatives against MCF-7 human breast cancer in vitro and in vivo. Eur. J. Med. Chem. 2021, 224. DOI: https://doi.org/10.1016/j.ejmech.2021.113701. DOI: https://doi.org/10.1016/j.ejmech.2021.113701

Zhao, P.; Dou, Y.; Chen, L.; Li, L.; Wei, Z.; Yu, J.; Wu, X.; Dai, Y.; Xia, Y. SC-III3, a novel scopoletin derivative, induces autophagy of human hepatoma HepG2 cells through AMPK/mTOR signaling pathway by acting on mitochondria. Fitoterapia 2015, 104, 31-40. DOI: https://doi.org/10.1016/j.fitote.2015.05.002. DOI: https://doi.org/10.1016/j.fitote.2015.05.002

Zhou, J.; Wang, L.; Wei, L.; Zheng, Y.; Zhang, H.; Wang, Y.; Cao, P.; Niu, A.; Wang, J.; Dai, Y. Synthesis and antitumor activity of scopoletin derivatives. Lett. Drug Des. Discovery 2012, 9 (4), 397-401. DOI: https://doi.org/10.2174/157018012799859972. DOI: https://doi.org/10.2174/157018012799859972

Dahab, M. A.; Mahdy, H. A.; Elkady, H.; Taghour, M. S.; Elwan, A.; Elkady, M. A.; Elsakka, E. G. E.; Elkaeed, E. B.; Alsfouk, A. A.; Ibrahim, I. M.; et al. Semi-synthesized anticancer theobromine derivatives targeting VEGFR-2: in silico and in vitro evaluations. J. Biomol. Struct. Dyn. 2023, 1, DOI: https://doi.org/10.1080/07391102.2023.2219333. DOI: https://doi.org/10.1080/07391102.2023.2219333

Eissa, I. H.; G.Yousef, R.; Elkady, H.; Alsfouk, A. A.; Husein, D. Z.; Ibrahim, I. M.; El-Deeb, N.; Kenawy, A. M.; Eldehna, W. M.; Elkaeed, E. B.; Metwaly, A. M. New apoptotic anti-triple-negative breast cancer theobromine derivative inhibiting EGFRWT and EGFRT790M: in silico and in vitro evaluation. Mol. Divers. 2023, DOI: https://doi.org/10.1007/s11030-023-10644-4. DOI: https://doi.org/10.1007/s11030-023-10644-4

Eissa, I. H.; Yousef, R. G.; Elkady, H.; Alsfouk, A. A.; Alsfouk, B. A.; Husein, D. Z.; Ibrahim, I. M.; Elkaeed, E. B.; Metwaly, A. M. A New Anticancer Semisynthetic Theobromine Derivative Targeting EGFR Protein: CADDD Study. Life 2023, 13 (1). DOI: https://doi.org/10.3390/life13010191. DOI: https://doi.org/10.3390/life13010191

Eissa, I. H.; Yousef, R. G.; Elkaeed, E. B.; Alsfouk, A. A.; Husein, D. Z.; Ibrahim, I. M.; Alesawy, M. S.; Elkady, H.; Metwaly, A. M. Anticancer derivative of the natural alkaloid, theobromine, inhibiting EGFR protein: Computer-aided drug discovery approach. PLoS One 2023, 18. DOI: https://doi.org/10.1371/journal.pone.0282586. DOI: https://doi.org/10.1371/journal.pone.0282586

Elkaeed, E. B.; Yousef, R. G.; Elkady, H.; Alsfouk, A. A.; Husein, D. Z.; Ibrahim, I. M.; Metwaly, A. M.; Eissa, I. H. New Anticancer Theobromine Derivative Targeting EGFRWT and EGFRT790M: Design, Semi-Synthesis, In Silico, and In Vitro Anticancer Studies. Molecules 2022, 27 (18). DOI: https://doi.org/10.3390/molecules27185859. DOI: https://doi.org/10.3390/molecules27185859

Georgieva, M.; Kondeva-Burdina, M.; Mitkov, J.; Tzankova, V.; Momekov, G.; Zlatkov, A. Determination of the antiproliferative activity of new theobromine derivatives and evaluation of their in vitro hepatotoxic effects. Anticancer Agents Med. Chem. 2016, 16 (7), 925-932. DOI: https://doi.org/10.2174/1871520616666151116122633. DOI: https://doi.org/10.2174/1871520616666151116122633

Gonçalves-Pereira, R.; Pereira, M. P.; Serra, S. G.; Loesche, A.; Csuk, R.; Silvestre, S.; Costa, P. J.; Oliveira, M. C.; Xavier, N. M. Furanosyl Nucleoside Analogues Embodying Triazole or Theobromine Units as Potential Lead Molecules for Alzheimer's Disease. Eur. J. Org. Chem. 2018, 2018 (20), 2667-2681. DOI: https://doi.org/10.1002/ejoc.201800245. DOI: https://doi.org/10.1002/ejoc.201800245

Ivanchenko, D. G.; Romanenko, N. I.; Kornienko, V. I.; Polishchuk, N. N.; Sharapova, T. A. Synthesis and Properties of 8-Substituted 1-(2-Oxopropyl)Theobromine Derivatives. Chem. Nat. Compd. 2019, 55 (3), 509-512. DOI: https://doi.org/10.1007/s10600-019-02727-2. DOI: https://doi.org/10.1007/s10600-019-02727-2

Xavier, N. M.; Sousa, E. C.; Pereira, M.; Loesche, A.; Serbian, I.; Csuk, R.; Oliveira, M. C. Synthesis and biological evaluation of structurally varied 50-/60-isonucleosides and theobromine-containing n-isonucleosidyl derivatives. Pharmaceuticals 2019, 12 (3). DOI: https://doi.org/10.3390/ph12030103. DOI: https://doi.org/10.3390/ph12030103

Alafeefy, A. M.; Alqasoumi, S. I.; Abdel Hamid, S. G.; El-Tahir, K. E. H.; Mohamed, M.; Zain, M. E.; Awaad, A. S. Synthesis and hypoglycemic activity of some new theophylline derivatives. J. Enzyme Inhib. Med. Chem. 2014, 29 (3), 443-448. DOI: https://doi.org/10.3109/14756366.2013.795957. DOI: https://doi.org/10.3109/14756366.2013.795957

Aninye, I. O.; Berg, K. C.; Mollo, A. R.; Nordeen, S. K.; Wilson, E. M.; Shapiro, D. J. 8-Alkylthio-6-thio-substituted theophylline analogues as selective noncompetitive progesterone receptor antagonists. Steroids 2012, 77 (6), 596-601. DOI: https://doi.org/10.1016/j.steroids.2012.02.003. DOI: https://doi.org/10.1016/j.steroids.2012.02.003

Chang, Y.; Zhang, J.; Yang, S.; Lu, W.; Ding, L.; Zheng, Y.; Li, W. Design, synthesis, biological evaluation, and molecular docking of 1,7-dibenzyl-substituted theophylline derivatives as novel BRD4-BD1-selective inhibitors. Med. Chem. Res. 2021, 30 (8), 1453-1468. DOI: https://doi.org/10.1007/s00044-021-02737-2. DOI: https://doi.org/10.1007/s00044-021-02737-2

Faghih, Z.; Emami, L.; Zomoridian, K.; Sabet, R.; Bargebid, R.; Mansourian, A.; Zeinali, B.; Rostami, Z.; Khabnadideh, S. Aryloxy Alkyl Theophylline Derivatives as Antifungal Agents: Design, Synthesis, Biological Evaluation and Computational Studies. Chem. Select 2022, 7 (25). DOI: https://doi.org/10.1002/slct.202201618. DOI: https://doi.org/10.1002/slct.202201618

Gopinatha, V. K.; Mantelingu, K.; Rangappa, K. S. Synthesis and biological evaluation of theophylline acetohydrazide hydrazone derivatives as antituberculosis agents. J. Chin. Chem. Soc. 2020, 67 (8), 1453-1461. DOI: https://doi.org/10.1002/jccs.201900558. DOI: https://doi.org/10.1002/jccs.201900558

Hayallah, A. M.; Elgaher, W. A.; Salem, O. I.; Abdel Alim, A. A. M. Design and synthesis of some new theophylline derivatives with bronchodilator and antibacterial activities. Arch. Pharmacal Res. 2011, 34 (1), 3-21. DOI: https://doi.org/10.1007/s12272-011-0101-8. DOI: https://doi.org/10.1007/s12272-011-0101-8

Hayallah, A. M.; Talhouni, A. A.; Abdel Alim, A. A. M. Design and synthesis of new 8-anilide theophylline derivatives as bronchodilators and antibacterial agents. Arch. Pharmacal Res. 2012, 35 (8), 1355-1368. DOI: https://doi.org/10.1007/s12272-012-0805-4. DOI: https://doi.org/10.1007/s12272-012-0805-4

Hierrezuelo, J.; Manuel López-Romero, J.; Rico, R.; Brea, J.; Isabel Loza, M.; Cai, C.; Algarra, M. Synthesis of theophylline derivatives and study of their activity as antagonists at adenosine receptors. Bioorg. Med. Chem. 2010, 18 (6), 2081-2088. DOI: https://doi.org/10.1016/j.bmc.2010.02.014. DOI: https://doi.org/10.1016/j.bmc.2010.02.014

Kiran, G.; Prasad, D. K.; Bakshi, V.; Gouthami, T. In vitro anti-diabetic activity and molecular docking studies of theophylline containing acetylene derivatives. Biointerface Res. Appl. Chem. 2018, 8 (5), 3618-3620.

Managutti, P. B.; Mangasuli, S. N.; Malaganvi, S. S. Synthesis, crystal structure, electronic structure, and anti-tubercular properties of two new coumarin derivatives bearing theophylline moiety. Journal of Molecular Structure 2023, 1277. DOI: https://doi.org/10.1016/j.molstruc.2022.134888. DOI: https://doi.org/10.1016/j.molstruc.2022.134888

Partyka, A.; Jarosz, J.; Wasik, A.; Jastrzębska-Więsek, M.; Zagórska, A.; Pawłowski, M.; Wesołowska, A. Novel tricyclic[2,1-f]theophylline derivatives of LCAP with activity in mouse models of affective disorders. J. Pharm. Pharmacol. 2014, 66 (12), 1755-1762. DOI: https://doi.org/10.1111/jphp.12305. DOI: https://doi.org/10.1111/jphp.12305

Profire, L.; Şunel, V.; Lupaşcu, D.; Baican, M. C.; Bibire, N.; Vasile, C. New theophylline derivatives with potential pharmacological activity. Farmacia 2010, 58 (2), 170-176.

Prohre, L.; Lupascu, D. A. N.; Sunel, V.; Bibire, N.; Vasile, C. Synthesis and characterization of some new theophylline derivatives. Rev. Chim. 2010, 61 (6), 553-556.

Ruddarraju, R. R.; Kiran, G.; Murugulla, A. C.; Maroju, R.; Prasad, D. K.; Kumar, B. H.; Bakshi, V.; Reddy, N. S. Design, synthesis and biological evaluation of theophylline containing variant acetylene derivatives as α-amylase inhibitors. Bioorg. Chem. 2019, 92. DOI: https://doi.org/10.1016/j.bioorg.2019.103120. DOI: https://doi.org/10.1016/j.bioorg.2019.103120

Ruddarraju, R. R.; Murugulla, A. C.; Kotla, R.; Chandra Babu Tirumalasetty, M.; Wudayagiri, R.; Donthabakthuni, S.; Maroju, R.; Baburao, K.; Parasa, L. S. Design, synthesis, anticancer, antimicrobial activities and molecular docking studies of theophylline containing acetylenes and theophylline containing 1,2,3-triazoles with variant nucleoside derivatives. Eur. J. Med. Chem. 2016, 123, 379-396. DOI: https://doi.org/10.1016/j.ejmech.2016.07.024. DOI: https://doi.org/10.1016/j.ejmech.2016.07.024

Ruddarraju, R. R.; Murugulla, A. C.; Kotla, R.; Tirumalasetty, M. C. B.; Wudayagiri, R.; Donthabakthuni, S.; Maroju, R. Design, synthesis, anticancer activity and docking studies of theophylline containing 1,2,3-triazoles with variant amide derivatives. MedChemComm 2017, 8 (1), 176-183. DOI: https://doi.org/10.1039/c6md00479b. DOI: https://doi.org/10.1039/C6MD00479B

Saeedan, A. S.; Mohamed, M. A.; Soliman, G. A.; Alasiri, K. M.; Abdel-Kader, M. S.; Elnaggar, M. H. Semisynthetic Theophylline Analogues as Potent Diuretics: An Integrated in vivo and Molecular Docking Study. Lat. Am. J. Pharm. 2022, 41 (7), 1408-1416.

Stavrakov, G.; Valcheva, V.; Voynikov, Y.; Philipova, I.; Atanasova, M.; Konstantinov, S.; Peikov, P.; Doytchinova, I. Design, Synthesis, and Antimycobacterial Activity of Novel Theophylline-7-Acetic Acid Derivatives with Amino Acid Moieties. Chem. Biol. Drug Des. 2016, 87 (3), 335-341. DOI: https://doi.org/10.1111/cbdd.12676. DOI: https://doi.org/10.1111/cbdd.12676

Voynikov, Y.; Valcheva, V.; Momekov, G.; Peikov, P.; Stavrakov, G. Theophylline-7-acetic acid derivatives with amino acids as anti-tuberculosis agents. Bioorg. Med. Chem. Lett. 2014, 24 (14), 3043-3045. DOI: https://doi.org/10.1016/j.bmcl.2014.05.026. DOI: https://doi.org/10.1016/j.bmcl.2014.05.026

Ye, J.; Mao, L.; Xie, L.; Zhang, R.; Liu, Y.; Peng, L.; Yang, J.; Li, Q.; Yuan, M. Discovery of a Series of Theophylline Derivatives Containing 1,2,3-Triazole for Treatment of Non-Small Cell Lung Cancer. Front. Pharmacol. 2021, 12. DOI: https://doi.org/10.3389/fphar.2021.753676. DOI: https://doi.org/10.3389/fphar.2021.753676

Yousaf, M.; Zahoor, A. F.; Faiz, S.; Javed, S.; Irfan, M. Recent Synthetic Approaches Towards Biologically Potent Derivatives/Analogues of Theophylline. J. Heterocycl. Chem. 2018, 55 (11), 2447-2479. DOI: https://doi.org/10.1002/jhet.3311. DOI: https://doi.org/10.1002/jhet.3311

Zagórska, A.; Pawłowski, M.; Siwek, A.; Kazek, G.; Partyka, A.; Wróbel, D.; Jastrzȩbska-Wiȩsek, M.; Wesołowska, A. Synthesis and pharmacological evaluation of novel tricyclic[2,1-f] theophylline derivatives. Arch. Pharm. 2013, 346 (11), 832-839. DOI: https://doi.org/10.1002/ardp.201300257. DOI: https://doi.org/10.1002/ardp.201300257

Gupta, N.; Mukerjee, A.; Mishra, S. B. Design, Synthesis and Molecular Docking of Vanillic Acid Derivatives as Amylolytic Enzyme Inhibitors. Pharm. Chem. J. 2021, 55 (5), 427-435. DOI: https://doi.org/10.1007/s11094-021-02439-4. DOI: https://doi.org/10.1007/s11094-021-02439-4

Ishimata, N.; Ito, H.; Tai, A. Structure–activity relationships of vanillic acid ester analogs in inhibitory effect of antigen-mediated degranulation in rat basophilic leukemia RBL-2H3 cells. Bioorg. Med. Chem. Lett. 2016, 26 (15), 3533-3536. DOI: https://doi.org/10.1016/j.bmcl.2016.06.028. DOI: https://doi.org/10.1016/j.bmcl.2016.06.028

