Antimicrobial Activity of Berries Anthocyanin Extracts against Phytopathogenic Bacteria
DOI:
https://doi.org/10.29356/jmcs.v69i3.2322Keywords:
Anthocyanins, control, Pseudomonas syringae, Clavibacter michiganensis, Pseudomonas aeruginosaAbstract
Abstract. Anthocyanins are compounds that give fruits a color ranging from red to purple, and berries are among those with the highest anthocyanin content. Anthocyanins are known to have antimicrobial activity against various pathogens, but their effectiveness against phytopathogenic bacteria has not yet been investigated. In this research, the antimicrobial effect of anthocyanin extracts from blueberry, raspberry, strawberry, and blackberry fruits against Pseudomonas syringae, Pseudomonas aeruginosa and Clavibacter michiganensis subsp. michiganensis was evaluated. Anthocyanin extract of each berry was obtained and characterized by high-performance thin layer chromatography, high performance liquid chromatography and by the differential pH assay. The extracts were confronted against phytopathogenic bacteria in vitro by the broth microdilution technique, evaluating their minimum inhibitory concentration (MIC) and their minimum bactericidal concentration (MBC). Likewise, the content of phenolic compounds, flavonoids and antioxidant capacity were determined. According to the results, the content of anthocyanin, total phenols and flavonoids in the extracts ranged from 48 to 963 mg eq C3G/100 g DW, 13 to 25 mg GAE/g DW and 0.1 to 0.5 mg QE/g DW, respectively. The extract with the highest antioxidant capacity was from blueberries. A 6.5 % MIC value of extract was observed for all berry extracts against P. aeruginosa and C. michiganensis. The smaller MBC value (12.5 % of extract) was observed for the strawberry and blackberry extracts against all the studied microorganisms. In general, anthocyanin extracts from all studied berries demonstrated antimicrobial effect against phytopathogenic bacteria, which opens an option for a more environmentally friendly control of these microorganisms.
Resumen. Las antocianinas son compuestos que dan a las frutas un color que va del rojo al morado, y las bayas se encuentran entre las que mayor contenido de antocianinas tienen. Se sabe que las antocianinas tienen actividad antimicrobiana contra varios patógenos, pero aún no se ha investigado su eficacia contra bacterias fitopatógenas. En esta investigación se evaluó el efecto antimicrobiano de los extractos antociánicos de frutos de arándano, frambuesa, fresa y zarzamora contra Pseudomonas syringae, Pseudomonas aeruginosa y Clavibacter michiganensis subsp. michiganensis. Se obtuvo extracto antociánico de cada frutilla y se caracterizó mediante HPTLC, HPLC y por el ensayo de pH diferencial. Los extractos fueron confrontados in vitro contra las bacterias por microdilución en caldo, evaluándose su concentración mínima inhibidora y su concentración mínima bactericida. Asimismo, se determinó el contenido de compuestos fenólicos, flavonoides y capacidad antioxidante. Según los resultados, el contenido de antocianinas, fenoles totales y flavonoides en los extractos osciló entre 48 y 963 mg eq C3G/100 g PS, 13 a 25 mg GAE/g PS y 0.1 a 0.5 mg QE/g PS, respectivamente. El extracto con mayor capacidad antioxidante fue el de arándano. Se observó la CMI de 6.5 % en todos los extractos de frutillas contra P. aeruginosa y C. michiganensis. El menor valor de CMB (12,5 %) se observó en los extractos de fresa y zarzamora frente a todos los microorganismos estudiados. En general, los extractos antociánicos de frutillas demostraron efecto antimicrobiano contra las bacterias fitopatógenas, lo que abre una opción para un control de estos microorganismos más amigable con el medio ambiente.
