Antimicrobial Activity of Berries Anthocyanin Extracts against Phytopathogenic Bacteria
DOI:
https://doi.org/10.29356/jmcs.v69i3.2322Keywords:
Anthocyanins, control, Pseudomonas syringae, Clavibacter michiganensis, Pseudomonas aeruginosaAbstract
Abstract. Anthocyanins are compounds that give fruits a color ranging from red to purple, and berries are among those with the highest anthocyanin content. Anthocyanins are known to have antimicrobial activity against various pathogens, but their effectiveness against phytopathogenic bacteria has not yet been investigated. In this research, the antimicrobial effect of anthocyanin extracts from blueberry, raspberry, strawberry, and blackberry fruits against Pseudomonas syringae, Pseudomonas aeruginosa and Clavibacter michiganensis subsp. michiganensis was evaluated. Anthocyanin extract of each berry was obtained and characterized by high-performance thin layer chromatography, high performance liquid chromatography and by the differential pH assay. The extracts were confronted against phytopathogenic bacteria in vitro by the broth microdilution technique, evaluating their minimum inhibitory concentration (MIC) and their minimum bactericidal concentration (MBC). Likewise, the content of phenolic compounds, flavonoids and antioxidant capacity were determined. According to the results, the content of anthocyanin, total phenols and flavonoids in the extracts ranged from 48 to 963 mg eq C3G/100 g DW, 13 to 25 mg GAE/g DW and 0.1 to 0.5 mg QE/g DW, respectively. The extract with the highest antioxidant capacity was from blueberries. A 6.5 % MIC value of extract was observed for all berry extracts against P. aeruginosa and C. michiganensis. The smaller MBC value (12.5 % of extract) was observed for the strawberry and blackberry extracts against all the studied microorganisms. In general, anthocyanin extracts from all studied berries demonstrated antimicrobial effect against phytopathogenic bacteria, which opens an option for a more environmentally friendly control of these microorganisms.
Resumen. Las antocianinas son compuestos que dan a las frutas un color que va del rojo al morado, y las bayas se encuentran entre las que mayor contenido de antocianinas tienen. Se sabe que las antocianinas tienen actividad antimicrobiana contra varios patógenos, pero aún no se ha investigado su eficacia contra bacterias fitopatógenas. En esta investigación se evaluó el efecto antimicrobiano de los extractos antociánicos de frutos de arándano, frambuesa, fresa y zarzamora contra Pseudomonas syringae, Pseudomonas aeruginosa y Clavibacter michiganensis subsp. michiganensis. Se obtuvo extracto antociánico de cada frutilla y se caracterizó mediante HPTLC, HPLC y por el ensayo de pH diferencial. Los extractos fueron confrontados in vitro contra las bacterias por microdilución en caldo, evaluándose su concentración mínima inhibidora y su concentración mínima bactericida. Asimismo, se determinó el contenido de compuestos fenólicos, flavonoides y capacidad antioxidante. Según los resultados, el contenido de antocianinas, fenoles totales y flavonoides en los extractos osciló entre 48 y 963 mg eq C3G/100 g PS, 13 a 25 mg GAE/g PS y 0.1 a 0.5 mg QE/g PS, respectivamente. El extracto con mayor capacidad antioxidante fue el de arándano. Se observó la CMI de 6.5 % en todos los extractos de frutillas contra P. aeruginosa y C. michiganensis. El menor valor de CMB (12,5 %) se observó en los extractos de fresa y zarzamora frente a todos los microorganismos estudiados. En general, los extractos antociánicos de frutillas demostraron efecto antimicrobiano contra las bacterias fitopatógenas, lo que abre una opción para un control de estos microorganismos más amigable con el medio ambiente.
Downloads
References
Panno, S.; Davino, S; Caruso, A.G.; Bertacca, S.; Crnogorac, A.; Mandić, A.; Noris, E.; Matić, S. Agronomy. 2021, 11, 1-45. DOI: https://doi.org/10.3390/agronomy11112188.
Pérez-Pérez, J.U.; Guerra-Ramírez, D.; Reyes-Trejo, B.; Cuevas-Sánchez, J.A.; Guerra-Ramírez, P. Polibotánica. 2020, 49, 125-133. DOI: https://doi.org/10.18387/polibotanica.49.8.
Thapa, S.P.; Miyao, E.M.; Michael Davis, R.; Coaker, G Theor. Appl. Genet. 2015, 128, 681-692. DOI: https://doi.org/10.1007/s00122-015-2463-7.
Zhang, Z.; Yao, B.; Huang, R. Plant. Dis. 2022, 106, 1515. DOI: https://doi.org/10.1094/PDIS-08-21-1830-PDN.