Satpute, M. S.; Gangan, V. D.; Shastri, I. Synthesis and antibacterial activity of novel vanillic acid hybrid derivatives. Rasayan J. Chem. 2019, 12 (1), 383-388. DOI: https://doi.org/10.31788/RJC.2019.1215023. DOI: https://doi.org/10.31788/RJC.2019.1215023

Tang, J. F.; Lv, X. H.; Wang, X. L.; Sun, J.; Zhang, Y. B.; Yang, Y. S.; Gong, H. B.; Zhu, H. L. Design, synthesis, biological evaluation and molecular modeling of novel 1,3,4-oxadiazole derivatives based on Vanillic acid as potential immunosuppressive agents. Bioorg. Med. Chem. 2012, 20 (14), 4226-4236. DOI: https://doi.org/10.1016/j.bmc.2012.05.055. DOI: https://doi.org/10.1016/j.bmc.2012.05.055

Tawfeeq, M. F.; Qassir, A. J. Synthesis, characterization, and antibacterial evaluation of new vanillic acid derivatives. Iraqi J. Pharm. Sci. 2020, 29 (2), 129-138. DOI: https://doi.org/10.31351/vol29iss2pp129-138. DOI: https://doi.org/10.31351/vol29iss2pp129-138

Wodnicka, A.; Huzar, E. Synthesis and photoprotective properties of new salicylic and vanillic acid derivatives. Curr. Chem. Lett. 2017, 6 (3), 125-134. DOI: https://doi.org/10.5267/j.ccl.2017.3.002. DOI: https://doi.org/10.5267/j.ccl.2017.3.002

Xu, B.; Xu, X.; Zhang, C.; Zhang, Y.; Wu, G. R.; Yan, M.; Jia, M.; Xie, T.; Jia, X.; Wang, P.; Lei, H. Synthesis and protective effect of new ligustrazine-vanillic acid derivatives against CoCl2-induced neurotoxicity in differentiated PC12 cells. Chem. Cent. J. 2017, 11 (1). DOI: https://doi.org/10.1186/s13065-017-0250-z. DOI: https://doi.org/10.1186/s13065-017-0250-z

Bender, O.; Celik, I.; Dogan, R.; Atalay, A.; Shoman, M. E.; Ali, T. F. S.; Beshr, E. A. M.; Mohamed, M.; Alaaeldin, E.; Shawky, A. M.; et al. Vanillin-Based Indolin-2-one Derivative Bearing a Pyridyl Moiety as a Promising Anti-Breast Cancer Agent via Anti-Estrogenic Activity. ACS Omega 2023, 8 (7), 6968-6981. DOI: https://doi.org/10.1021/acsomega.2c07793. DOI: https://doi.org/10.1021/acsomega.2c07793

Blaikie, L.; Kay, G.; Kong Thoo Lin, P. Synthesis and in vitro evaluation of vanillin derivatives as multi-target therapeutics for the treatment of Alzheimer's disease. Bioorg. Med. Chem. Lett. 2020, 30 (21). DOI: https://doi.org/10.1016/j.bmcl.2020.127505. DOI: https://doi.org/10.1016/j.bmcl.2020.127505

Boiko, Y. A.; Nesterkina, M. V.; Shandra, A. A.; Kravchenko, I. A. Analgesic and Anti-Inflammatory Activity of Vanillin Derivatives. Pharm. Chem. J. 2019, 53 (7), 650-654. DOI: https://doi.org/10.1007/s11094-019-02056-2. DOI: https://doi.org/10.1007/s11094-019-02056-2

da Silva Rodrigues, J. V.; Rodrigues Gazolla, P. A.; da Cruz Pereira, I.; Dias, R. S.; Poly da Silva, I. E.; Oliveira Prates, J. W.; de Souza Gomes, I.; de Azevedo Silveira, S.; Costa, A. V.; de Oliveira, F. M.; et al. Synthesis and virucide activity on zika virus of 1,2,3-triazole-containing vanillin derivatives. Antiviral Res. 2023, 212. DOI: https://doi.org/10.1016/j.antiviral.2023.105578. DOI: https://doi.org/10.1016/j.antiviral.2023.105578

Ekowati, J.; Diyah, N. W.; Tejo, B. A.; Ahmed, S. Chemoinformatics approach to design and develop vanillin analogs as COX-1 inhibitor. J. Public Health Afr. 2023, 14 (S1). DOI: https://doi.org/10.4081/jphia.2023.2517. DOI: https://doi.org/10.4081/jphia.2023.2517

Freitas, C. S.; Santiago, S. S.; Lage, D. P.; Antinarelli, L. M. R.; Oliveira, F. M.; Vale, D. L.; Martins, V. T.; Magalhaes, L. N. D.; Bandeira, R. S.; Ramos, F. F.; et al. In vitro evaluation of antileishmanial activity, mode of action and cellular response induced by vanillin synthetic derivatives against Leishmania species able to cause cutaneous and visceral leishmaniasis. Exp. Parasitol. 2023, 251. DOI: https://doi.org/10.1016/j.exppara.2023.108555. DOI: https://doi.org/10.1016/j.exppara.2023.108555

Gao, J.; Qiu, S.; Liang, L.; Hao, Z.; Zhou, Q.; Wang, F.; Mou, J.; Lin, Q. Design, synthesis, and biological evaluation of vanillin hydroxamic acid derivatives as novel peptide deformylase inhibitors. Curr. Comput. Aided Drug Des. 2018, 14 (1), 95-101. DOI: https://doi.org/10.2174/1573409913666170613074601. DOI: https://doi.org/10.2174/1573409913666170613074601

Gazolla, P. A. R.; de Aguiar, A. R.; Costa, M. C. A.; Oliveira, O. V.; Costa, A. V.; da Silva, C. M.; do Nascimento, C. J.; Junker, J.; Ferreira, R. S.; de Oliveira, F. M.; et al. Synthesis of vanillin derivatives with 1,2,3-triazole fragments and evaluation of their fungicide and fungistatic activities. Arch. Pharm. 2023, 356 (6). DOI: https://doi.org/10.1002/ardp.202200653. DOI: https://doi.org/10.1002/ardp.202200653

Gharai, P. K.; Khan, J.; Mallesh, R.; Garg, S.; Saha, A.; Ghosh, S.; Ghosh, S. Vanillin Benzothiazole Derivative Reduces Cellular Reactive Oxygen Species and Detects Amyloid Fibrillar Aggregates in Alzheimer’s Disease Brain. ACS Chem. Neurosci. 2023, 14 (4), 773-786. DOI: https://doi.org/10.1021/acschemneuro.2c00771. DOI: https://doi.org/10.1021/acschemneuro.2c00771

Gu, M. M.; Li, M.; Gao, D.; Liu, L. H.; Lang, Y.; Yang, S. M.; Ou, H.; Huang, B.; Zhou, P. K.; Shang, Z. F. The vanillin derivative 6-bromine-5-hydroxy-4-methoxybenzaldehyde induces aberrant mitotic progression and enhances radio-sensitivity accompanying suppression the expression of PLK1 in esophageal squamous cell carcinoma. Toxicol. Appl. Pharmacol. 2018, 348, 76-84. DOI: https://doi.org/10.1016/j.taap.2018.04.021. DOI: https://doi.org/10.1016/j.taap.2018.04.021

Harismah, K.; Fazeli, F.; Zandi, H. Structural analyses of vanillin derivative compounds and their molecular docking with mpro and rdrp enzymes of covid-19. Biointerface Res. Appl. Chem. 2022, 12 (2), 1660-1669. DOI: https://doi.org/10.33263/BRIAC122.16601669. DOI: https://doi.org/10.33263/BRIAC122.16601669

He, H. W.; Wang, F. Y.; Zhang, D.; Chen, C. Y.; Xu, D.; Zhou, H.; Liu, X.; Xu, G. Discovery of Novel α-Methylene-γ-Butyrolactone Derivatives Containing Vanillin Moieties as Antiviral and Antifungal Agents. J. Agric. Food Chem. 2022, 70 (33), 10316-10325. DOI: https://doi.org/10.1021/acs.jafc.2c03632. DOI: https://doi.org/10.1021/acs.jafc.2c03632

Illicachi, L. A.; Montalvo-Acosta, J. J.; Insuasty, A.; Quiroga, J.; Abonia, R.; Sortino, M.; Zacchino, S.; Insuasty, B. Synthesis and DFT calculations of novel vanillin-chalcones and their 3-Aryl-5-(4-(2-(dimethylamino)- ethoxy)-3-methoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbaldehyde derivatives as antifungal agents. Molecules 2017, 22 (9). DOI: https://doi.org/10.3390/molecules22091476. DOI: https://doi.org/10.3390/molecules22091476

Li, M.; Lang, Y.; Gu, M. M.; Shi, J.; Chen, B. P. C.; Yu, L.; Zhou, P. K.; Shang, Z. F. Vanillin derivative VND3207 activates DNA-PKcs conferring protection against radiation-induced intestinal epithelial cells injury in vitro and in vivo. Toxicol. Appl. Pharmacol. 2020, 387. DOI: https://doi.org/10.1016/j.taap.2019.114855. DOI: https://doi.org/10.1016/j.taap.2019.114855

Luković, J.; Mitrović, M.; Popović, S.; Milosavljević, Z.; Stanojević-Pirković, M.; An-Elković, M.; Zelen, I.; Šorak, M.; Muškinja, J.; Ratković, Z.; Nikolić, I. Antitumor effects of vanillin based chalcone analogs in vitro. Acta Pol. Pharm. Drug Res. 2020, 77 (1), 57-67. DOI: https://doi.org/10.32383/appdr/112786. DOI: https://doi.org/10.32383/appdr/112786

Ma, W.; Zhang, Q.; Li, X.; Ma, Y.; Liu, Y.; Hu, S.; Zhou, Z.; Zhang, R.; Du, K.; Syed, A.; et al. IPM712, a vanillin derivative as potential antitumor agents, displays better antitumor activity in colorectal cancers cell lines. Eur. J. Pharm. Sci. 2020, 152. DOI: https://doi.org/10.1016/j.ejps.2020.105464. DOI: https://doi.org/10.1016/j.ejps.2020.105464

Marton, A.; Kúsz, E.; Kolozsi, C.; Tubak, V.; Zagotto, G.; Buzás, K.; Quintieri, L.; Vizler, C. Vanillin analogues o-vanillin and 2,4,6-trihydroxybenzaldehyde inhibit NFκB activation and suppress growth of A375 human melanoma. Anticancer Res. 2016, 36 (11), 5743-5750. DOI: https://doi.org/10.21873/anticanres.11157. DOI: https://doi.org/10.21873/anticanres.11157

Pagare, P. P.; Ghatge, M. S.; Musayev, F. N.; Deshpande, T. M.; Chen, Q.; Braxton, C.; Kim, S.; Venitz, J.; Zhang, Y.; Abdulmalik, O.; Safo, M. K. Rational design of pyridyl derivatives of vanillin for the treatment of sickle cell disease. Bioorg. Med. Chem. 2018, 26 (9), 2530-2538. DOI: https://doi.org/10.1016/j.bmc.2018.04.015. DOI: https://doi.org/10.1016/j.bmc.2018.04.015

Sahoo, C. R.; Paidesetty, S. K.; Sarathbabu, S.; Dehury, B.; Senthil Kumar, N.; Padhy, R. N. Molecular dynamics simulation, synthesis and topoisomerase inhibitory actions of vanillin derivatives: a systematic computational structural integument. J. Biomol. Struct. Dyn. 2022, 40 (22), 11653-11663. DOI: https://doi.org/10.1080/07391102.2021.1961867. DOI: https://doi.org/10.1080/07391102.2021.1961867

Scipioni, M.; Kay, G.; Megson, I.; Kong Thoo Lin, P. Novel vanillin derivatives: Synthesis, anti-oxidant, DNA and cellular protection properties. Eur. J. Med. Chem. 2018, 143, 745-754. DOI: https://doi.org/10.1016/j.ejmech.2017.11.072. DOI: https://doi.org/10.1016/j.ejmech.2017.11.072

Scipioni, M.; Kay, G.; Megson, I. L.; Kong Thoo Lin, P. Synthesis of novel vanillin derivatives: Novel multi-targeted scaffold ligands against Alzheimer's disease. MedChemComm 2019, 10 (5), 764-777. DOI: https://doi.org/10.1039/c9md00048h. DOI: https://doi.org/10.1039/C9MD00048H

Shanan, S. H.; Kadem, K. J. The synthesis of some new heterocyclic compounds from vanillin derivatives. Int. J. Drug Deliv. Technol. 2021, 11 (2), 376-378. DOI: https://doi.org/10.25258/ijddt.11.2.24.

Shastry, R. P.; Ghate, S. D.; Sukesh Kumar, B.; Srinath, B. S.; Kumar, V. Vanillin derivative inhibits quorum sensing and biofilm formation in Pseudomonas aeruginosa: a study in a Caenorhabditis elegans infection model. Nat. Prod. Res. 2022, 36 (6), 1610-1615. DOI: https://doi.org/10.1080/14786419.2021.1887866. DOI: https://doi.org/10.1080/14786419.2021.1887866

Tokalı, F. S.; Şenol, H.; Katmerlikaya, T. G.; Dağ, A.; Şendil, K. Novel thiosemicarbazone and thiazolidin-4-one derivatives containing vanillin core: Synthesis, characterization, and anticancer activity studies. J. Heterocycl. Chem. 2023, 60 (4), 645-656. DOI: https://doi.org/10.1002/jhet.4619. DOI: https://doi.org/10.1002/jhet.4619

Wu, Q.; Cai, H.; Yuan, T.; Li, S.; Gan, X.; Song, B. Novel vanillin derivatives containing a 1,3,4-thiadiazole moiety as potential antibacterial agents. Bioorg. Med. Chem. Lett. 2020, 30 (10). DOI: https://doi.org/10.1016/j.bmcl.2020.127113. DOI: https://doi.org/10.1016/j.bmcl.2020.127113

Yuldasheva, N.; Acikyildiz, N.; Akyuz, M.; Yabo-Dambagi, L.; Aydin, T.; Cakir, A.; Kazaz, C. The Synthesis of Schiff bases and new secondary amine derivatives of p-vanillin and evaluation of their neuroprotective, antidiabetic, antidepressant and antioxidant potentials. J. Mol. Struct. 2022, 1270. DOI: https://doi.org/10.1016/j.molstruc.2022.133883. DOI: https://doi.org/10.1016/j.molstruc.2022.133883

Zhou, Z.; Wang, Y.; Ji, R.; Zhang, D.; Ma, C.; Ma, W.; Ma, Y.; Jiang, X.; Du, K.; Zhang, R.; Chen, P. Vanillin Derivatives Reverse Fusobacterium nucleatum-Induced Proliferation and Migration of Colorectal Cancer Through E-Cadherin/β-Catenin Pathway. Front. Pharmacol. 2022, 13. DOI: https://doi.org/10.3389/fphar.2022.841918. DOI: https://doi.org/10.3389/fphar.2022.841918

Abou-Zied, H. A.; Youssif, B. G. M.; Mohamed, M. F. A.; Hayallah, A. M.; Abdel-Aziz, M. EGFR inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and docking studies of novel xanthine derivatives carrying chalcone moiety as hybrid molecules. Bioorg. Chem. 2019, 89. DOI: https://doi.org/10.1016/j.bioorg.2019.102997. DOI: https://doi.org/10.1016/j.bioorg.2019.102997