Downloads
References
Panno, S.; Davino, S; Caruso, A.G.; Bertacca, S.; Crnogorac, A.; Mandić, A.; Noris, E.; Matić, S. Agronomy. 2021, 11, 1-45. DOI: https://doi.org/10.3390/agronomy11112188. DOI: https://doi.org/10.3390/agronomy11112188
Pérez-Pérez, J.U.; Guerra-Ramírez, D.; Reyes-Trejo, B.; Cuevas-Sánchez, J.A.; Guerra-Ramírez, P. Polibotánica. 2020, 49, 125-133. DOI: https://doi.org/10.18387/polibotanica.49.8. DOI: https://doi.org/10.18387/polibotanica.49.8
Thapa, S.P.; Miyao, E.M.; Michael Davis, R.; Coaker, G Theor. Appl. Genet. 2015, 128, 681-692. DOI: https://doi.org/10.1007/s00122-015-2463-7. DOI: https://doi.org/10.1007/s00122-015-2463-7
Zhang, Z.; Yao, B.; Huang, R. Plant. Dis. 2022, 106, 1515. DOI: https://doi.org/10.1094/PDIS-08-21-1830-PDN. DOI: https://doi.org/10.1094/PDIS-08-21-1830-PDN
Yokotani, N.; Hasegawa, Y.; Sato, M.; Hirakawa, H.; Kouzai, Y.; Nishizawa, Y.; Yamamoto, E.; Naito, Y.; Isobe, S. BMC Plant. Biol. 2021, 21, 1-14. DOI: https://doi.org/10.1186/s12870-021-03251-8. DOI: https://doi.org/10.1186/s12870-021-03251-8
Rodrigues-Marin, V.; Ferrarezi, J.H.; Vieira, G.; Sass, D.C. J. Microbiol. Biotechnol. 2019, 1, 35-72. DOI: https://doi.org/10.1007/s11274-019-2646-5. DOI: https://doi.org/10.1007/s11274-019-2646-5
Ramírez-Gómez, X.S.; Jiménez-García, S.N.; Campos, V.B.; Campos, M.L.G., in: Plant diseases-current threats and management trends, Opolovec-Pintarić, S., Ed., IntechOpen, 2020, 49-68. DOI: https://doi.org/10.5772/intechopen.80762. DOI: https://doi.org/10.5772/intechopen.80762
Fernández, R.; Lizana, X.C. Agro. Sur. 2020, 48, 1-8. DOI: https://doi.org/10.4206/agrosur.2020.v48n2-01. DOI: https://doi.org/10.4206/agrosur.2020.v48n2-01
Xu, L.; Tian, Z.; Chen, H.; Zhao, Y.; Yang. Y. Front. Nutr. 2021, 8, 747884. DOI: https://doi.org/10.3389/fnut.2021.747884. DOI: https://doi.org/10.3389/fnut.2021.747884
Tena, N.; Martín, J.; Asuero, A.G. Antioxidants. 2020, 9, 451. DOI: https://doi.org/10.3390/antiox9050451. DOI: https://doi.org/10.3390/antiox9050451
Salamon, I.; Şimşek Sezer, E.N.; Kryvtsova, M.; Labun, P. Appl. Sci. 2021, 11, 2096. DOI: https://doi.org/10.3390/app11052096. DOI: https://doi.org/10.3390/app11052096
Veerapandi, L.; Nivetha, T.; Karunyah-Amirthadharshini, N.; Sinthiya, R. Solid State Technol. 2021, 64, 4107-4113.
Mendoza, L.; Cotoras, M.; Vivanco, M.; Matsuhiro, B.; Torres, S.; Aguirre, M. J. Chil. Chem. Soc. 2013, 3, 1725-1727. DOI: https://doi.org/10.4067/S0717-97072013000200018. DOI: https://doi.org/10.4067/S0717-97072013000200018
Schaefer, H.M.; Rentzsch, M.; Breuer, M. Nat. Prod. Commun. 2008, 3, 1267-1272. DOI: https://doi.org/10.1177/1934578X0800300808. DOI: https://doi.org/10.1177/1934578X0800300808
Aly, A.A.; Ali, H.G.; Eliwa, N.E. J. Food. Meas. Charact. 2019, 13, 911-920. DOI: https://doi.org/10.1007/s11694-018-0005-0. DOI: https://doi.org/10.1007/s11694-018-0005-0
Abdel-Aal, E.S.; Hucl, P. Cereal. Chem. 1999, 76, 350-354. DOI: https://doi.org/10.1094/CCHEM.1999.76.3.350. DOI: https://doi.org/10.1094/CCHEM.1999.76.3.350
Cretu, G.; Totu, E.E.; Miron, A.R.; Nechifor, A.C. Rom. Biotechnol. Lett. 2013, 18, 8271-8278.