Yokotani, N.; Hasegawa, Y.; Sato, M.; Hirakawa, H.; Kouzai, Y.; Nishizawa, Y.; Yamamoto, E.; Naito, Y.; Isobe, S. BMC Plant. Biol. 2021, 21, 1-14. DOI: https://doi.org/10.1186/s12870-021-03251-8.
Rodrigues-Marin, V.; Ferrarezi, J.H.; Vieira, G.; Sass, D.C. J. Microbiol. Biotechnol. 2019, 1, 35-72. DOI: https://doi.org/10.1007/s11274-019-2646-5.
Ramírez-Gómez, X.S.; Jiménez-García, S.N.; Campos, V.B.; Campos, M.L.G., in: Plant diseases-current threats and management trends, Opolovec-Pintarić, S., Ed., IntechOpen, 2020, 49-68. DOI: https://doi.org/10.5772/intechopen.80762.
Fernández, R.; Lizana, X.C. Agro. Sur. 2020, 48, 1-8. DOI: https://doi.org/10.4206/agrosur.2020.v48n2-01.
Xu, L.; Tian, Z.; Chen, H.; Zhao, Y.; Yang. Y. Front. Nutr. 2021, 8, 747884. DOI: https://doi.org/10.3389/fnut.2021.747884.
Tena, N.; Martín, J.; Asuero, A.G. Antioxidants. 2020, 9, 451. DOI: https://doi.org/10.3390/antiox9050451.
Salamon, I.; Şimşek Sezer, E.N.; Kryvtsova, M.; Labun, P. Appl. Sci. 2021, 11, 2096. DOI: https://doi.org/10.3390/app11052096.
Veerapandi, L.; Nivetha, T.; Karunyah-Amirthadharshini, N.; Sinthiya, R. Solid State Technol. 2021, 64, 4107-4113.
Mendoza, L.; Cotoras, M.; Vivanco, M.; Matsuhiro, B.; Torres, S.; Aguirre, M. J. Chil. Chem. Soc. 2013, 3, 1725-1727. DOI: https://doi.org/10.4067/S0717-97072013000200018.
Schaefer, H.M.; Rentzsch, M.; Breuer, M. Nat. Prod. Commun. 2008, 3, 1267-1272. DOI: https://doi.org/10.1177/1934578X0800300808.
Aly, A.A.; Ali, H.G.; Eliwa, N.E. J. Food. Meas. Charact. 2019, 13, 911-920. DOI: https://doi.org/10.1007/s11694-018-0005-0.
Abdel-Aal, E.S.; Hucl, P. Cereal. Chem. 1999, 76, 350-354. DOI: https://doi.org/10.1094/CCHEM.1999.76.3.350.
Cretu, G.; Totu, E.E.; Miron, A.R.; Nechifor, A.C. Rom. Biotechnol. Lett. 2013, 18, 8271-8278.
Cretu, G.C.; Morlock, G.E. Food. Chem. 2014, 146, 104-112. DOI: https://doi.org/10.1016/j.foodchem.2013.09.038.
Giusti, M.M.; Wrolstad, R.E. Curr. Protoc. Food. Anal. Chem. 2001, 1, F1-2. DOI: https://doi.org/10.1002/0471142913.faf0102s00
Sánchez-Quezada, V.; Gaytán-Martínez, M.; Recio, I.; Loarca-Piña, G. Food. Chem. 2023, 421, 136118. DOI: https://doi.org/10.1016/j.foodchem.2023.136118.
Spinardi, A.; Cola, G.; Gardana, C.S.; Mignani, I. Front. Plant. Sci. 2019, 10, 1045. DOI: https://doi.org/10.3389/fpls.2019.01045.
Woisky, R.G.; Salatino, A. J. Apic. Res. 1998, 37, 99-105. DOI: https://doi.org/10.1080/00218839.1998.11100961.
Hosu, A.; Cimpoiu, C.; David, L.; Moldovan, B. J. Anal. Methods. Chem. 2016, 1, 1-16. DOI: https://doi.org/10.1155/2016/2345375.
Untea, A.; Lupu, A.; Saracila, M.; Panaite, T. Bull. UASVM. Anim. Sci. Biotechnol. 2018, 75, 111-114. DOI: https://doi.org/10.15835/buasvmcn-asb:2018.0009.
Orsini, F.; Vovk, I.; Glavnik, V.; Jug, U.; Corradini, D. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 290-301. DOI: https://doi.org/10.1080/10826076.2019.1585630.
Bernal-Gallardo, J.O.; Molina-Torres, J.; Angoa-Pérez, M.V.; Cárdenas-Valdovinos, J.G.; García-Ruíz, I.; Ceja-Díaz, J.A.; Mena-Violante, H.G. Horticulturae. 2021, 8, 1-17. DOI: https://doi.org/10.3390/horticulturae8010015.