Andonova, L.; Valkova, I.; Zheleva-Dimitrova, D.; Georgieva, M.; Momekov, G.; Zlatkov, A. Synthesis of new N1 arylpiperazine substituted xanthine derivatives and evaluation of their antioxidant and cytotoxic effects. Anticancer Agents Med. Chem. 2019, 19 (4), 528-537. DOI: https://doi.org/10.2174/1871520619666190121155651. DOI: https://doi.org/10.2174/1871520619666190121155651

Banga, A. R.; Sekhar, K. R.; Rayford, K. J.; Arun, A.; Odiase, P.; Garg, A. P.; Lima, M. F.; Nde, P. N.; Villalta, F.; Rachakonda, G. Xanthine Analogs Suppress Trypanosoma cruzi Infection In Vitro Using PDEs as Targets. Microbiol. Res. 2022, 13 (4), 721-739. DOI: https://doi.org/10.3390/microbiolres13040052. DOI: https://doi.org/10.3390/microbiolres13040052

El-Kalyoubi, S.; Agili, F.; Zordok, W. A.; El-Sayed, A. S. A. Synthesis, in silico prediction and in vitro evaluation of antimicrobial activity, dft calculation and theoretical investigation of novel xanthines and uracil containing imidazolone derivatives. Int. J. Mol. Sci. 2021, 22 (20). DOI: https://doi.org/10.3390/ijms222010979. DOI: https://doi.org/10.3390/ijms222010979

Gumber, D.; Yadav, D.; Yadav, R.; Kachler, S.; Klotz, K. N. Bronchospasmolytic activity and adenosine receptor binding of some newer 1,3-dipropyl-8-phenyl substituted xanthine derivatives. Chem. Biol. Drug Des. 2020, 95 (6), 600-609. DOI: https://doi.org/10.1111/cbdd.13673. DOI: https://doi.org/10.1111/cbdd.13673

Hisham, M.; Youssif, B. G. M.; Osman, E. E. A.; Hayallah, A. M.; Abdel-Aziz, M. Synthesis and biological evaluation of novel xanthine derivatives as potential apoptotic antitumor agents. Eur. J. Med. Chem. 2019, 176, 117-128. DOI: https://doi.org/10.1016/j.ejmech.2019.05.015. DOI: https://doi.org/10.1016/j.ejmech.2019.05.015

Kapri, A.; Pant, S.; Gupta, N.; Nain, S. Recent Advances in the Biological Significance of Xanthine and its Derivatives: A Review. Pharm. Chem. J. 2022, 56 (4), 461-474. DOI: https://doi.org/10.1007/s11094-022-02661-8. DOI: https://doi.org/10.1007/s11094-022-02661-8

Kasabova-Angelova, A.; Tzankova, D.; Mitkov, J.; Georgieva, M.; Tzankova, V.; Zlatkov, A.; Kondeva-Burdina, M. Xanthine derivatives as agents affecting non-dopaminergic neuroprotection in parkinson’s disease. Curr. Med. Chem. 2020, 27 (12), 2021-2036. DOI: https://doi.org/10.2174/0929867325666180821153316. DOI: https://doi.org/10.2174/0929867325666180821153316

Kuo, C. H.; Zhang, B. H.; Huang, S. E.; Hsu, J. H.; Wang, Y. H.; Nguyen, T. T. N.; Lai, C. H.; Yeh, J. L. Xanthine Derivative KMUP-1 Attenuates Experimental Periodontitis by Reducing Osteoclast Differentiation and Inflammation. Front. Pharmacol. 2022, 13. DOI: https://doi.org/10.3389/fphar.2022.821492. DOI: https://doi.org/10.3389/fphar.2022.821492

Lai, C. H.; Chang, C. W.; Lee, F. T.; Kuo, C. H.; Hsu, J. H.; Liu, C. P.; Wu, H. L.; Yeh, J. L. Targeting vascular smooth muscle cell dysfunction with xanthine derivative KMUP-3 inhibits abdominal aortic aneurysm in mice. Atherosclerosis 2020, 297, 16-24. DOI: https://doi.org/10.1016/j.atherosclerosis.2020.01.029. DOI: https://doi.org/10.1016/j.atherosclerosis.2020.01.029

Lee, L. C.; Peng, Y. H.; Chang, H. H.; Hsu, T.; Lu, C. T.; Huang, C. H.; Hsueh, C. C.; Kung, F. C.; Kuo, C. C.; Jiaang, W. T.; Wu, S. Y. Xanthine Derivatives Reveal an Allosteric Binding Site in Methylenetetrahydrofolate Dehydrogenase 2 (MTHFD2). J. Med. Chem. 2021, 64 (15), 11288-11301. DOI: https://doi.org/10.1021/acs.jmedchem.1c00663. DOI: https://doi.org/10.1021/acs.jmedchem.1c00663

Li, G.; Meng, B.; Yuan, B.; Huan, Y.; Zhou, T.; Jiang, Q.; Lei, L.; Sheng, L.; Wang, W.; Gong, N.; et al. The optimization of xanthine derivatives leading to HBK001 hydrochloride as a potent dual ligand targeting DPP-IV and GPR119. Eur. J. Med. Chem. 2020, 188. DOI: https://doi.org/10.1016/j.ejmech.2019.112017. DOI: https://doi.org/10.1016/j.ejmech.2019.112017

Li, Q.; Meng, L.; Zhou, S.; Deng, X.; Wang, N.; Ji, Y.; Peng, Y.; Xing, J.; Yao, G. Rapid generation of novel benzoic acid–based xanthine derivatives as highly potent, selective and long acting DPP-4 inhibitors: Scaffold-hopping and prodrug study. Eur. J. Med. Chem. 2019, 180, 509-523. DOI: https://doi.org/10.1016/j.ejmech.2019.07.045. DOI: https://doi.org/10.1016/j.ejmech.2019.07.045

Lindemann, M.; Dukic-Stefanovic, S.; Hinz, S.; Deuther-Conrad, W.; Teodoro, R.; Juhl, C.; Steinbach, J.; Brust, P.; Müller, C. E.; Wenzel, B. Synthesis of novel fluorinated xanthine derivatives with high adenosine a2b receptor binding affinity. Pharmaceuticals 2021, 14 (5). DOI: https://doi.org/10.3390/ph14050485. DOI: https://doi.org/10.3390/ph14050485

Ma, Q. S.; Yao, Y.; Zheng, Y. C.; Feng, S.; Chang, J.; Yu, B.; Liu, H. M. Ligand-based design, synthesis and biological evaluation of xanthine derivatives as LSD1/KDM1A inhibitors. Eur. J. Med. Chem. 2019, 162, 555-567. DOI: https://doi.org/10.1016/j.ejmech.2018.11.035. DOI: https://doi.org/10.1016/j.ejmech.2018.11.035

Minard, A.; Bauer, C. C.; Chuntharpursat-Bon, E.; Pickles, I. B.; Wright, D. J.; Ludlow, M. J.; Burnham, M. P.; Warriner, S. L.; Beech, D. J.; Muraki, K.; Bon, R. S. Potent, selective, and subunit-dependent activation of TRPC5 channels by a xanthine derivative. Br. J. Pharmacol. 2019, 176 (20), 3924-3938. DOI: https://doi.org/10.1111/bph.14791. DOI: https://doi.org/10.1111/bph.14791

Narsimha, S.; Battula, K. S.; Ravinder, M.; Reddy, Y. N.; Nagavelli, V. R. Design, synthesis and biological evaluation of novel 1,2,3-triazole-based xanthine derivatives as DPP-4 inhibitors. J. Chem. Sci. 2020, 132 (1). DOI: https://doi.org/10.1007/s12039-020-1760-0. DOI: https://doi.org/10.1007/s12039-020-1760-0

7Pretze, M.; Neuber, C.; Kinski, E.; Belter, B.; Köckerling, M.; Caflisch, A.; Steinbach, J.; Pietzsch, J.; Mamat, C. Synthesis, radiolabelling and initial biological characterisation of 18F-labelled xanthine derivatives for PET imaging of Eph receptors. Org. Biomol. Chem. 2020, 18 (16), 3104-3116. DOI: https://doi.org/10.1039/d0ob00391c. DOI: https://doi.org/10.1039/D0OB00391C

Qiao, M. Q.; Li, Y.; Yang, Y. X.; Pang, C. X.; Liu, Y. T.; Bian, C.; Wang, L.; Chen, X. F.; Hong, B. Structure-activity relationship and biological evaluation of xanthine derivatives as PCSK9 inhibitors for the treatment of atherosclerosis. Eur. J. Med. Chem. 2023, 247. DOI: https://doi.org/10.1016/j.ejmech.2022.115047. DOI: https://doi.org/10.1016/j.ejmech.2022.115047

Satish, M.; Sandhya, K.; Nitin, K.; Yashas Kiran, N.; Aleena, B.; Satish Kumar, A.; Guruprasad, K.; Rajakumara, E. Computational, biochemical and ex vivo evaluation of xanthine derivatives against phosphodiesterases to enhance the sperm motility. J. Biomol. Struct. Dyn. 2022, 41(11):5317-5327. DOI: https://doi.org/10.1080/07391102.2022.2085802. DOI: https://doi.org/10.1080/07391102.2022.2085802

Shatokhin, S. S.; Tuskaev, V. A.; Gagieva, S. C.; Markova, A. A.; Pozdnyakov, D. I.; Denisov, G. L.; Melnikova, E. K.; Bulychev, B. M.; Oganesyan, E. T. Synthesis, cytotoxicity and antioxidant activity of new 1,3-dimethyl-8-(chromon-3-yl)-xanthine derivatives containing 2,6-di-: Tert -butylphenol fragments. New J. Chem. 2022, 46 (2), 621-631. DOI: https://doi.org/10.1039/d1nj03726a. DOI: https://doi.org/10.1039/D1NJ03726A

Singh, S.; Ojha, M.; Yadav, D.; Kachler, S.; Klotz, K. N.; Yadav, R. Bronchospasmolytic and Adenosine Binding Activity of 8-(Proline / Pyra-zole)-Substituted Xanthine Derivatives. Curr. Drug Disc. Technol. 2021, 18 (5). DOI: https://doi.org/10.2174/1570163817666200922121005. DOI: https://doi.org/10.2174/1570163817666200922121005

Specker, E.; Matthes, S.; Wesolowski, R.; Schütz, A.; Grohmann, M.; Alenina, N.; Pleimes, D.; Mallow, K.; Neuenschwander, M.; Gogolin, A.; et al. Structure-Based Design of Xanthine-Benzimidazole Derivatives as Novel and Potent Tryptophan Hydroxylase Inhibitors. J. Med. Chem. 2022, 65 (16), 11126-11149. DOI: https://doi.org/10.1021/acs.jmedchem.2c00598. DOI: https://doi.org/10.1021/acs.jmedchem.2c00598

Tam, D. N. H.; Mostafa, E. M.; Tu, V. L.; Rashidy, A. I.; Matenoglou, E.; Kassem, M.; Soa, D. T.; Bayumi, A.; Emam, H. E. S.; Tran, L.; et al. Efficacy of chalcone and xanthine derivatives on lipase inhibition: A systematic review. Chem. Biol. Drug Des. 2020, 95 (2), 205-214. DOI: https://doi.org/10.1111/cbdd.13626. DOI: https://doi.org/10.1111/cbdd.13626

Fujioka, K.; Shibamoto, T. Quantitation of volatiles and nonvolatile acids in an extract from coffee beverages: Correlation with antioxidant activity. J. Agric. Food Chem. 2006, 54 (16), 6054-6058. DOI: https://doi.org/10.1021/jf060460x. DOI: https://doi.org/10.1021/jf060460x

Li, H.; Lin, L.; Feng, Y.; Zhao, M.; Li, X.; Zhu, Q.; Xiao, Z. Enrichment of antioxidants from soy sauce using macroporous resin and identification of 4-ethylguaiacol, catechol, daidzein, and 4-ethylphenol as key small molecule antioxidants in soy sauce. Food Chem. 2018, 240, 885-892. DOI: https://doi.org/10.1016/j.foodchem.2017.08.001. DOI: https://doi.org/10.1016/j.foodchem.2017.08.001

Zhao, D.; Sun, J.; Sun, B.; Zhao, M.; Zheng, F.; Huang, M.; Sun, X.; Li, H. Intracellular antioxidant effect of vanillin, 4-methylguaiacol and 4-ethylguaiacol: Three components in Chinese Baijiu. RSC Adv. 2017, 7 (73), 46395-46405. DOI: https://doi.org/10.1039/c7ra09302k. DOI: https://doi.org/10.1039/C7RA09302K

Esatbeyoglu, T.; Ulbrich, K.; Rehberg, C.; Rohn, S.; Rimbach, G. Thermal stability, antioxidant, and anti-inflammatory activity of curcumin and its degradation product 4-vinyl guaiacol. Food Funct. 2015, 6 (3), 887-893. DOI: https://doi.org/10.1039/c4fo00790e. DOI: https://doi.org/10.1039/C4FO00790E

Shin, J. A.; Jeong, S. H.; Jia, C. H.; Hong, S. T.; Lee, K. T. Comparison of antioxidant capacity of 4-vinylguaiacol with catechin and ferulic acid in oil-in-water emulsion. Food Sci. Biotechnol. 2019, 28 (1), 35-41. DOI: https://doi.org/10.1007/s10068-018-0458-2. DOI: https://doi.org/10.1007/s10068-018-0458-2

Tańska, M.; Mikołajczak, N.; Konopka, I. Comparison of the effect of sinapic and ferulic acids derivatives (4-vinylsyringol vs. 4-vinylguaiacol) as antioxidants of rapeseed, flaxseed, and extra virgin olive oils. Food Chem. 2018, 240, 679-685. DOI: https://doi.org/10.1016/j.foodchem.2017.08.007. DOI: https://doi.org/10.1016/j.foodchem.2017.08.007

7Agunloye, O. M.; Oboh, G. Caffeic acid and chlorogenic acid: Evaluation of antioxidant effect and inhibition of key enzymes linked with hypertension. J. Food Biochem. 2018, 42 (4). DOI: https://doi.org/10.1111/jfbc.12541. DOI: https://doi.org/10.1111/jfbc.12541

Coelho, V. R.; Vieira, C. G.; De Souza, L. P.; Moysés, F.; Basso, C.; Papke, D. K. M.; Pires, T. R.; Siqueira, I. R.; Picada, J. N.; Pereira, P. Antiepileptogenic, antioxidant and genotoxic evaluation of rosmarinic acid and its metabolite caffeic acid in mice. Life Sci. 2015, 122, 65-71. DOI: https://doi.org/10.1016/j.lfs.2014.11.009. DOI: https://doi.org/10.1016/j.lfs.2014.11.009

Fan, J.; Cai, X.; Feng, X.; Jiang, M.; Yu, X. Studies on the antioxidant activity in vitro of caffeic acid. J. Chin. Inst. Food Sci. Technol. 2015, 15 (3), 65-73. DOI: https://doi.org/10.16429/j.1009-7848.2015.03.009.