Cretu, G.C.; Morlock, G.E. Food. Chem. 2014, 146, 104-112. DOI: https://doi.org/10.1016/j.foodchem.2013.09.038. DOI: https://doi.org/10.1016/j.foodchem.2013.09.038
Giusti, M.M.; Wrolstad, R.E. Curr. Protoc. Food. Anal. Chem. 2001, 1, F1-2. DOI: https://doi.org/10.1002/0471142913.faf0102s00 DOI: https://doi.org/10.1002/0471142913.faf0102s00
Sánchez-Quezada, V.; Gaytán-Martínez, M.; Recio, I.; Loarca-Piña, G. Food. Chem. 2023, 421, 136118. DOI: https://doi.org/10.1016/j.foodchem.2023.136118. DOI: https://doi.org/10.1016/j.foodchem.2023.136118
Spinardi, A.; Cola, G.; Gardana, C.S.; Mignani, I. Front. Plant. Sci. 2019, 10, 1045. DOI: https://doi.org/10.3389/fpls.2019.01045. DOI: https://doi.org/10.3389/fpls.2019.01045
Woisky, R.G.; Salatino, A. J. Apic. Res. 1998, 37, 99-105. DOI: https://doi.org/10.1080/00218839.1998.11100961. DOI: https://doi.org/10.1080/00218839.1998.11100961
Hosu, A.; Cimpoiu, C.; David, L.; Moldovan, B. J. Anal. Methods. Chem. 2016, 1, 1-16. DOI: https://doi.org/10.1155/2016/2345375. DOI: https://doi.org/10.1155/2016/2345375
Untea, A.; Lupu, A.; Saracila, M.; Panaite, T. Bull. UASVM. Anim. Sci. Biotechnol. 2018, 75, 111-114. DOI: https://doi.org/10.15835/buasvmcn-asb:2018.0009. DOI: https://doi.org/10.15835/buasvmcn-asb:2018.0009
Orsini, F.; Vovk, I.; Glavnik, V.; Jug, U.; Corradini, D. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 290-301. DOI: https://doi.org/10.1080/10826076.2019.1585630. DOI: https://doi.org/10.1080/10826076.2019.1585630
Bernal-Gallardo, J.O.; Molina-Torres, J.; Angoa-Pérez, M.V.; Cárdenas-Valdovinos, J.G.; García-Ruíz, I.; Ceja-Díaz, J.A.; Mena-Violante, H.G. Horticulturae. 2021, 8, 1-17. DOI: https://doi.org/10.3390/horticulturae8010015. DOI: https://doi.org/10.3390/horticulturae8010015
Aguirre, M.J.; Chen, Y.Y.; Isaacs, M.; Matsuhiro, B.; Mendoza, L.; Torres, S. Food. Chem. 2010, 121, 44-48. DOI: https://doi.org/10.1016/j.foodchem.2009.11.088. DOI: https://doi.org/10.1016/j.foodchem.2009.11.088
Jeremias-Duarte, L.; Clasen-Chaves, V.; Pereira dos Santos-Nascimento, M.V.; Calvete, E.; Li, M.; Ciraolo, E.; Ghigo, A.; Hirsch, E.; Oliveira-Simões, C.M.; Reginatto. F.H.; Dalmarco, E.M. Food. Chem. 2018, 247, 56-65. DOI: https://doi.org/10.1016/j.foodchem.2017.12.015. DOI: https://doi.org/10.1016/j.foodchem.2017.12.015
Ponder, A.; Hallmann, E.; Kwolek, M.; Średnicka-Tober, D.; Kazimierczak, R. Curr. Issues. Mol. Biol. 2021, 43, 36-51. DOI: https://doi.org/10.3390/cimb43010004. DOI: https://doi.org/10.3390/cimb43010004
Cerezo, A.B.; Cătunescu, G.M.; González, M.M.P.; Hornedo-Ortega, R.; Pop, C.R.; Rusu, C.C.; Chirilă, F.; Rotar, A.M.; García-Parrilla, M.C.; Troncoso, A.M. Antioxidants. 2020, 9, 1-22. DOI: https://doi.org/10.3390/antiox9060478. DOI: https://doi.org/10.3390/antiox9060478
Lee, S.G.; Vance, T.M.; Nam, T.G.; Kim, D.O.; Koo, S.I.; Chun, O.K. J. Food. Meas. Charac. 2016, 10, 562-568. DOI: https://doi.org/10.1007/s11694-016-9337-9. DOI: https://doi.org/10.1007/s11694-016-9337-9
Winardiantika, V.; Lee, Y.H.; Park, N.I.; Yeoung, Y.R. Hortic. Environ. Biotechnol. 2017, 56, 732-739. DOI: https://doi.org/10.1007/s13580-015-0052-y. DOI: https://doi.org/10.1007/s13580-015-0052-y