Aguirre, M.J.; Chen, Y.Y.; Isaacs, M.; Matsuhiro, B.; Mendoza, L.; Torres, S. Food. Chem. 2010, 121, 44-48. DOI: https://doi.org/10.1016/j.foodchem.2009.11.088.
Jeremias-Duarte, L.; Clasen-Chaves, V.; Pereira dos Santos-Nascimento, M.V.; Calvete, E.; Li, M.; Ciraolo, E.; Ghigo, A.; Hirsch, E.; Oliveira-Simões, C.M.; Reginatto. F.H.; Dalmarco, E.M. Food. Chem. 2018, 247, 56-65. DOI: https://doi.org/10.1016/j.foodchem.2017.12.015.
Ponder, A.; Hallmann, E.; Kwolek, M.; Średnicka-Tober, D.; Kazimierczak, R. Curr. Issues. Mol. Biol. 2021, 43, 36-51. DOI: https://doi.org/10.3390/cimb43010004.
Cerezo, A.B.; Cătunescu, G.M.; González, M.M.P.; Hornedo-Ortega, R.; Pop, C.R.; Rusu, C.C.; Chirilă, F.; Rotar, A.M.; García-Parrilla, M.C.; Troncoso, A.M. Antioxidants. 2020, 9, 1-22. DOI: https://doi.org/10.3390/antiox9060478.
Lee, S.G.; Vance, T.M.; Nam, T.G.; Kim, D.O.; Koo, S.I.; Chun, O.K. J. Food. Meas. Charac. 2016, 10, 562-568. DOI: https://doi.org/10.1007/s11694-016-9337-9.
Winardiantika, V.; Lee, Y.H.; Park, N.I.; Yeoung, Y.R. Hortic. Environ. Biotechnol. 2017, 56, 732-739. DOI: https://doi.org/10.1007/s13580-015-0052-y.
Ornelas-Paz, J.J.; Yahia, E.M.; Ramírez-Bustamante, N.; Pérez-Martínez, J.D.; Escalante-Minakata, M.dP.; Ibarra-Junquera, V.; Acosta-Muñiz, C.; Guerrero-Prieto, V.; Ochoa-Reyes, E. Food. Chem. 2013, 138, 372-381. DOI: https://doi.org/10.1016/j.foodchem.2012.11.006.
Da Fonseca-Machado, A.P.; Duarte-Pereira, A.L.; Fernández-Barbero, G.; Martínez, J. Food. Chem. 2017, 231, 1-10. DOI: https://doi.org/10.1016/j.foodchem.2017.03.060.
Zorzi, M; Gai, F; Medana, C; Aigotti, R; Morello, S; Peiretti, PG Foods. 2020, 9, 623. DOI: https://doi.org/10.3390/foods9050623.
Mustafa, A.M.; Angeloni, S.; Abouelenein, D.; Acquaticci, L.; Xiao, J.; Sagratini, G.; Maggi, F.; Vittori, S.; Caprioli, G. Food. Chem. 2022, 367, 130743. DOI: https://doi.org/10.1016/j.foodchem.2021.130743.
Rusmana, D.; Wahyudianingsih, R.; Elisabeth, M.; Balqis, B.; Maesaroh, M.; Widowati, W. Indones. Biomed. J. 2017, 9, 84-90. DOI: https://doi.org/10.18585/inabj.v9i2.281
Cervantes, L.; Martinez-Ferri, E.; Soria, C.; Ariza, M.T. Food. Biosci. 2020, 37, 100680. DOI: https://doi.org/10.1016/j.fbio.2020.100680.
Becker-Pertuzatti, P.; Teixeira-Barcia, M.; Gómez-Alonso, S.; Teixeira-Godoy, H.; Hermosin-Gutierrez, I. Food. Chem. 2021, 340, 127958. DOI: https://doi.org/10.1016/j.foodchem.2020.127958.
Singh, P.; Arif, Y.; Bajguz, A.; Hayat, S. Plant. Physiol. Biochem. 2021, 166, 10-19. DOI: https://doi.org/10.1016/j.plaphy.2021.05.023.
García-Rodríguez, M.C.; Hernández-Cortés, L.M.; Arenas-Huertero, F. Arch. Latinoam. Nutr. 2022, 72, 205-217. https://doi.org/10.37527/2022.72.3.006.
Fernández-Lara, R.; Gordillo, B.; Rodríguez-Pulido, F.J.; González-Miret, M.L.; del Villar-Martínez, A.A.; Dávila-Ortiz, G.; Heredia, F.J. Food. Res. Int. 2015, 76, 645-653. DOI: https://doi.org/10.1016/j.foodres.2015.07.038.
Mollayi, S.; Farzaneh, M.; Ghanati, F.; Aboul-Enein, H.Y.; Ghassempour, A. Physiol. Mol. Plant. Pathol. 2016, 93, 93-98. DOI: https://doi.org/10.1016/j.pmpp.2015.12.002.