Genaro-Mattos, T. C.; Maurício, Â. Q.; Rettori, D.; Alonso, A.; Hermes-Lima, M. Antioxidant activity of Caffeic acid against iron-induced free radical generation-A chemical approach. PLoS One 2015, 10 (6). DOI: https://doi.org/10.1371/journal.pone.0129963. DOI: https://doi.org/10.1371/journal.pone.0129963

7Jamali, N.; Mostafavi-Pour, Z.; Zal, F.; Kasraeian, M.; Poordast, T.; Nejabat, N. Antioxidant ameliorative effect of caffeic acid on the ectopic endometrial cells separated from patients with endometriosis. Taiwan. J. Obstet. Gynecol. 2021, 60 (2), 216-220. DOI: https://doi.org/10.1016/j.tjog.2020.12.003. DOI: https://doi.org/10.1016/j.tjog.2020.12.003

Kassa, T.; Whalin, J. G.; Richards, M. P.; Alayash, A. I. Caffeic acid: an antioxidant with novel antisickling properties. FEBS Open Bio 2021, 11 (12), 3293-3303. DOI: https://doi.org/10.1002/2211-5463.13295. DOI: https://doi.org/10.1002/2211-5463.13295

Masek, A.; Chrzescijanska, E.; Latos, M. Determination of antioxidant activity of caffeic acid and p-coumaric acid by using electrochemical and spectrophotometric assays. Int. J. Electrochem. Sci. 2016, 11 (12), 10644-10658. DOI: https://doi.org/10.20964/2016.12.73. DOI: https://doi.org/10.20964/2016.12.73

Mohammed, F. Z.; Al-Hussaini, A. S. E. D.; El-Shehabi, M. E. S. Antidiabetic activity of caffeic acid and 18β-glycyrrhetinic acid and its relationship with the antioxidant property. Asian J. Pharm. Clin. Res. 2015, 8 (5), 255-260.

Purushothaman, A.; Babu, S. S.; Naroth, S.; Janardanan, D. Antioxidant activity of caffeic acid: thermodynamic and kinetic aspects on the oxidative degradation pathway. Free Radic. Res. 2022, 56 (9-10), 617-630. DOI: https://doi.org/10.1080/10715762.2022.2161379. DOI: https://doi.org/10.1080/10715762.2022.2161379

Sato, Y.; Itagaki, S.; Kurokawa, T.; Ogura, J.; Kobayashi, M.; Hirano, T.; Sugawara, M.; Iseki, K. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int. J. Pharm. 2011, 403 (1-2), 136-138. DOI: https://doi.org/10.1016/j.ijpharm.2010.09.035. DOI: https://doi.org/10.1016/j.ijpharm.2010.09.035

Sheng, X.; Zhu, Y.; Zhou, J.; Yan, L.; Du, G.; Liu, Z.; Chen, H. Antioxidant Effects of Caffeic Acid Lead to Protection of Drosophila Intestinal Stem Cell Aging. Front. Cell Dev. Biol. 2021, 9. DOI: https://doi.org/10.3389/fcell.2021.735483. DOI: https://doi.org/10.3389/fcell.2021.735483

Spagnol, C. M.; Assis, R. P.; Brunetti, I. L.; Isaac, V. L. B.; Salgado, H. R. N.; Corrêa, M. A. In vitro methods to determine the antioxidant activity of caffeic acid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 219, 358-366. DOI: https://doi.org/10.1016/j.saa.2019.04.025. DOI: https://doi.org/10.1016/j.saa.2019.04.025

Uranga, J. G.; Podio, N. S.; Wunderlin, D. A.; Santiago, A. N. Theoretical and Experimental Study of the Antioxidant Behaviors of 5-O-Caffeoylquinic, Quinic and Caffeic Acids Based on Electronic and Structural Properties. ChemistrySelect 2016, 1 (13), 4113-4120. DOI: https://doi.org/10.1002/slct.201600582. DOI: https://doi.org/10.1002/slct.201600582

Hosny, E. N.; Sawie, H. G.; Elhadidy, M. E.; Khadrawy, Y. A. Evaluation of antioxidant and anti-inflammatory efficacy of caffeine in rat model of neurotoxicity. Nutr. Neurosci. 2019, 22 (11), 789-796. DOI: https://doi.org/10.1080/1028415X.2018.1446812. DOI: https://doi.org/10.1080/1028415X.2018.1446812

Ősz, B. E.; Jîtcă, G.; Ștefănescu, R. E.; Pușcaș, A.; Tero-Vescan, A.; Vari, C. E. Caffeine and Its Antioxidant Properties—It Is All about Dose and Source. Int. J. Mol. Sci. 2022, 23 (21). DOI: https://doi.org/10.3390/ijms232113074. DOI: https://doi.org/10.3390/ijms232113074

Ruiss, M.; Findl, O.; Kronschläger, M. The human lens: An antioxidant-dependent tissue revealed by the role of caffeine. Ageing Res. Rev. 2022, 79. DOI: https://doi.org/10.1016/j.arr.2022.101664. DOI: https://doi.org/10.1016/j.arr.2022.101664

Vieira, A. J. S. C.; Gaspar, E. M.; Santos, P. M. P. Mechanisms of potential antioxidant activity of caffeine. Radiat. Phys. Chem. 2020, 174. DOI: https://doi.org/10.1016/j.radphyschem.2020.108968. DOI: https://doi.org/10.1016/j.radphyschem.2020.108968

Bai, D.; Liu, K.; He, X.; Tan, H.; Liu, Y.; Li, Y.; Zhang, Y.; Zhen, W.; Zhang, C.; Ma, Y. Effect of Dietary Chlorogenic Acid on Growth Performance, Antioxidant Function, and Immune Response of Broiler Breeders under Immune Stress and Stocking Density Stress. Vet. Sci. 2022, 9 (10). DOI: https://doi.org/10.3390/vetsci9100582. DOI: https://doi.org/10.3390/vetsci9100582

Bender, O.; Atalay, A. Polyphenol chlorogenic acid, antioxidant profile, and breast cancer. In Cancer: Oxidative Stress and Dietary Antioxidants, Academic Press; Chapter 28, pp 311-321. DOI: https://doi.org/10.1016/B978-0-12-819547-5.00028-6

Carolina Chaves-Ulate, E.; Esquivel-Rodríguez, P. Chlorogenic acids present in coffee: Antioxidant and antimicrobial capacity. Agron. Mesoam. 2019, 30 (1), 299-311. DOI: https://doi.org/10.15517/am.v30i1.32974. DOI: https://doi.org/10.15517/am.v30i1.32974

Chen, F.; Zhang, H.; Zhao, N.; Yang, X.; Du, E.; Huang, S.; Guo, W.; Zhang, W.; Wei, J. Effect of chlorogenic acid on intestinal inflammation, antioxidant status, and microbial community of young hens challenged with acute heat stress. Anim. Sci. J. 2021, 92 (1). DOI: https://doi.org/10.1111/asj.13619. DOI: https://doi.org/10.1111/asj.13619

Chen, J.; Yu, B.; Chen, D.; Huang, Z.; Mao, X.; Zheng, P.; Yu, J.; Luo, J.; He, J. Chlorogenic acid improves intestinal barrier functions by suppressing mucosa inflammation and improving antioxidant capacity in weaned pigs. J. Nutr. Biochem. 2018, 59, 84-92. DOI: https://doi.org/10.1016/j.jnutbio.2018.06.005. DOI: https://doi.org/10.1016/j.jnutbio.2018.06.005

Girsang, E.; Lister, I. N. E.; Ginting, C. N.; Nasution, S. L.; Suhartina, S.; Munshy, U. Z.; Rizal, R.; Widowati, W. Antioxidant and Anti-Inflammatory activity of Chlorogenic Acid on Lead-Induced Fibroblast Cells. J. Phys. Conf. Ser. 2019; 1374. DOI: https://doi.org/10.1088/1742-6596/1374/1/012006. DOI: https://doi.org/10.1088/1742-6596/1374/1/012006

Liang, N.; Xue, W.; Kennepohl, P.; Kitts, D. D. Interactions between major chlorogenic acid isomers and chemical changes in coffee brew that affect antioxidant activities. Food Chem. 2016, 213, 251-259. DOI: https://doi.org/10.1016/j.foodchem.2016.06.041. DOI: https://doi.org/10.1016/j.foodchem.2016.06.041

Mei, Y.; Sun, H.; Du, G.; Wang, X.; Lyu, D. Exogenous chlorogenic acid alleviates oxidative stress in apple leaves by enhancing antioxidant capacity. Sci. Hortic. 2020, 274. DOI: https://doi.org/10.1016/j.scienta.2020.109676. DOI: https://doi.org/10.1016/j.scienta.2020.109676

Preetha Rani, M. R.; Anupama, N.; Sreelekshmi, M.; Raghu, K. G. Chlorogenic acid attenuates glucotoxicity in H9c2 cells via inhibition of glycation and PKC α upregulation and safeguarding innate antioxidant status. Biomed. Pharmacother. 2018, 100, 467-477. DOI: https://doi.org/10.1016/j.biopha.2018.02.027. DOI: https://doi.org/10.1016/j.biopha.2018.02.027

Tomac, I.; Šeruga, M.; Labuda, J. Evaluation of antioxidant activity of chlorogenic acids and coffee extracts by an electrochemical DNA-based biosensor. Food Chem. 2020, 325. DOI: https://doi.org/10.1016/j.foodchem.2020.126787. DOI: https://doi.org/10.1016/j.foodchem.2020.126787

Xu, J. G.; Hu, Q. P.; Liu, Y. Antioxidant and DNA-protective activities of chlorogenic acid isomers. J. Agric. Food Chem. 2012, 60 (46), 11625-11630. DOI: https://doi.org/10.1021/jf303771s. DOI: https://doi.org/10.1021/jf303771s

Zhou, Y.; Zhou, L.; Ruan, Z.; Mi, S.; Jiang, M.; Li, X.; Wu, X.; Deng, Z.; Yin, Y. Chlorogenic acid ameliorates intestinal mitochondrial injury by increasing antioxidant effects and activity of respiratory complexes. Biosci. Biotechnol. Biochem. 2016, 80 (5), 962-971. DOI: https://doi.org/10.1080/09168451.2015.1127130. DOI: https://doi.org/10.1080/09168451.2015.1127130

Huang, J.; De Paulis, T.; May, J. M. Antioxidant effects of dihydrocaffeic acid in human EA.hy926 endothelial cells. J. Nutr. Biochem. 2004, 15 (12), 722-729. DOI: https://doi.org/10.1016/j.jnutbio.2004.07.002. DOI: https://doi.org/10.1016/j.jnutbio.2004.07.002

Moon, J. H.; Terao, J. Antioxidant Activity of Caffeic Acid and Dihydrocaffeic Acid in Lard and Human Low-Density Lipoprotein. J. Agric. Food Chem. 1998, 46 (12), 5062-5065. DOI: https://doi.org/10.1021/jf9805799. DOI: https://doi.org/10.1021/jf9805799

Sørensen, A. D. M.; Petersen, L. K.; de Diego, S.; Nielsen, N. S.; Lue, B. M.; Yang, Z.; Xu, X.; Jacobsen, C. The antioxidative effect of lipophilized rutin and dihydrocaffeic acid in fish oil enriched milk. Eur. J. Lipid Sci. Technol. 2012, 114 (4), 434-445. DOI: https://doi.org/10.1002/ejlt.201100354. DOI: https://doi.org/10.1002/ejlt.201100354

Adefegha, S. A.; Okeke, B. M.; Oboh, G. Antioxidant properties of eugenol, butylated hydroxylanisole, and butylated hydroxyl toluene with key biomolecules relevant to Alzheimer’s diseases—In vitro. J. Food Biochem. 2021, 45 (3). DOI: https://doi.org/10.1111/jfbc.13276. DOI: https://doi.org/10.1111/jfbc.13276

Alminderej, F.; Bakari, S.; Almundarij, T. I.; Snoussi, M.; Aouadi, K.; Kadri, A. Antioxidant activities of a new chemotype of piper cubeba L. Fruit essential oil (methyleugenol/eugenol): In silico molecular docking and admet studies. Plants 2020, 9 (11), 1-18. DOI: https://doi.org/10.3390/plants9111534. DOI: https://doi.org/10.3390/plants9111534

Bonilla, J.; Poloni, T.; Lourenço, R. V.; Sobral, P. J. A. Antioxidant potential of eugenol and ginger essential oils with gelatin/chitosan films. Food Biosci. 2018, 23, 107-114. DOI: https://doi.org/10.1016/j.fbio.2018.03.007. DOI: https://doi.org/10.1016/j.fbio.2018.03.007

Candido Júnior, J. R.; Romeiro, L. A. S.; Marinho, E. S.; Monteiro, N. K. V.; de Lima-Neto, P. Antioxidant activity of eugenol and its acetyl and nitroderivatives: the role of quinone intermediates—a DFT approach of DPPH test. J. Mol. Model. 2022, 28 (5). DOI: https://doi.org/10.1007/s00894-022-05120-z. DOI: https://doi.org/10.1007/s00894-022-05120-z

Ekinci Akdemir, F. N.; Yildirim, S.; Kandemir, F. M.; Aksu, E. H.; Guler, M. C.; Kiziltunc Ozmen, H.; Kucukler, S.; Eser, G. The antiapoptotic and antioxidant effects of eugenol against cisplatin-induced testicular damage in the experimental model. Andrologia 2019, 51 (9). DOI: https://doi.org/10.1111/and.13353. DOI: https://doi.org/10.1111/and.13353

Ferreira, V. R. F.; Militani, I. A.; de Almeida, K. J.; Lunguinho, A. D. S.; Saczk, A. A.; Ionta, M.; da Silva, G. A. F.; Felix, F. S.; Nelson, D. L.; Cardoso, M. D. G. Antioxidant and Cytotoxic Activity of Essential Oils and Their Principal Components: Spectrophotometric, Voltammetric, and Theoretical Investigation of the Chelating Effect of Eugenol and Carvacrol. ACS Food Sci. Technol. 2023, 3 (2), 350-360. DOI: https://doi.org/10.1021/acsfoodscitech.2c00378. DOI: https://doi.org/10.1021/acsfoodscitech.2c00378

Gülçin, I. Antioxidant activity of eugenol: A structure-activity relationship study. J. Med. Food 2011, 14 (9), 975-985. DOI: https://doi.org/10.1089/jmf.2010.0197. DOI: https://doi.org/10.1089/jmf.2010.0197

Hamed, S. F.; Sadek, Z.; Edris, A. Antioxidant and antimicrobial activities of clove bud essential oil and eugenol nanoparticles in alcohol-free microemulsion. J. Oleo Sci. 2012, 61 (11), 641-648. DOI: https://doi.org/10.5650/jos.61.641. DOI: https://doi.org/10.5650/jos.61.641

Hobani, Y. H.; Mohan, S.; Shaheen, E.; Abdelhaleem, A.; Faruque Ahmad, M.; Bhatia, S.; Abou-Elhamd, A. S. Gastroprotective effect of low dose Eugenol in experimental rats against ethanol induced toxicity: Involvement of antiinflammatory and antioxidant mechanism. J. Ethnopharmacol. 2022, 289. DOI: https://doi.org/10.1016/j.jep.2022.115055. DOI: https://doi.org/10.1016/j.jep.2022.115055

Horvathova, E.; Navarova, J.; Galova, E.; Sevcovicova, A.; Chodakova, L.; Snahnicanova, Z.; Melusova, M.; Kozics, K.; Slamenova, D. Assessment of antioxidative, chelating, and DNA-Protective effects of selected essential oil components (Eugenol, Carvacrol, Thymol, Borneol, Eucalyptol) of plants and intact rosmarinus officinalis oil. J. Agric. Food Chem. 2014, 62 (28), 6632-6639. DOI: https://doi.org/10.1021/jf501006y. DOI: https://doi.org/10.1021/jf501006y

Mahboub, R.; Memmou, F. Antioxidant activity and kinetics studies of eugenol and 6-bromoeugenol. Nat. Prod. Res. 2015, 29 (10), 966-971. DOI: https://doi.org/10.1080/14786419.2014.958738. DOI: https://doi.org/10.1080/14786419.2014.958738

Nam, H.; Kim, M. M. Eugenol with antioxidant activity inhibits MMP-9 related to metastasis in human fibrosarcoma cells. Food Chem. Toxicol. 2013, 55, 106-112. DOI: https://doi.org/10.1016/j.fct.2012.12.050. DOI: https://doi.org/10.1016/j.fct.2012.12.050