Ornelas-Paz, J.J.; Yahia, E.M.; Ramírez-Bustamante, N.; Pérez-Martínez, J.D.; Escalante-Minakata, M.dP.; Ibarra-Junquera, V.; Acosta-Muñiz, C.; Guerrero-Prieto, V.; Ochoa-Reyes, E. Food. Chem. 2013, 138, 372-381. DOI: https://doi.org/10.1016/j.foodchem.2012.11.006. DOI: https://doi.org/10.1016/j.foodchem.2012.11.006
Da Fonseca-Machado, A.P.; Duarte-Pereira, A.L.; Fernández-Barbero, G.; Martínez, J. Food. Chem. 2017, 231, 1-10. DOI: https://doi.org/10.1016/j.foodchem.2017.03.060. DOI: https://doi.org/10.1016/j.foodchem.2017.03.060
Zorzi, M; Gai, F; Medana, C; Aigotti, R; Morello, S; Peiretti, PG Foods. 2020, 9, 623. DOI: https://doi.org/10.3390/foods9050623. DOI: https://doi.org/10.3390/foods9050623
Mustafa, A.M.; Angeloni, S.; Abouelenein, D.; Acquaticci, L.; Xiao, J.; Sagratini, G.; Maggi, F.; Vittori, S.; Caprioli, G. Food. Chem. 2022, 367, 130743. DOI: https://doi.org/10.1016/j.foodchem.2021.130743. DOI: https://doi.org/10.1016/j.foodchem.2021.130743
Rusmana, D.; Wahyudianingsih, R.; Elisabeth, M.; Balqis, B.; Maesaroh, M.; Widowati, W. Indones. Biomed. J. 2017, 9, 84-90. DOI: https://doi.org/10.18585/inabj.v9i2.281 DOI: https://doi.org/10.18585/inabj.v9i2.281
Cervantes, L.; Martinez-Ferri, E.; Soria, C.; Ariza, M.T. Food. Biosci. 2020, 37, 100680. DOI: https://doi.org/10.1016/j.fbio.2020.100680. DOI: https://doi.org/10.1016/j.fbio.2020.100680
Becker-Pertuzatti, P.; Teixeira-Barcia, M.; Gómez-Alonso, S.; Teixeira-Godoy, H.; Hermosin-Gutierrez, I. Food. Chem. 2021, 340, 127958. DOI: https://doi.org/10.1016/j.foodchem.2020.127958. DOI: https://doi.org/10.1016/j.foodchem.2020.127958
Singh, P.; Arif, Y.; Bajguz, A.; Hayat, S. Plant. Physiol. Biochem. 2021, 166, 10-19. DOI: https://doi.org/10.1016/j.plaphy.2021.05.023. DOI: https://doi.org/10.1016/j.plaphy.2021.05.023
García-Rodríguez, M.C.; Hernández-Cortés, L.M.; Arenas-Huertero, F. Arch. Latinoam. Nutr. 2022, 72, 205-217. https://doi.org/10.37527/2022.72.3.006. DOI: https://doi.org/10.37527/2022.72.3.006
Fernández-Lara, R.; Gordillo, B.; Rodríguez-Pulido, F.J.; González-Miret, M.L.; del Villar-Martínez, A.A.; Dávila-Ortiz, G.; Heredia, F.J. Food. Res. Int. 2015, 76, 645-653. DOI: https://doi.org/10.1016/j.foodres.2015.07.038. DOI: https://doi.org/10.1016/j.foodres.2015.07.038
Mollayi, S.; Farzaneh, M.; Ghanati, F.; Aboul-Enein, H.Y.; Ghassempour, A. Physiol. Mol. Plant. Pathol. 2016, 93, 93-98. DOI: https://doi.org/10.1016/j.pmpp.2015.12.002. DOI: https://doi.org/10.1016/j.pmpp.2015.12.002
Piovezan, M.; García-Seco, D.; Micke, G.A.; Gutiérrez-Mañero, J.; Ramos-Solano, B. Electrophoresis. 2013, 34, 2251-2258. DOI: https://doi.org/10.1002/elps.201300065. DOI: https://doi.org/10.1002/elps.201300065
Wu, R.; Frei, B.; Kennedy, J.A.; Zhao, Y. LWT-Food. Sci. Technol. 2010, 43, 1253-1264. DOI: https://doi.org/10.1016/j.lwt.2010.04.002. DOI: https://doi.org/10.1016/j.lwt.2010.04.002
Hwang, S.J.; Yoon, W.B.; Lee, O.H.; Cha, S.J.; Dai Kim, J. Food. Chem. 2014, 146, 71-77. DOI: https://doi.org/10.1016/j.foodchem.2013.09.035. DOI: https://doi.org/10.1016/j.foodchem.2013.09.035
Alonzo-Macías, M.; Cardador-Martínez, A.; Mounir, S.; Montejano-Gaitán, G.; Allaf, K. J. Food. Res. 2013, 2, 92-107. DOI: https://doi.org/10.5539/jfr.v2n2p92. DOI: https://doi.org/10.5539/jfr.v2n2p92