Piovezan, M.; García-Seco, D.; Micke, G.A.; Gutiérrez-Mañero, J.; Ramos-Solano, B. Electrophoresis. 2013, 34, 2251-2258. DOI: https://doi.org/10.1002/elps.201300065.
Wu, R.; Frei, B.; Kennedy, J.A.; Zhao, Y. LWT-Food. Sci. Technol. 2010, 43, 1253-1264. DOI: https://doi.org/10.1016/j.lwt.2010.04.002.
Hwang, S.J.; Yoon, W.B.; Lee, O.H.; Cha, S.J.; Dai Kim, J. Food. Chem. 2014, 146, 71-77. DOI: https://doi.org/10.1016/j.foodchem.2013.09.035.
Alonzo-Macías, M.; Cardador-Martínez, A.; Mounir, S.; Montejano-Gaitán, G.; Allaf, K. J. Food. Res. 2013, 2, 92-107. DOI: https://doi.org/10.5539/jfr.v2n2p92.
Sette, P.; Franceschinis, L.; Schebor, C.; Salvatori, D. Int. J. Food. Sci. Technol. 2017, 52, 313-328. DOI: https://doi.org/10.1111/ijfs.13283.
Mlcek, J.; Jurikova, T.; Skrovankova, S.; Sochor, J. Molecules. 2016, 21, 1-15. DOI: https://doi.org/10.3390/molecules21050623.
Vulić, J.J.; Velićanski, A.S.; Četojević-Simin, D.D.; Tumbas-Šaponjac, V.T.; Đilas, S.M.; Cvetković, D.D.; Markov, S.L. Acta. Period. Technol. 2014, 45, 99-116. DOI: https://doi.org/10.2298/APT1445099V.
Casati, C.B.; Baeza, R.; Sánchez, V. J. Berry. Res. 2019, 9, 431-447. DOI: https://doi.org/10.3233/JBR-190409.
Wiczkowski, W. Szawara-Nowak, D.; Topolska, J. Food. Res. Int. 2013, 51, 303-309. DOI: https://doi.org/10.1016/j.foodres.2012.12.015.
Gündeşli, M.A.; Korkmaz, N.; Okatan, V. Int. J. Agric. For. Life. Sci. 2019, 3, 350-361.
Ma, Y.; Ding, S.; Fei, Y.; Liu, G.; Jang, H.; Fang, J. Food. Control. 2019, 106. 106712. DOI: https://doi.org/10.1016/j.foodcont.2019.106712.
Carrillo, M.L.; Castillo, L.N.; Mauricio, R. Inf. Tecnol. 2011, 22, 21-28. DOI: http://doi.org/10.4067/S0718-07642011000500004-
Johnston, M.; McBride, M.; Dahiya, D.; Owusu-Apenten, R.; Nigam, P.S. AIMS. Microbiol. 2018, 4, 655-664. DOI: https://doi.org/10.3934/microbiol.2018.4.655.
Carrillo-Tomalá, C.; Díaz-Torres, R. Rev. Cienc. UNEMI. 2020, 13, 69-77.
Petruskevicius, A.; Viskelis, J.; Urbonaviciene, D.; Viskelis, P. Horticulturae. 2023, 9, 1-18. DOI: https://doi.org/10.3390/horticulturae9020288.
Sun, X.H.; Zhou, T.T.; Wei, C.H.; Lan, W.Q.; Zhao, Y.; Pan, Y.J.; Wu, V.C. Food Control. 2018, 94, 155-161. DOI: https://doi.org/10.1016/j.foodcont.2018.07.012.
Gonelimali, F.D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S.R. Front. Microbiol. 2018, 9, 1-9. DOI: https://doi.org/10.3389/fmicb.2018.01639.
Mihok, E.; György, É.; Máthé, E. Acta. Agrar. Debreceniensis. 2019, 1, 27-32. DOI: https://doi.org/10.34101/actaagrar/1/2365.
Widyarman, A.S.; Widjaja, S.B.; Idrus, E. Sci. Dent. J. 2017, 1, 1-5. DOI: https://doi.org/10.26912/sdj.v1i1.1911.
Cárdenas-Valdovinos, J.G.; Oregel-Zamudio, E.; Oyoque-Salcedo, G.; Angoa-Pérez, M.V.; Padilla-Jiménez, S.M.; Molina-Torres, J.; Mena-Violante, H.G. J. Bioeng. 2018, 2, 17-25.

Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jesús Armando Lucas-Bautista, Jeanette Guadalupe Cárdenas-Valdovinos, Hortencia Gabriela Mena-Violante, Juan Ramiro Pacheco-Aguilar, Sandra Mendoza

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