Oroojan, A. A.; Chenani, N.; An'Aam, M. Antioxidant Effects of Eugenol on Oxidative Stress Induced by Hydrogen Peroxide in Islets of Langerhans Isolated from Male Mouse. Int. J. Hepatol. 2020, 2020. DOI: https://doi.org/10.1155/2020/5890378. DOI: https://doi.org/10.1155/2020/5890378

Sharma, U. K.; Sharma, A. K.; Gupta, A.; Kumar, R.; Pandey, A.; Pandey, A. K. Pharmacological activities of cinnamaldehyde and eugenol: Antioxidant, cytotoxic and anti-leishmanial studies. Cell. Mol. Biol. 2017, 63 (6), 73-78. DOI: https://doi.org/10.14715/cmb/2017.63.6.15. DOI: https://doi.org/10.14715/cmb/2017.63.6.15

Alam, M. A. Anti-hypertensive Effect of Cereal Antioxidant Ferulic Acid and Its Mechanism of Action. Front. Vet. Sci. 2019, 6. DOI: https://doi.org/10.3389/fnut.2019.00121. DOI: https://doi.org/10.3389/fnut.2019.00121

Amić, A.; Marković, Z.; Dimitrić Marković, J. M.; Milenković, D.; Stepanić, V. Antioxidative potential of ferulic acid phenoxyl radical. Phytochemistry 2020, 170. DOI: https://doi.org/10.1016/j.phytochem.2019.112218. DOI: https://doi.org/10.1016/j.phytochem.2019.112218

Hasanvand, A.; Kharazmkia, A.; Mir, S.; Khorramabadi, R. M.; Darabi, S. Ameliorative effect of ferulic acid on gentamicin-induced nephrotoxicity in a rat model; role of antioxidant effects. J. Renal Inj. Prev. 2018, 7 (2), 73-77. DOI: https://doi.org/10.15171/jrip.2018.18. DOI: https://doi.org/10.15171/jrip.2018.18

Hwang, H. J.; Lee, S. R.; Yoon, J. G.; Moon, H. R.; Zhang, J.; Park, E.; Yoon, S. I.; Cho, J. A. Ferulic Acid as a Protective Antioxidant of Human Intestinal Epithelial Cells. Antioxidants 2022, 11 (8). DOI: https://doi.org/10.3390/antiox11081448. DOI: https://doi.org/10.3390/antiox11081448

Kaur, S.; Dhiman, M.; Mantha, A. K. Ferulic acid: A natural antioxidant with application towards neuroprotection against Alzheimer's disease. In Functional Food and Human Health, Springer Nature; Singapure, 2018, pp 575-586. DOI: https://doi.org/10.1007/978-981-13-1123-9_25

Wang, Y.; Chen, X.; Huang, Z.; Chen, D.; Yu, B.; Yu, J.; Chen, H.; He, J.; Luo, Y.; Zheng, P. Dietary ferulic acid supplementation improves antioxidant capacity and lipid metabolism in weaned piglets. Nutrients 2020, 12 (12), 1-11. DOI: https://doi.org/10.3390/nu12123811. DOI: https://doi.org/10.3390/nu12123811

Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol. Physiol. 2018, 31 (6), 332-336. DOI: https://doi.org/10.1159/000491755. DOI: https://doi.org/10.1159/000491755

Zduńska-Pęciak, K.; Kołodziejczak, A.; Rotsztejn, H. Two superior antioxidants: Ferulic acid and ascorbic acid in reducing signs of photoaging—A split-face comparative study. Dermatol. Ther. 2022, 35 (2). DOI: https://doi.org/10.1111/dth.15254. DOI: https://doi.org/10.1111/dth.15254

Azadfar, M.; Gao, A. H.; Chen, S. Structural characterization of lignin: A potential source of antioxidants guaiacol and 4-vinylguaiacol. Int. J. Biol. Macromol. 2015, 75, 58-66. DOI: https://doi.org/10.1016/j.ijbiomac.2014.12.049. DOI: https://doi.org/10.1016/j.ijbiomac.2014.12.049

Gao, T.; Zhang, Y.; Shi, J.; Mohamed, S. R.; Xu, J.; Liu, X. The Antioxidant Guaiacol Exerts Fungicidal Activity Against Fungal Growth and Deoxynivalenol Production in Fusarium graminearum. Front. Microbiol. 2021, 12. DOI: https://doi.org/10.3389/fmicb.2021.762844. DOI: https://doi.org/10.3389/fmicb.2021.762844

Bortolomeazzi, R.; Sebastianutto, N.; Toniolo, R.; Pizzariello, A. Comparative evaluation of the antioxidant capacity of smoke flavouring phenols by crocin bleaching inhibition, DPPH radical scavenging and oxidation potential. Food Chem. 2007, 100 (4), 1481-1489. DOI: https://doi.org/10.1016/j.foodchem.2005.11.039. DOI: https://doi.org/10.1016/j.foodchem.2005.11.039

Wang, X.; Li, X.; Chen, D. Evaluation of antioxidant activity of isoferulic acid in vitro. Nat. Prod. Commun. 2011, 6 (9), 1285-1288. DOI: https://doi.org/10.1177/1934578x1100600919. DOI: https://doi.org/10.1177/1934578X1100600919

Gao, Q.; Li, Y.; Li, Y.; Zhang, Z.; Liang, Y. Antioxidant and prooxidant activities of phenolic acids commonly existed in vegetablesand their relationship with structures. Free Radic. Biol. Med. 2022, 42. DOI: https://doi.org/10.1590/fst.07622. DOI: https://doi.org/10.1590/fst.07622

Li, X.; Lin, J.; Gao, Y.; Han, W.; Chen, D. Antioxidant activity and mechanism of Rhizoma Cimicifugae. Chem. Cent. J. 2012, 6 (1). DOI: https://doi.org/10.1186/1752-153X-6-140. DOI: https://doi.org/10.1186/1752-153X-6-140

Wang, F.; Zhao, S.; Li, F.; Zhang, B.; Qu, Y.; Sun, T.; Luo, T.; Li, D. Investigation of antioxidant interactions between radix Astragali and Cimicifuga foetida and identification of synergistic antioxidant compounds. PLoS One 2014, 9 (1). DOI: https://doi.org/10.1371/journal.pone.0087221. DOI: https://doi.org/10.1371/journal.pone.0087221

Mendoza-Sarmiento, G.; Rojas-Hernández, A.; Galano, A.; Gutiérrez, A. A combined experimental–theoretical study of the acid–base behavior of mangiferin: implications for its antioxidant activity. RSC Adv. 2016, 6 (56), 51171-51182. DOI: https://doi.org/10.1039/C6RA06328D. DOI: https://doi.org/10.1039/C6RA06328D

Vieira, A. J. S. C.; Telo, J. P.; Pereira, H. F.; Patrocínio, P. F.; Dias, R. M. B. Antioxidant effect of naturally occurring xanthines on the oxidative damage of DNA bases. J. Chim. Phys. Phys.-Chim. Biol. 1999, 96 (1), 116-123. DOI: https://doi.org/10.1051/jcp:1999118. DOI: https://doi.org/10.1051/jcp:1999118

Boz, H. p-Coumaric acid in cereals: Presence, antioxidant and antimicrobial effects. Int. J. Food Sci. Technol. 2015, 50 (11), 2323-2328. DOI: https://doi.org/10.1111/ijfs.12898. DOI: https://doi.org/10.1111/ijfs.12898

Liu, X.; Ji, D.; Cui, X.; Zhang, Z.; Li, B.; Xu, Y.; Chen, T.; Tian, S. p-Coumaric acid induces antioxidant capacity and defense responses of sweet cherry fruit to fungal pathogens. Postharvest Biol. Technol. 2020, 169. DOI: https://doi.org/10.1016/j.postharvbio.2020.111297. DOI: https://doi.org/10.1016/j.postharvbio.2020.111297

Mozaffari Godarzi, S.; Valizade Gorji, A.; Gholizadeh, B.; Mard, S. A.; Mansouri, E. Antioxidant effect of p-coumaric acid on interleukin 1-β and tumor necrosis factor-α in rats with renal ischemic reperfusion. Nefrologia 2020, 40 (3), 311-319. DOI: https://doi.org/10.1016/j.nefroe.2020.06.017. DOI: https://doi.org/10.1016/j.nefro.2019.10.003

Stojković, D.; Petrović, J.; Soković, M.; Glamočlija, J.; Kukić-Marković, J.; Petrović, S. In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems. J. Sci. Food Agric. 2013, 93 (13), 3205-3208. DOI: https://doi.org/10.1002/jsfa.6156. DOI: https://doi.org/10.1002/jsfa.6156

Zang, L. Y.; Cosma, G.; Gardner, H.; Shi, X.; Castranova, V.; Vallyathan, V. Effect of antioxidant protection by p-coumaric acid on low-density lipoprotein cholesterol oxidation. Am. J. Physiol. - Cell Physiol. 2000, 279 (4 48-4), C954-C960. DOI: https://doi.org/10.1152/ajpcell.2000.279.4.c954. DOI: https://doi.org/10.1152/ajpcell.2000.279.4.C954

Adefegha, S. A.; Oboh, G.; Ejakpovi, I. I.; Oyeleye, S. I. Antioxidant and antidiabetic effects of gallic and protocatechuic acids: a structure–function perspective. Comp. Clin. Path. 2015, 24 (6), 1579-1585. DOI: https://doi.org/10.1007/s00580-015-2119-7. DOI: https://doi.org/10.1007/s00580-015-2119-7

El-Sonbaty, Y. A.; Suddek, G. M.; Megahed, N.; Gameil, N. M. Protocatechuic acid exhibits hepatoprotective, vasculoprotective, antioxidant and insulin-like effects in dexamethasone-induced insulin-resistant rats. Biochimie 2019, 167, 119-134. DOI: https://doi.org/10.1016/j.biochi.2019.09.011. DOI: https://doi.org/10.1016/j.biochi.2019.09.011

Graton, M. E.; Ferreira, B. H. S. H.; Troiano, J. A.; Potje, S. R.; Vale, G. T.; Nakamune, A. C. M. S.; Tirapelli, C. R.; Miller, F. J.; Ximenes, V. F.; Antoniali, C. Comparative study between apocynin and protocatechuic acid regarding antioxidant capacity and vascular effects. Front. Physiol. 2022, 13. DOI: https://doi.org/10.3389/fphys.2022.1047916. DOI: https://doi.org/10.3389/fphys.2022.1047916

Han, L.; Yang, Q.; Ma, W.; Li, J.; Qu, L.; Wang, M. Protocatechuic Acid Ameliorated Palmitic-Acid-Induced Oxidative Damage in Endothelial Cells through Activating Endogenous Antioxidant Enzymes via an Adenosine-Monophosphate-Activated-Protein-Kinase-Dependent Pathway. J. Agric. Food Chem. 2018, 66 (40), 10400-10409. DOI: https://doi.org/10.1021/acs.jafc.8b03414. DOI: https://doi.org/10.1021/acs.jafc.8b03414

Harini, R.; Pugalendi, K. V. Antioxidant and antihyperlipidaemic activity of protocatechuic acid on streptozotocindiabetic rats. Redox Rep. 2010, 15 (2), 71-80. DOI: https://doi.org/10.1179/174329210X12650506623285. DOI: https://doi.org/10.1179/174329210X12650506623285

Hyogo, A.; Kobayashi, T.; del Saz, E. G.; Seguchi, H. Antioxidant effects of protocatechuic acid, ferulic acid, and caffeic acid in human neutrophils using a fluorescent substance. Int. J. Morphol 2010, 28 (3), 911-920. DOI: https://doi.org/10.4067/S0717-95022010000300040. DOI: https://doi.org/10.4067/S0717-95022010000300040

Jiang, S. Q.; Chen, Z. L.; Zhang, S.; Ye, J. L.; Wang, Y. B. Protective effects of protocatechuic acid on growth performance, intestinal barrier and antioxidant capacity in broilers challenged with lipopolysaccharide. Animal 2023, 17 (1). DOI: https://doi.org/10.1016/j.animal.2022.100693. DOI: https://doi.org/10.1016/j.animal.2022.100693

Li, X.; Wang, X.; Chen, D.; Chen, S. Antioxidant activity and mechanism of protocatechuic acid in Vitro. Cancer: Oxid. Stress Dietary Antioxid. 2011, 1 (7), 232-244. DOI: https://doi.org/10.31989/ffhd.v1i7.127. DOI: https://doi.org/10.31989/ffhd.v1i7.127

Menezes, V. G.; Santos, J. M. S.; Macedo, T. J. S.; Lins, T. L. B. G.; Barberino, R. S.; Gouveia, B. B.; Bezerra, M. É. S.; Cavalcante, A. Y. P.; Queiroz, M. A. A.; Palheta, R. C.; Matos, M. H. T. Use of protocatechuic acid as the sole antioxidant in the base medium for in vitro culture of ovine isolated secondary follicles. Reprod. Domest. Anim. 2017, 52 (5), 890-898. DOI: https://doi.org/10.1111/rda.12995. DOI: https://doi.org/10.1111/rda.12995

Safaeian, L.; Emami, R.; Hajhashemi, V.; Haghighatian, Z. Antihypertensive and antioxidant effects of protocatechuic acid in deoxycorticosterone acetate-salt hypertensive rats. Biomed. Pharmacother. 2018, 100, 147-155. DOI: https://doi.org/10.1016/j.biopha.2018.01.107. DOI: https://doi.org/10.1016/j.biopha.2018.01.107

Varì, R.; D'Archivio, M.; Filesi, C.; Carotenuto, S.; Scazzocchio, B.; Santangelo, C.; Giovannini, C.; Masella, R. Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation in murine macrophages. J. Nutr. Biochem. 2011, 22 (5), 409-417. DOI: https://doi.org/10.1016/j.jnutbio.2010.03.008. DOI: https://doi.org/10.1016/j.jnutbio.2010.03.008

Yang, L.; Chen, X.; Chen, D.; Yu, B.; He, J.; Luo, Y.; Zheng, P.; Chen, H.; Yan, H.; Huang, Z. Effects of protocatechuic acid on antioxidant capacity, mitochondrial biogenesis and skeletal muscle fiber transformation. J. Nutr. Biochem. 2023, 116. DOI: https://doi.org/10.1016/j.jnutbio.2023.109327. DOI: https://doi.org/10.1016/j.jnutbio.2023.109327

Zhang, S.; Gai, Z.; Gui, T.; Chen, J.; Chen, Q.; Li, Y. Antioxidant Effects of Protocatechuic Acid and Protocatechuic Aldehyde: Old Wine in a New Bottle. Evid. Based Complement. Alternat. Med. 2021, 2021. DOI: https://doi.org/10.1155/2021/6139308. DOI: https://doi.org/10.1155/2021/6139308

Zhang, X.; Shi, G. F.; Liu, X. Z.; An, L. J.; Guan, S. Anti-ageing effects of protocatechuic acid from Alpinia on spleen and liver antioxidative system of senescent mice. Cell Biochem. Funct. 2011, 29 (4), 342-347. DOI: https://doi.org/10.1002/cbf.1757. DOI: https://doi.org/10.1002/cbf.1757

Castañeda-Arriaga, R.; Marino, T.; Russo, N.; Alvarez-Idaboy, J. R.; Galano, A. Chalcogen effects on the primary antioxidant activity of chrysin and quercetin. New J. Chem. 2020, 44 (21), 9073-9082. DOI: https://doi.org/10.1039/d0nj01795g. DOI: https://doi.org/10.1039/D0NJ01795G

Jamuna, S.; Karthika, K.; Paulsamy, S.; Thenmozhi, K.; Kathiravan, S.; Venkatesh, R. Confertin and scopoletin from leaf and root extracts of Hypochaeris radicata have anti-inflammatory and antioxidant activities. Ind. Crops Prod. 2015, 70, 221-230. DOI: https://doi.org/10.1016/j.indcrop.2015.03.039. DOI: https://doi.org/10.1016/j.indcrop.2015.03.039

Lee, H. I.; Lee, M. K. Effects of scopoletin supplementation on insulin resistance and antioxidant defense system in chronic alcohol-fed rats. J. Korean Soc. Food Sci. Nutr. 2015, 44 (2), 173-181. DOI: https://doi.org/10.3746/jkfn.2015.44.2.173. DOI: https://doi.org/10.3746/jkfn.2015.44.2.173

Malik, A.; Kushnoor, A.; Saini, V.; Singhal, S.; Kumar, S.; Yadav, Y. C. In vitro antioxidant properties of Scopoletin. J. Chem. Pharm. Res. 2011, 3 (3), 659-665.