Sette, P.; Franceschinis, L.; Schebor, C.; Salvatori, D. Int. J. Food. Sci. Technol. 2017, 52, 313-328. DOI: https://doi.org/10.1111/ijfs.13283. DOI: https://doi.org/10.1111/ijfs.13283
Mlcek, J.; Jurikova, T.; Skrovankova, S.; Sochor, J. Molecules. 2016, 21, 1-15. DOI: https://doi.org/10.3390/molecules21050623. DOI: https://doi.org/10.3390/molecules21050623
Vulić, J.J.; Velićanski, A.S.; Četojević-Simin, D.D.; Tumbas-Šaponjac, V.T.; Đilas, S.M.; Cvetković, D.D.; Markov, S.L. Acta. Period. Technol. 2014, 45, 99-116. DOI: https://doi.org/10.2298/APT1445099V. DOI: https://doi.org/10.2298/APT1445099V
Casati, C.B.; Baeza, R.; Sánchez, V. J. Berry. Res. 2019, 9, 431-447. DOI: https://doi.org/10.3233/JBR-190409. DOI: https://doi.org/10.3233/JBR-190409
Wiczkowski, W. Szawara-Nowak, D.; Topolska, J. Food. Res. Int. 2013, 51, 303-309. DOI: https://doi.org/10.1016/j.foodres.2012.12.015. DOI: https://doi.org/10.1016/j.foodres.2012.12.015
Gündeşli, M.A.; Korkmaz, N.; Okatan, V. Int. J. Agric. For. Life. Sci. 2019, 3, 350-361.
Ma, Y.; Ding, S.; Fei, Y.; Liu, G.; Jang, H.; Fang, J. Food. Control. 2019, 106. 106712. DOI: https://doi.org/10.1016/j.foodcont.2019.106712. DOI: https://doi.org/10.1016/j.foodcont.2019.106712
Carrillo, M.L.; Castillo, L.N.; Mauricio, R. Inf. Tecnol. 2011, 22, 21-28. DOI: http://doi.org/10.4067/S0718-07642011000500004- DOI: https://doi.org/10.4067/S0718-07642011000500004
Johnston, M.; McBride, M.; Dahiya, D.; Owusu-Apenten, R.; Nigam, P.S. AIMS. Microbiol. 2018, 4, 655-664. DOI: https://doi.org/10.3934/microbiol.2018.4.655. DOI: https://doi.org/10.3934/microbiol.2018.4.655
Carrillo-Tomalá, C.; Díaz-Torres, R. Rev. Cienc. UNEMI. 2020, 13, 69-77. DOI: https://doi.org/10.29076/issn.2528-7737vol13iss32.2020pp69-77p
Petruskevicius, A.; Viskelis, J.; Urbonaviciene, D.; Viskelis, P. Horticulturae. 2023, 9, 1-18. DOI: https://doi.org/10.3390/horticulturae9020288. DOI: https://doi.org/10.3390/horticulturae9020288
Sun, X.H.; Zhou, T.T.; Wei, C.H.; Lan, W.Q.; Zhao, Y.; Pan, Y.J.; Wu, V.C. Food Control. 2018, 94, 155-161. DOI: https://doi.org/10.1016/j.foodcont.2018.07.012. DOI: https://doi.org/10.1016/j.foodcont.2018.07.012
Gonelimali, F.D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S.R. Front. Microbiol. 2018, 9, 1-9. DOI: https://doi.org/10.3389/fmicb.2018.01639. DOI: https://doi.org/10.3389/fmicb.2018.01639
Mihok, E.; György, É.; Máthé, E. Acta. Agrar. Debreceniensis. 2019, 1, 27-32. DOI: https://doi.org/10.34101/actaagrar/1/2365. DOI: https://doi.org/10.34101/actaagrar/1/2365
Widyarman, A.S.; Widjaja, S.B.; Idrus, E. Sci. Dent. J. 2017, 1, 1-5. DOI: https://doi.org/10.26912/sdj.v1i1.1911. DOI: https://doi.org/10.26912/sdj.2017.01.01-01
Cárdenas-Valdovinos, J.G.; Oregel-Zamudio, E.; Oyoque-Salcedo, G.; Angoa-Pérez, M.V.; Padilla-Jiménez, S.M.; Molina-Torres, J.; Mena-Violante, H.G. J. Bioeng. 2018, 2, 17-25.


Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jesús Armando Lucas-Bautista, Jeanette Guadalupe Cárdenas-Valdovinos, Hortencia Gabriela Mena-Violante, Juan Ramiro Pacheco-Aguilar, Sandra Mendoza

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