Mogana, R.; Teng-Jin, K.; Wiart, C. Anti-inflammatory, anticholinesterase, and antioxidant potential of scopoletin isolated from Canarium patentinervium Miq. (Burseraceae Kunth). Evid. Based Complement. Alternat. Med. 2013, 2013. DOI: https://doi.org/10.1155/2013/734824. DOI: https://doi.org/10.1155/2013/734824

Panda, S.; Kar, A. Evaluation of the antithyroid, antioxidative and antihyperglycemic activity of scopoletin from Aegle marmelos leaves in hyperthyroid rats. Phytother. Res. 2006, 20 (12), 1103-1105. DOI: https://doi.org/10.1002/ptr.2014. DOI: https://doi.org/10.1002/ptr.2014

Shaw, C. Y.; Chen, C. H.; Hsu, C. C.; Chen, C. C.; Tsai, Y. C. Antioxidant properties of scopoletin isolated from Sinomonium acutum. Phytother. Res. 2003, 17 (7), 823-825. DOI: https://doi.org/10.1002/ptr.1170. DOI: https://doi.org/10.1002/ptr.1170

Alawsy, T. T. J.; Al-Jumaili, E. F. Antioxidant activity of tannic acid purified from sumac seeds (Rhus coriaria L.): ItS scavenging effect on free radicaland active oxygen. Plant Arch. 2020, 20, 2901-2906.

Daré, R. G.; Nakamura, C. V.; Ximenes, V. F.; Lautenschlager, S. O. S. Tannic acid, a promising anti-photoaging agent: Evidences of its antioxidant and anti-wrinkle potentials, and its ability to prevent photodamage and MMP-1 expression in L929 fibroblasts exposed to UVB. Free Radic. Biol. Med. 2020, 160, 342-355. DOI: https://doi.org/10.1016/j.freeradbiomed.2020.08.019. DOI: https://doi.org/10.1016/j.freeradbiomed.2020.08.019

Esmaiel, E. M.; Abo-Youssef, A. M.; Tohamy, M. A. Antidiabetic and antioxidant effects of tannic acid and melatonin on streptozotocin induced diabetes in rats. Pak. J. Pharm. Sci. 2019, 32 (4), 1453-1459.

Gülçin, I.; Huyut, Z.; Elmastaş, M.; Aboul-Enein, H. Y. Radical scavenging and antioxidant activity of tannic acid. Arab. J. Chem. 2010, 3 (1), 43-53. DOI: https://doi.org/10.1016/j.arabjc.2009.12.008. DOI: https://doi.org/10.1016/j.arabjc.2009.12.008

Karakurt, S.; Adali, O. Tannic acid inhibits proliferation, migration, invasion of prostate cancer and modulates drug metabolizing and antioxidant enzymes. Anticancer Agents Med. Chem. 2016, 16 (6), 781-789. DOI: https://doi.org/10.2174/1871520616666151111115809. DOI: https://doi.org/10.2174/1871520616666151111115809

Lou, W.; Chen, Y.; Ma, H.; Liang, G.; Liu, B. Antioxidant and α-amylase inhibitory activities of tannic acid. J. Food Sci. Technol. 2018, 55 (9), 3640-3646. DOI: https://doi.org/10.1007/s13197-018-3292-x. DOI: https://doi.org/10.1007/s13197-018-3292-x

Türkan, F.; Taslimi, P.; Saltan, F. Z. Tannic acid as a natural antioxidant compound: Discovery of a potent metabolic enzyme inhibitor for a new therapeutic approach in diabetes and Alzheimer's disease. J. Biochem. Mol. Toxicol. 2019, 33 (8). DOI: https://doi.org/10.1002/jbt.22340. DOI: https://doi.org/10.1002/jbt.22340

Wang, M.; Huang, H.; Liu, S.; Zhuang, Y.; Yang, H.; Li, Y.; Chen, S.; Wang, L.; Yin, L.; Yao, Y.; He, S. Tannic acid modulates intestinal barrier functions associated with intestinal morphology, antioxidative activity, and intestinal tight junction in a diquat-induced mouse model. RSC Adv. 2019, 9 (55), 31988-31998. DOI: https://doi.org/10.1039/c9ra04943f. DOI: https://doi.org/10.1039/C9RA04943F

Wang, M.; Huang, H.; Wang, L.; Yin, L.; Yang, H.; Chen, C.; Zheng, Q.; He, S. Tannic acid attenuates intestinal oxidative damage by improving antioxidant capacity and intestinal barrier in weaned piglets and IPEC-J2 cells. Front. Vet. Sci. 2022, 9. DOI: https://doi.org/10.3389/fnut.2022.1012207. DOI: https://doi.org/10.3389/fnut.2022.1012207

Xi, Y.; Chen, J.; Guo, S.; Wang, S.; Liu, Z.; Zheng, L.; Qi, Y.; Xu, P.; Li, L.; Zhang, Z.; Ding, B. Effects of tannic acid on growth performance, relative organ weight, antioxidative status, and intestinal histomorphology in broilers exposed to aflatoxin B1. Funct. Food Hum. Health 2022, 9. DOI: https://doi.org/10.3389/fvets.2022.1037046. DOI: https://doi.org/10.3389/fvets.2022.1037046

Yu, M.; Sun, X.; Dai, X.; Gu, C.; Gu, M.; Wang, A.; Wei, W.; Yang, S. Effects of Tannic Acid on Antioxidant Activity and Ovarian Development in Adolescent and Adult Female Brandt’s Voles. Reprod. Sci. 2021, 28 (10), 2839-2846. DOI: https://doi.org/10.1007/s43032-021-00578-3. DOI: https://doi.org/10.1007/s43032-021-00578-3

Azam, S.; Hadi, N.; Khan, N. U.; Hadi, S. M. Antioxidant and prooxidant properties of caffeine, theobromine and xanthine. Med. Sci. Monit. 2003, 9 (9), BR325-BR330.

Wu, F.; Liu, R.; Shen, X.; Xu, H.; Sheng, L. Study on the interaction and antioxidant activity of theophylline and theobromine with SOD by spectra and calculation. Spectrochim. Acta - Part A: Mol. Biomol. Spectrosc. 2019, 215, 354-362. DOI: https://doi.org/10.1016/j.saa.2019.03.001. DOI: https://doi.org/10.1016/j.saa.2019.03.001

Ekin, S.; Yildirim, S.; Akkoyun, M. B.; Gok, H. N.; Arihan, O.; Oto, G.; Akkoyun, T.; Basbugan, Y.; Aslan, S. Theophylline attenuates bleomycin-induced oxidative stress in rats: The role of IL-6, NF-κB, and antioxidant enzymes. Braz. J. Pharm. Sci. 2022, 58. DOI: https://doi.org/10.1590/s2175-97902022e20827. DOI: https://doi.org/10.1590/s2175-97902022e20827

Santos, P. M. P.; Silva, S. A. G.; Justino, G. C.; Vieira, A. J. S. C. Demethylation of theophylline (1,3-dimethylxanthine) to 1-methylxanthine: The first step of an antioxidising cascade. Redox Rep. 2010, 15 (3), 138-144. DOI: https://doi.org/10.1179/174329210X12650506623726. DOI: https://doi.org/10.1179/174329210X12650506623726

Kumar, S.; Prahalathan, P.; Raja, B. Antihypertensive and antioxidant potential of vanillic acid, a phenolic compound in L-NAME-induced hypertensive rats: A dose-dependence study. Redox Rep. 2011, 16 (5), 208-215. DOI: https://doi.org/10.1179/1351000211Y.0000000009. DOI: https://doi.org/10.1179/1351000211Y.0000000009

Salau, V. F.; Erukainure, O. L.; Ibeji, C. U.; Olasehinde, T. A.; Koorbanally, N. A.; Islam, M. S. Vanillin and vanillic acid modulate antioxidant defense system via amelioration of metabolic complications linked to Fe2+-induced brain tissues damage. Metab. Brain Dis. 2020, 35 (5), 727-738. DOI: https://doi.org/10.1007/s11011-020-00545-y. DOI: https://doi.org/10.1007/s11011-020-00545-y

Shabani, M.; Jamali, Z.; Bayrami, D.; Salimi, A. Vanillic acid alleviates methamphetamine-induced mitochondrial toxicity in cardiac mitochondria via antioxidant activity and inhibition of MPT Pore opening: an in-vitro study. BMC Pharmacol. Toxicol. 2023, 24 (1). DOI: https://doi.org/10.1186/s40360-023-00676-9. DOI: https://doi.org/10.1186/s40360-023-00676-9

Stanely Mainzen Prince, P.; Rajakumar, S.; Dhanasekar, K. Protective effects of vanillic acid on electrocardiogram, lipid peroxidation, antioxidants, proinflammatory markers and histopathology in isoproterenol induced cardiotoxic rats. Eur. J. Pharmacol. 2011, 668 (1-2), 233-240. DOI: https://doi.org/10.1016/j.ejphar.2011.06.053. DOI: https://doi.org/10.1016/j.ejphar.2011.06.053

Vinothiya, K.; Ashokkumar, N. Modulatory effect of vanillic acid on antioxidant status in high fat diet-induced changes in diabetic hypertensive rats. Biomed. Pharmacother. 2017, 87, 640-652. DOI: https://doi.org/10.1016/j.biopha.2016.12.134. DOI: https://doi.org/10.1016/j.biopha.2016.12.134

Gonzalez-Baro, A. C.; Izquierdo, D.; Heras, A.; Colina, A. UV/Vis spectroelectrochemistry of o-vanillin: Study of the antioxidant properties. J. Electroanal. Chem. 2020, 859. DOI: https://doi.org/10.1016/j.jelechem.2020.113844. DOI: https://doi.org/10.1016/j.jelechem.2020.113844

Kamat, J. P.; Ghosh, A.; Devasagayam, T. P. A. Vanillin as an antioxidant in rat liver mitochondria: Inhibition of protein oxidation and lipid peroxidation induced by photosensitization. Mol. Cell. Biochem. 2000, 209 (1-2), 47-53. DOI: https://doi.org/10.1023/a:1007048313556. DOI: https://doi.org/10.1023/A:1007048313556

Tai, A.; Sawano, T.; Yazama, F.; Ito, H. Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays. Biochim. Biophys. Acta - Gen. Subj. 2011, 1810 (2), 170-177. DOI: https://doi.org/10.1016/j.bbagen.2010.11.004. DOI: https://doi.org/10.1016/j.bbagen.2010.11.004

Widowati, W.; Fauziah, N.; Herdiman, H.; Afni, M.; Afifah, E.; Kusuma, H. S. W.; Nufus, H.; Arumwardana, S.; Rihibiha, D. D. Antioxidant and anti aging assays of Oryza sativa extracts, vanillin and coumaric acid. J. Nat. Remedies 2016, 16 (3), 88-99. DOI: https://doi.org/10.18311/jnr/2016/7220. DOI: https://doi.org/10.18311/jnr/2016/7220

Xiong, S.; Li, R.; Ye, S.; Ni, P.; Shan, J.; Yuan, T.; Liang, J.; Fan, Y.; Zhang, X. Vanillin enhances the antibacterial and antioxidant properties of polyvinyl alcohol-chitosan hydrogel dressings. Int. J. Biol. Macromol. 2022, 220, 109-116. DOI: https://doi.org/10.1016/j.ijbiomac.2022.08.052. DOI: https://doi.org/10.1016/j.ijbiomac.2022.08.052

Tai, A.; Sawano, T.; Yazama, F. Antioxidant properties of ethyl vanillin in vitro and in vivo. Biosci. Biotechnol. Biochem. 2011, 75 (12), 2346-2350. DOI: https://doi.org/10.1271/bbb.110524. DOI: https://doi.org/10.1271/bbb.110524

Zieniuk, B.; Groborz, K.; Wołoszynowska, M.; Ratusz, K.; Białecka‐florjańczyk, E.; Fabiszewska, A. Enzymatic synthesis of lipophilic esters of phenolic compounds, evaluation of their antioxidant activity and effect on the oxidative stability of selected oils. Biomolecules 2021, 11 (2), 1-12. DOI: https://doi.org/10.3390/biom11020314. DOI: https://doi.org/10.3390/biom11020314

Bielski, B. H. J.; Arudi, R. L.; Sutherland, M. W. A study of the reactivity of HO2/O2 - with unsaturated fatty acids. J. Biol. Chem. 1983, 258 (8), 4759-4761. DOI: https://doi.org/10.1016/S0021-9258(18)32488-8

8Terpinc, P.; Abramovič, H. A kinetic approach for evaluation of the antioxidant activity of selected phenolic acids. Food Chem. 2010, 121 (2), 366-371. DOI: https://doi.org/10.1016/j.foodchem.2009.12.037. DOI: https://doi.org/10.1016/j.foodchem.2009.12.037

Sies, H. Oxidative stress: Oxidants and antioxidants. .1997, 82 (2), 291-295. DOI: https://doi.org/10.1113/expphysiol.1997.sp004024. DOI: https://doi.org/10.1113/expphysiol.1997.sp004024

Masuda, T.; Yamada, K.; Maekawa, T.; Takeda, Y.; Yamaguchi, H. Antioxidant mechanism studies on ferulic acid: Identification of oxidative coupling products from methyl ferulate and linoleate. J. Agric. Food Chem. 2006, 54 (16), 6069-6074. DOI: https://doi.org/10.1021/jf060676z. DOI: https://doi.org/10.1021/jf060676z

Masuda, T.; Yamada, K.; Maekawa, T.; Takeda, Y.; Yamaguchi, H. Antioxidant mechanism studies on ferulic acid: Isolation and structure identification of the main antioxidation product from methyl ferulate. Food Sci. Technol. Res. 2006, 12 (3), 173-177. DOI: https://doi.org/10.3136/fstr.12.173. DOI: https://doi.org/10.3136/fstr.12.173

Miche, H.; Brumas, V.; Berthon, G. Copper(II) interactions with nonsteroidal antiinflammatory agents. II. Anthranilic acid as a potential OH-inactivating ligand. J. Inorg. Biochem. 1997, 68 (1), 27-38. DOI: https://doi.org/10.1016/S0162-0134(97)00005-6. DOI: https://doi.org/10.1016/S0162-0134(97)00005-6

Gaubert, S.; Bouchaut, M.; Brumas, V.; Berthon, G. Copper-ligand interactions and physiological free radical processes. Part 3. Influence of histidine, salicylic acid and anthranilic acid on copper-driven Fenton chemistry in vitro. Free Radic. Res. 2000, 32 (5), 451-461. DOI: https://doi.org/10.1080/10715760000300451. DOI: https://doi.org/10.1080/10715760000300451

Steenken, S.; Jovanovic, S. V. How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J. Am. Chem. Soc. 1997, 119 (3), 617-618. DOI: https://doi.org/10.1021/ja962255b. DOI: https://doi.org/10.1021/ja962255b

Galano, A.; Alvarez-Idaboy, J. R. On the evolution of one-electron-oxidized deoxyguanosine in damaged DNA under physiological conditions: A DFT and ONIOM study on proton transfer and equilibrium. Phys. Chem. Chem. Phys. 2012, 14 (36), 12476-12484. DOI: https://doi.org/10.1039/c2cp40799j. DOI: https://doi.org/10.1039/c2cp40799j

Tronche, C.; Goodman, B. K.; Greenberg, M. M. DNA damage induced via independent generation of the radical resulting from formal hydrogen atom abstraction from the C1'-position of a nucleotide. Chem. Biol. 1998, 5 (5), 263-271. DOI: https://doi.org/10.16/S1074-5521(98)90619-6. DOI: https://doi.org/10.1016/S1074-5521(98)90619-6

Pogozelski, W. K.; Tullius, T. D. Oxidative Strand Scission of Nucleic Acids: Routes Initiated by Hydrogen Abstraction from the Sugar Moiety. Chem. Rev. 1998, 98 (3), 1089-1108. DOI: https://doi.org/10.1021/cr960437i. DOI: https://doi.org/10.1021/cr960437i

Dedon, P. C. The Chemical Toxicology of 2-Deoxyribose Oxidation in DNA. Chem. Res. Toxicol. 2007, 21 (1), 206-219. DOI: https://doi.org/10.1021/tx700283c. DOI: https://doi.org/10.1021/tx700283c

Yu, Y.; Cui, Y.; Niedernhofer, L. J.; Wang, Y. Occurrence, Biological Consequences, and Human Health Relevance of Oxidative Stress-Induced DNA Damage. Chem. Res. Toxicol. 2016, 29 (12), 2008-2039. DOI: https://doi.org/10.1021/acs.chemrestox.6b00265. DOI: https://doi.org/10.1021/acs.chemrestox.6b00265

Pérez-González, A.; Castañeda-Arriaga, R.; Álvarez-Idaboy, J. R.; Reiter, R. J.; Galano, A. Melatonin and its metabolites as chemical agents capable of directly repairing oxidized DNA. J. Pineal Res. 2019, 66 (2). DOI: https://doi.org/10.1111/jpi.12539. DOI: https://doi.org/10.1111/jpi.12539

Galano, A.; Francisco-Marquez, M. Reactions of OOH radical with β-carotene, lycopene, and torulene: Hydrogen atom transfer and adduct formation mechanisms. J. Phys. Chem. B 2009, 113 (32), 11338-11345. DOI: https://doi.org/10.1021/jp904061q. DOI: https://doi.org/10.1021/jp904061q

Mortensen, A. Scavenging of benzylperoxyl radicals by carotenoids. Free Radic. Res. 2002, 36 (2), 211-216. DOI: https://doi.org/10.1080/10715760290006501. DOI: https://doi.org/10.1080/10715760290006501

Liebler, D. C.; McClure, T. D. Antioxidant reactions of β-carotene: Identification of carotenoid-radical adducts. Chem. Res. Toxicol. 1996, 9 (1), 8-11. DOI: https://doi.org/10.1021/tx950151t. DOI: https://doi.org/10.1021/tx950151t

Joshi, R.; Gangabhagirathi, R.; Venu, S.; Adhikari, S.; Mukherjee, T. Antioxidant activity and free radical scavenging reactions of gentisic acid: In-vitro and pulse radiolysis studies. Free Radic. Res. 2012, 46 (1), 11-20. DOI: https://doi.org/10.3109/10715762.2011.633518. DOI: https://doi.org/10.3109/10715762.2011.633518

Dhiman, S. B.; Kamat, J. P.; Naik, D. B. Antioxidant activity and free radical scavenging reactions of hydroxybenzyl alcohols. Biochemical and pulse radiolysis studies. Chem. Biol. Interact. 2009, 182 (2-3), 119-127. DOI: https://doi.org/10.1016/j.cbi.2009.07.025. DOI: https://doi.org/10.1016/j.cbi.2009.07.025

Hata, K.; Lin, M.; Katsumura, Y.; Muroya, Y.; Fu, H.; Yamashita, S.; Nakagawa, H. Pulse radiolysis study on free radical scavenger edaravone(3-methyl-1-phenyl-2-pyrazolin-5-one).2: A comparative study on edaravone derivatives. J. Radiat. Res. 2011, 52 (1), 15-23. DOI: https://doi.org/10.1269/jrr.10060. DOI: https://doi.org/10.1269/jrr.10060

Pérez-González, A.; Galano, A. OH radical scavenging activity of edaravone: Mechanism and kinetics. J. Phys. Chem. B 2011, 115 (5), 1306-1314. DOI: https://doi.org/10.1021/jp110400t. DOI: https://doi.org/10.1021/jp110400t

Galano, A. On the direct scavenging activity of melatonin towards hydroxyl and a series of peroxyl radicals. Phys. Chem. Chem. Phys. 2011, 13 (15), 7178-7188. DOI: https://doi.org/10.1039/c0cp02801k. DOI: https://doi.org/10.1039/c0cp02801k

Galano, A.; Tan, D. X.; Reiter, R. J. On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK. J. Pineal Res. 2013, 54 (3), 245-257. DOI: https://doi.org/10.1111/jpi.12010. DOI: https://doi.org/10.1111/jpi.12010

Galano, A.; Tan, D. X.; Reiter, R. J. Cyclic 3-hydroxymelatonin, a key metabolite enhancing the peroxyl radical scavenging activity of melatonin. RSC Adv. 2014, 4 (10), 5220-5227. DOI: https://doi.org/10.1039/C3RA44604B. DOI: https://doi.org/10.1039/c3ra44604b

Tamba, M.; Torreggiani, A. Hydroxyl radical scavenging by carnosine and Cu(II)-carnosine complexes: A pulse-radiolysis and spectroscopic study. Int. J. Radiat. Biol. 1999, 75 (9), 1177-1188. DOI: https://doi.org/10.1080/095530099139656. DOI: https://doi.org/10.1080/095530099139656

Sakurai, K.; Sasabe, H.; Koga, T.; Konishi, T. Mechanism of hydroxyl radical scavenging by rebamipide: Identification of mono-hydroxylated rebamipide as as a major reaction product. Free Radic. Res. 2004, 38 (5), 487-494. DOI: https://doi.org/10.1080/1071576042000209808. DOI: https://doi.org/10.1080/1071576042000209808

Barzegar, A. The role of electron-transfer and H-atom donation on the superb antioxidant activity and free radical reaction of curcumin. Food Chem. 2012, 135 (3), 1369-1376. DOI: https://doi.org/10.1016/j.foodchem.2012.05.070. DOI: https://doi.org/10.1016/j.foodchem.2012.05.070

Touriño, S.; Lizárraga, D.; Carreras, A.; Lorenzo, S.; Ugartondo, V.; Mitjans, M.; Vinardell, M. P.; Julía, L.; Cascante, M.; Torres, J. L. Highly galloylated tannin fractions from witch hazel (Hamamelis virginiana) bark: Electron transfer capacity, in vitro antioxidant activity, and effects on skin-related cells. Chem. Res. Toxicol. 2008, 21 (3), 696-704. DOI: https://doi.org/10.1021/tx700425n. DOI: https://doi.org/10.1021/tx700425n

Pérez-González, A.; Galano, A. On the outstanding antioxidant capacity of edaravone derivatives through single electron transfer reactions. J. Phys. Chem. B 2012, 116 (3), 1180-1188. DOI: https://doi.org/10.1021/jp209930y. DOI: https://doi.org/10.1021/jp209930y

Nakanishi, I.; Shimada, T.; Ohkubo, K.; Manda, S.; Shimizu, T.; Urano, S.; Okuda, H.; Miyata, N.; Ozawa, T.; Anzai, K.; et al. Involvement of electron transfer in the radical-scavenging reaction of resveratrol. Chem. Lett. 2007, 36 (10), 1276-1277. DOI: https://doi.org/10.1246/cl.2007.1276. DOI: https://doi.org/10.1246/cl.2007.1276

Nakanishi, I.; Ohkubo, K.; Miyazaki, K.; Hakamata, W.; Urano, S.; Ozawa, T.; Okuda, H.; Fukuzumi, S.; Ikota, N.; Fukuhara, K. A Planar Catechin Analogue Having a More Negative Oxidation Potential than (+)-Catechin as an Electron Transfer Antioxidant against a Peroxyl Radical. Chem. Res. Toxicol. 2004, 17 (1), 26-31. DOI: https://doi.org/10.1021/tx034134c. DOI: https://doi.org/10.1021/tx034134c

Hill, T. J.; Land, E. J.; McGarvey, D. J.; Schalch, W.; Tinkler, J. H.; Truscott, T. G. Interactions between carotenoids and the CCl3O2 • radical. J. Am. Chem. Soc. 1995, 117 (32), 8322-8326. DOI: https://doi.org/10.1021/ja00137a004. DOI: https://doi.org/10.1021/ja00137a004

Packer, J. E.; Mahood, J. S.; Mora-Arellano, V. O.; Slater, T. F.; Willson, R. L.; Wolfenden, B. S. Free radicals and singlet oxygen scavengers: Reaction of a peroxy-radical with β-carotene, diphenyl furan and 1,4-diazobicyclo(2,2,2)-octane. Biochem .Biophys. Res. Commun. 1981, 98 (4), 901-906. DOI: https://doi.org/10.1016/0006-291x(81)91196-7. DOI: https://doi.org/10.1016/0006-291X(81)91196-7

Mortensen, A.; Skibsted, L. H.; Sampson, J.; Rice-Evans, C.; Everett, S. A. Comparative mechanisms and rates of free radical scavenging by carotenoid antioxidants. FEBS Lett. 1997, 418 (1-2), 91-97. DOI: https://doi.org/10.1016/s0014-5793(97)01355-0. DOI: https://doi.org/10.1016/S0014-5793(97)01355-0

Everett, S. A.; Kundu, S. C.; Maddix, S.; Willson, R. L. Mechanisms of free-radical scavenging by the nutritional antioxidant β-carotene. Biochem. Soc. Trans. 1995, 23 (2), 230S. DOI: https://doi.org/10.1042/bst023230s. DOI: https://doi.org/10.1042/bst023230s

Cao, L.; Yu, H.; Shao, S.; Wang, S.; Guo, Y. Evaluating the antioxidant capacity of polyphenols with an off-on fluorescence probe and the mechanism study. Anal. Methods 2014, 6 (18), 7149-7153. DOI: https://doi.org/10.1039/C4AY01276C. DOI: https://doi.org/10.1039/C4AY01276C

Mikulski, D.; Eder, K.; Molski, M. Quantum-chemical study on relationship between structure and antioxidant properties of hepatoprotective compounds occurring in Cynara scolymus and Silybum marianum. J. Theor. Comput. Chem. 2014, 13 (1). DOI: https://doi.org/10.1142/S0219633614500047. DOI: https://doi.org/10.1142/S0219633614500047

Mendoza-Wilson, A. M.; Castro-Arredondo, S. I.; Balandrán-Quintana, R. R. Computational study of the structure-free radical scavenging relationship of procyanidins. Food Chem. 2014, 161, 155-161. DOI: https://doi.org/10.1016/j.foodchem.2014.03.111. DOI: https://doi.org/10.1016/j.foodchem.2014.03.111

Wang, G.; Xue, Y.; An, L.; Zheng, Y.; Dou, Y.; Zhang, L.; Liu, Y. Theoretical study on the structural and antioxidant properties of some recently synthesised 2,4,5-trimethoxy chalcones. Food Chem. 2014, 171, 89-97. DOI: https://doi.org/10.1016/j.foodchem.2014.08.106. DOI: https://doi.org/10.1016/j.foodchem.2014.08.106

Praveena, R.; Sadasivam, K.; Deepha, V.; Sivakumar, R. Antioxidant potential of orientin: A combined experimental and DFT approach. J. Mol. Struct. 2014, 1061 (1), 114-123. DOI: https://doi.org/10.1016/j.molstruc.2014.01.002. DOI: https://doi.org/10.1016/j.molstruc.2014.01.002

Galano, A.; Martínez, A. Capsaicin, a tasty free radical scavenger: Mechanism of action and kinetics. J. Phys. Chem. B 2012, 116 (3), 1200-1208. DOI: https://doi.org/10.1021/jp211172f. DOI: https://doi.org/10.1021/jp211172f

Martínez, A.; Galano, A.; Vargas, R. Free radical scavenger properties of α-mangostin: Thermodynamics and kinetics of HAT and RAF mechanisms. J. Phys. Chem. B 2011, 115 (43), 12591-12598. DOI: https://doi.org/10.1021/jp205496u. DOI: https://doi.org/10.1021/jp205496u

Dimitrić Marković, J. M.; Milenković, D.; Amić, D.; Mojović, M.; Pašti, I.; Marković, Z. S. The preferred radical scavenging mechanisms of fisetin and baicalein towards oxygen-centred radicals in polar protic and polar aprotic solvents. RSC Adv. 2014, 4 (61), 32228-32236. DOI: https://doi.org/10.1039/C4RA02577F. DOI: https://doi.org/10.1039/C4RA02577F

Xue, Y.; Zheng, Y.; An, L.; Zhang, L.; Qian, Y.; Yu, D.; Gong, X.; Liu, Y. A theoretical study of the structure-radical scavenging activity of hydroxychalcones. Comput. Theor. Chem. 2012, 982, 74-83. DOI: https://doi.org/10.1016/j.comptc.2011.12.020. DOI: https://doi.org/10.1016/j.comptc.2011.12.020

Mazzone, G.; Toscano, M.; Russo, N. Density functional predictions of antioxidant activity and UV spectral features of nasutin A, isonasutin, ellagic acid, and one of its possible derivatives. J. Agric. Food Chem. 2013, 61 (40), 9650-9657. DOI: https://doi.org/10.1021/jf403262k. DOI: https://doi.org/10.1021/jf403262k

Castañeda-Arriaga, R.; Alvarez-Idaboy, J. R. Lipoic acid and dihydrolipoic acid. A comprehensive theoretical study of their antioxidant activity supported by available experimental kinetic data. J. Chem. Inf. Model. 2014, 54 (6), 1642-1652. DOI: https://doi.org/10.1021/ci500213p. DOI: https://doi.org/10.1021/ci500213p

Galano, A.; Alvarez-Idaboy, J. R. Glutathione: Mechanism and kinetics of its non-enzymatic defense action against free radicals. RSC Adv. 2011, 1 (9), 1763-1771. DOI: https://doi.org/10.1039/C1RA00474C. DOI: https://doi.org/10.1039/c1ra00474c

Farmanzadeh, D.; Najafi, M. On the antioxidant activity of the tryptophan derivatives. Bull. Chem. Soc. Jpn. 2013, 86 (9), 1041-1050. DOI: https://doi.org/10.1246/bcsj.20130035. DOI: https://doi.org/10.1246/bcsj.20130035

Galano, A. Mechanism and kinetics of the hydroxyl and hydroperoxyl radical scavenging activity of N-acetylcysteine amide. Theor. Chem. Acc. 2011, 130 (1), 51-60. DOI: https://doi.org/10.1007/s00214-011-0958-0. DOI: https://doi.org/10.1007/s00214-011-0958-0

Litwinienko, G.; Ingold, K. U. Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. J. Org. Chem. 2004, 69 (18), 5888-5896. DOI: https://doi.org/10.1021/jo049254j. DOI: https://doi.org/10.1021/jo049254j

Galano, A.; Álvarez-Diduk, R.; Ramírez-Silva, M. T.; Alarcón-Ángeles, G.; Rojas-Hernández, A. Role of the reacting free radicals on the antioxidant mechanism of curcumin. Chem. Phys. 2009, 363 (1-3), 13-23. DOI: https://doi.org/10.1016/j.chemphys.2009.07.003. DOI: https://doi.org/10.1016/j.chemphys.2009.07.003

Medina, M. E.; Galano, A.; Alvarez-Idaboy, J. R. Theoretical study on the peroxyl radicals scavenging activity of esculetin and its regeneration in aqueous solution. Phys. Chem. Chem. Phys. 2014, 16 (3), 1197-1207. DOI: https://doi.org/10.1039/c3cp53889c. DOI: https://doi.org/10.1039/C3CP53889C

9Jeremić, S.; Filipović, N.; Peulić, A.; Marković, Z. Thermodynamical aspect of radical scavenging activity of alizarin and alizarin red S. Theoretical comparative study. Comput. Theor. Chem. 2014, 1047, 15-21. DOI: https://doi.org/10.1016/j.comptc.2014.08.007. DOI: https://doi.org/10.1016/j.comptc.2014.08.007

Xue, Y.; Zheng, Y.; An, L.; Dou, Y.; Liu, Y. Density functional theory study of the structure-antioxidant activity of polyphenolic deoxybenzoins. Food Chem. 2014, 151, 198-206. DOI: https://doi.org/10.1016/j.foodchem.2013.11.064. DOI: https://doi.org/10.1016/j.foodchem.2013.11.064

Marković, Z.; Crossed D Signorović, J.; Dimitrić Marković, J. M.; Živić, M.; Amić, D. Investigation of the radical scavenging potency of hydroxybenzoic acids and their carboxylate anions. Monatsh. Chem. 2014, 145 (6), 953-962. DOI: https://doi.org/10.1007/s00706-014-1163-3. DOI: https://doi.org/10.1007/s00706-014-1163-3

Pérez-González, A.; Galano, A.; Alvarez-Idaboy, J. R. Dihydroxybenzoic acids as free radical scavengers: Mechanisms, kinetics, and trends in activity. New J. Chem. 2014, 38 (6), 2639-2652. DOI: https://doi.org/10.1039/C4NJ00071D. DOI: https://doi.org/10.1039/c4nj00071d

Urbaniak, A.; Szelag, M.; Molski, M. Theoretical investigation of stereochemistry and solvent influence on antioxidant activity of ferulic acid. Comput. Theor. Chem. 2013, 1012, 33-40. DOI: https://doi.org/10.1016/j.comptc.2013.02.018. DOI: https://doi.org/10.1016/j.comptc.2013.02.018

Fifen, J. J.; Nsangou, M.; Dhaouadi, Z.; Motapon, O.; Jaidane, N. Solvent effects on the antioxidant activity of 3,4-dihydroxyphenylpyruvic acid: DFT and TD-DFT studies. Comput. Theor. Chem. 2011, 966 (1-3), 232-243. DOI: https://doi.org/10.1016/j.comptc.2011.03.006. DOI: https://doi.org/10.1016/j.comptc.2011.03.006

Iuga, C.; Alvarez-Idaboy, J. R.; Russo, N. Antioxidant activity of trans -resveratrol toward hydroxyl and hydroperoxyl radicals: A quantum chemical and computational kinetics study. J. Org. Chem. 2012, 77 (8), 3868-3877. DOI: https://doi.org/10.1021/jo3002134. DOI: https://doi.org/10.1021/jo3002134

Benayahoum, A.; Amira-Guebailia, H.; Houache, O. Homolytic and heterolytic O-H bond cleavage in trans-resveratrol and some phenantrene analogs: A theoretical study. Comput. Theor. Chem. 2014, 1037, 1-9. DOI: https://doi.org/10.1016/j.comptc.2014.03.016. DOI: https://doi.org/10.1016/j.comptc.2014.03.016

Medina, M. E.; Iuga, C.; Álvarez-Idaboy, J. R. Antioxidant activity of fraxetin and its regeneration in aqueous media. A density functional theory study. RSC Adv. 2014, 4 (95), 52920-52932. DOI: https://doi.org/10.1039/C4RA08394F. DOI: https://doi.org/10.1039/C4RA08394F

Cordova-Gomez, M.; Galano, A.; Alvarez-Idaboy, J. R. Piceatannol, a better peroxyl radical scavenger than resveratrol. RSC Adv. 2013, 3 (43), 20209-20218. DOI: https://doi.org/10.1039/C3RA42923G. DOI: https://doi.org/10.1039/c3ra42923g

Marković, Z.; Milenković, D.; Orović, J.; Dimitrić Marković, J. M.; Stepanić, V.; Lučić, B.; Amić, D. Free radical scavenging activity of morin 2′-O- phenoxide anion. Food Chem. 2012, 135 (3), 2070-2077. DOI: https://doi.org/10.1016/j.foodchem.2012.05.119. DOI: https://doi.org/10.1016/j.foodchem.2012.05.119

Xue, Y.; Zhang, L.; Li, Y.; Yu, D.; Zheng, Y.; An, L.; Gong, X.; Liu, Y. A DFT study on the structure and radical scavenging activity of newly synthesized hydroxychalcones. J. Phys. Org. Chem. 2013, 26 (3), 240-248. DOI: https://doi.org/10.1002/poc.3074. DOI: https://doi.org/10.1002/poc.3074

Xue, Y.; Zheng, Y.; Zhang, L.; Wu, W.; Yu, D.; Liu, Y. Theoretical study on the antioxidant properties of 2′- hydroxychalcones: H-atom vs. electron transfer mechanism. J. Mol. Model. 2013, 19 (9), 3851-3862. DOI: https://doi.org/10.1007/s00894-013-1921-x. DOI: https://doi.org/10.1007/s00894-013-1921-x

Qian, Y. P.; Shang, Y. J.; Teng, Q. F.; Chang, J.; Fan, G. J.; Wei, X.; Li, R. R.; Li, H. P.; Yao, X. J.; Dai, F.; Zhou, B. Hydroxychalcones as potent antioxidants: Structure-activity relationship analysis and mechanism considerations. Food Chem. 2011, 126 (1), 241-248. DOI: https://doi.org/10.1016/j.foodchem.2010.11.011. DOI: https://doi.org/10.1016/j.foodchem.2010.11.011

Martínez, A.; Hernández-Marin, E.; Galano, A. Xanthones as antioxidants: A theoretical study on the thermodynamics and kinetics of the single electron transfer mechanism. Food Funct. 2012, 3 (4), 442-450. DOI: https://doi.org/10.1039/C2FO10229C. DOI: https://doi.org/10.1039/c2fo10229c

Musialik, M.; Kuzmicz, R.; Pawlowski, T. S.; Litwinienko, G. Acidity of hydroxyl groups: An overlooked influence on antiradical properties of flavonoids. J. Org. Chem. 2009, 74 (7), 2699-2709. DOI: https://doi.org/10.1021/jo802716v. DOI: https://doi.org/10.1021/jo802716v

Di Meo, F.; Lemaur, V.; Cornil, J.; Lazzaroni, R.; Duroux, J. L.; Olivier, Y.; Trouillas, P. Free radical scavenging by natural polyphenols: Atom versus electron transfer. J. Phys. Chem. A 2013, 117 (10), 2082-2092. DOI: https://doi.org/10.1021/jp3116319. DOI: https://doi.org/10.1021/jp3116319

Dimitrić Marković, J. M.; Milenković, D.; Amić, D.; Popović-Bijelić, A.; Mojović, M.; Pašti, I. A.; Marković, Z. S. Energy requirements of the reactions of kaempferol and selected radical species in different media: towards the prediction of the possible radical scavenging mechanisms. Struct. Chem. 2014, 25, 1795-1804. DOI: https://doi.org/10.1007/s11224-014-0453-z. DOI: https://doi.org/10.1007/s11224-014-0453-z

Dorović, J.; Marković, J. M. D.; Stepanić, V.; Begović, N.; Amić, D.; Marković, Z. Influence of different free radicals on scavenging potency of gallic acid. J. Mol. Model. 2014, 20 (7), 2345. DOI: https://doi.org/10.1007/s00894-014-2345-y. DOI: https://doi.org/10.1007/s00894-014-2345-y

Alberto, M. E.; Russo, N.; Grand, A.; Galano, A. A physicochemical examination of the free radical scavenging activity of Trolox: Mechanism, kinetics and influence of the environment. Phys. Chem. Chem. Phys. 2013, 15 (13), 4642-4650. DOI: https://doi.org/10.1039/c3cp43319f. DOI: https://doi.org/10.1039/c3cp43319f

Lengyel, J.; Rimarčík, J.; Vagánek, A.; Klein, E. On the radical scavenging activity of isoflavones: Thermodynamics of O-H bond cleavage. Phys. Chem. Chem. Phys. 2013, 15 (26), 10895-10903. DOI: https://doi.org/10.1039/c3cp00095h. DOI: https://doi.org/10.1039/c3cp00095h

9 Senthil kumar, K.; Kumaresan, R. A DFT study on the structural, electronic properties and radical scavenging mechanisms of calycosin, glycitein, pratensein and prunetin. Comput. Theor. Chem. 2012, 985, 14-22. DOI: https://doi.org/10.1016/j.comptc.2012.01.028. DOI: https://doi.org/10.1016/j.comptc.2012.01.028

Marković, Z. S.; Dimitrić Marković, J. M.; Milenković, D.; Filipović, N. Mechanistic study of the structure-activity relationship for the free radical scavenging activity of baicalein. J. Mol. Model. 2011, 17 (10), 2575-2584. DOI: https://doi.org/10.1007/s00894-010-0942-y. DOI: https://doi.org/10.1007/s00894-010-0942-y

Jeremić, S. R.; Šehović, S. F.; Manojlović, N. T.; Marković, Z. S. Antioxidant and free radical scavenging activity of purpurin. Monatsh. Chem. 2012, 143 (3), 427-435. DOI: https://doi.org/10.1007/s00706-011-0695-z. DOI: https://doi.org/10.1007/s00706-011-0695-z

Marković, Z. S.; Marković, S.; Dimitrić Marković, J. M.; Milenković, D. Structure and reactivity of baicalein radical cation. Int. J. Quantum Chem. 2012, 112 (8), 2009-2017. DOI: https://doi.org/10.1002/qua.23175. DOI: https://doi.org/10.1002/qua.23175

Focsan, A. L.; Pan, S.; Kispert, L. D. Electrochemical study of astaxanthin and astaxanthin n-octanoic monoester and diester: Tendency to form radicals. J. Phys. Chem. B 2014, 118 (9), 2331-2339. DOI: https://doi.org/10.1021/jp4121436. DOI: https://doi.org/10.1021/jp4121436

Marković, Z.; Amić, D.; Milenković, D.; Dimitrić-Marković, J. M.; Marković, S. Examination of the chemical behavior of the quercetin radical cation towards some bases. Phys. Chem. Chem. Phys. 2013, 15 (19), 7370-7378. DOI: https://doi.org/10.1039/C3CP44605K. DOI: https://doi.org/10.1039/c3cp44605k

Nakanishi, I.; Kawashima, T.; Ohkubo, K.; Kanazawa, H.; Inami, K.; Mochizuki, M.; Fukuhara, K.; Okuda, H.; Ozawa, T.; Itoh, S.; et al. Electron-transfer mechanism in radical-scavenging reactions by a vitamin E model in a protic medium. Org. Biomol. Chem. 2005, 3 (4), 626-629. DOI: https://doi.org/10.1039/b416572a. DOI: https://doi.org/10.1039/b416572a

Ouchi, A.; Nagaoka, S. I.; Abe, K.; Mukai, K. Kinetic study of the aroxyl radical-scavenging reaction of α-tocopherol in methanol solution: Notable effect of the alkali and alkaline earth metal salts on the reaction rates. J. Phys. Chem. B 2009, 113 (40), 13322-13331. DOI: https://doi.org/10.1021/jp906425r. DOI: https://doi.org/10.1021/jp906425r

Galano, A.; Francisco Marquez, M.; Pérez-González, A. Ellagic acid: An unusually versatile protector against oxidative stress. Chem. Res. Toxicol. 2014, 27 (5), 904-918. DOI: https://doi.org/10.1021/tx500065y. DOI: https://doi.org/10.1021/tx500065y

Medina, M. E.; Iuga, C.; Alvarez-Idaboy, J. R. Antioxidant activity of propyl gallate in aqueous and lipid media: A theoretical study. Phys. Chem. Chem. Phys. 2013, 15 (31), 13137-13146. DOI: https://doi.org/10.1039/C3CP51644J. DOI: https://doi.org/10.1039/c3cp51644j

Amorati, R.; Pedulli, G. F.; Cabrini, L.; Zambonin, L.; Landi, L. Solvent and pH effects on the antioxidant activity of caffeic and other phenolic acids. J. Agric. Food Chem. 2006, 54 (8), 2932-2937. DOI: https://doi.org/10.1021/jf053159+. DOI: https://doi.org/10.1021/jf053159+

Marino, T.; Galano, A.; Russo, N. Radical Scavenging Ability of Gallic Acid toward OH and OOH Radicals. Reaction Mechanism and Rate Constants from the Density Functional Theory. J. Phys. Chem. B 2014, 118 (35), 10380-10389. DOI: https://doi.org/10.1021/jp505589b. DOI: https://doi.org/10.1021/jp505589b

Galano, A.; León-Carmona, J. R.; Alvarez-Idaboy, J. R. Influence of the environment on the protective effects of guaiacol derivatives against oxidative stress: Mechanisms, kinetics, and relative antioxidant activity. J. Phys. Chem. B 2012, 116 (24), 7129-7137. DOI: https://doi.org/10.1021/jp302810w. DOI: https://doi.org/10.1021/jp302810w

León-Carmona, J. R.; Galano, A. Free radical scavenging activity of caffeine's metabolites. Int. J. Quantum Chem. 2012, 112 (21), 3472-3478. DOI: https://doi.org/10.1002/qua.24084. DOI: https://doi.org/10.1002/qua.24084

Galano, A.; Pérez-González, A. On the free radical scavenging mechanism of protocatechuic acid, regeneration of the catechol group in aqueous solution. Theor. Chem. Acc. 2012, 131 (9), 1-13. DOI: https://doi.org/10.1007/s00214-012-1265-0. DOI: https://doi.org/10.1007/s00214-012-1265-0

Litwinienko, G.; Ingold, K. U. Abnormal Solvent Effects on Hydrogen Atom Abstractions. 1. The Reactions of Phenols with 2,2-Diphenyl-1-picrylhydrazyl (dpph•) in Alcohols. J. Org. Chem. 2003, 68 (9), 3433-3438. DOI: https://doi.org/10.1021/jo026917t. DOI: https://doi.org/10.1021/jo026917t

Litwinienko, G.; Ingold, K. U. Abnormal Solvent Effects on Hydrogen Atom Abstraction. 3. Novel Kinetics in Sequential Proton Loss Electron Transfer Chemistry. J. Org. Chem. 2005, 70 (22), 8982-8990. DOI: https://doi.org/10.1021/jo051474p. DOI: https://doi.org/10.1021/jo051474p

Litwinienko, G.; Ingold, K. U. Solvent Effects on the Rates and Mechanisms of Reaction of Phenols with Free Radicals. Acc. Chem. Res. 2007, 40 (3), 222-230. DOI: https://doi.org/10.1021/ar0682029. DOI: https://doi.org/10.1021/ar0682029

×

Downloads

Published

2024-09-30
x

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...