Antimicrobial Activity of Berries Anthocyanin Extracts against Phytopathogenic Bacteria

Authors

DOI:

https://doi.org/10.29356/jmcs.v69i3.2322

Keywords:

Anthocyanins, control, Pseudomonas syringae, Clavibacter michiganensis, Pseudomonas aeruginosa

Abstract

Abstract. Anthocyanins are compounds that give fruits a color ranging from red to purple, and berries are among those with the highest anthocyanin content. Anthocyanins are known to have antimicrobial activity against various pathogens, but their effectiveness against phytopathogenic bacteria has not yet been investigated. In this research, the antimicrobial effect of anthocyanin extracts from blueberry, raspberry, strawberry, and blackberry fruits against Pseudomonas syringae, Pseudomonas aeruginosa and Clavibacter michiganensis subsp. michiganensis was evaluated. Anthocyanin extract of each berry was obtained and characterized by high-performance thin layer chromatography, high performance liquid chromatography and by the differential pH assay. The extracts were confronted against phytopathogenic bacteria in vitro by the broth microdilution technique, evaluating their minimum inhibitory concentration (MIC) and their minimum bactericidal concentration (MBC). Likewise, the content of phenolic compounds, flavonoids and antioxidant capacity were determined. According to the results, the content of anthocyanin, total phenols and flavonoids in the extracts ranged from 48 to 963 mg eq C3G/100 g DW, 13 to 25 mg GAE/g DW and 0.1 to 0.5 mg QE/g DW, respectively. The extract with the highest antioxidant capacity was from blueberries. A 6.5 % MIC value of extract was observed for all berry extracts against P. aeruginosa and C. michiganensis. The smaller MBC value (12.5 % of extract) was observed for the strawberry and blackberry extracts against all the studied microorganisms. In general, anthocyanin extracts from all studied berries demonstrated antimicrobial effect against phytopathogenic bacteria, which opens an option for a more environmentally friendly control of these microorganisms.

 

Resumen. Las antocianinas son compuestos que dan a las frutas un color que va del rojo al morado, y las bayas se encuentran entre las que mayor contenido de antocianinas tienen. Se sabe que las antocianinas tienen actividad antimicrobiana contra varios patógenos, pero aún no se ha investigado su eficacia contra bacterias fitopatógenas. En esta investigación se evaluó el efecto antimicrobiano de los extractos antociánicos de frutos de arándano, frambuesa, fresa y zarzamora contra Pseudomonas syringae, Pseudomonas aeruginosa y Clavibacter michiganensis subsp. michiganensis. Se obtuvo extracto antociánico de cada frutilla y se caracterizó mediante HPTLC, HPLC y por el ensayo de pH diferencial. Los extractos fueron confrontados in vitro contra las bacterias por microdilución en caldo, evaluándose su concentración mínima inhibidora y su concentración mínima bactericida. Asimismo, se determinó el contenido de compuestos fenólicos, flavonoides y capacidad antioxidante. Según los resultados, el contenido de antocianinas, fenoles totales y flavonoides en los extractos osciló entre 48 y 963 mg eq C3G/100 g PS, 13 a 25 mg GAE/g PS y 0.1 a 0.5 mg QE/g PS, respectivamente. El extracto con mayor capacidad antioxidante fue el de arándano. Se observó la CMI de 6.5 % en todos los extractos de frutillas contra P. aeruginosa y C. michiganensis. El menor valor de CMB (12,5 %) se observó en los extractos de fresa y zarzamora frente a todos los microorganismos estudiados. En general, los extractos antociánicos de frutillas demostraron efecto antimicrobiano contra las bacterias fitopatógenas, lo que abre una opción para un control de estos microorganismos más amigable con el medio ambiente.

Downloads

Download data is not yet available.

Author Biographies

Jesús Armando Lucas-Bautista, Universidad Autónoma de Querétaro

Departamento de Investigación y Posgrado de Alimentos, Facultad de química

Jeanette Guadalupe Cárdenas-Valdovinos, Instituto Politécnico Nacional

Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Unidad Michoacán

Hortencia Gabriela Mena-Violante, Instituto Politécnico Nacional

Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Unidad Michoacán

Juan Ramiro Pacheco-Aguilar, Universidad Autónoma de Querétaro

Departamento de Investigación y Posgrado de Alimentos, Facultad de Química

Sandra Mendoza, Universidad Autónoma de Queretaro

Departamento de Investigación y Posgrado de Alimentos, Facultad de Química

References

Panno, S.; Davino, S; Caruso, A.G.; Bertacca, S.; Crnogorac, A.; Mandić, A.; Noris, E.; Matić, S. Agronomy. 2021, 11, 1-45. DOI: https://doi.org/10.3390/agronomy11112188. DOI: https://doi.org/10.3390/agronomy11112188

Pérez-Pérez, J.U.; Guerra-Ramírez, D.; Reyes-Trejo, B.; Cuevas-Sánchez, J.A.; Guerra-Ramírez, P. Polibotánica. 2020, 49, 125-133. DOI: https://doi.org/10.18387/polibotanica.49.8. DOI: https://doi.org/10.18387/polibotanica.49.8

Thapa, S.P.; Miyao, E.M.; Michael Davis, R.; Coaker, G Theor. Appl. Genet. 2015, 128, 681-692. DOI: https://doi.org/10.1007/s00122-015-2463-7. DOI: https://doi.org/10.1007/s00122-015-2463-7

Zhang, Z.; Yao, B.; Huang, R. Plant. Dis. 2022, 106, 1515. DOI: https://doi.org/10.1094/PDIS-08-21-1830-PDN. DOI: https://doi.org/10.1094/PDIS-08-21-1830-PDN

Yokotani, N.; Hasegawa, Y.; Sato, M.; Hirakawa, H.; Kouzai, Y.; Nishizawa, Y.; Yamamoto, E.; Naito, Y.; Isobe, S. BMC Plant. Biol. 2021, 21, 1-14. DOI: https://doi.org/10.1186/s12870-021-03251-8. DOI: https://doi.org/10.1186/s12870-021-03251-8

Rodrigues-Marin, V.; Ferrarezi, J.H.; Vieira, G.; Sass, D.C. J. Microbiol. Biotechnol. 2019, 1, 35-72. DOI: https://doi.org/10.1007/s11274-019-2646-5. DOI: https://doi.org/10.1007/s11274-019-2646-5

Ramírez-Gómez, X.S.; Jiménez-García, S.N.; Campos, V.B.; Campos, M.L.G., in: Plant diseases-current threats and management trends, Opolovec-Pintarić, S., Ed., IntechOpen, 2020, 49-68. DOI: https://doi.org/10.5772/intechopen.80762. DOI: https://doi.org/10.5772/intechopen.80762

Fernández, R.; Lizana, X.C. Agro. Sur. 2020, 48, 1-8. DOI: https://doi.org/10.4206/agrosur.2020.v48n2-01. DOI: https://doi.org/10.4206/agrosur.2020.v48n2-01

Xu, L.; Tian, Z.; Chen, H.; Zhao, Y.; Yang. Y. Front. Nutr. 2021, 8, 747884. DOI: https://doi.org/10.3389/fnut.2021.747884. DOI: https://doi.org/10.3389/fnut.2021.747884

Tena, N.; Martín, J.; Asuero, A.G. Antioxidants. 2020, 9, 451. DOI: https://doi.org/10.3390/antiox9050451. DOI: https://doi.org/10.3390/antiox9050451

Salamon, I.; Şimşek Sezer, E.N.; Kryvtsova, M.; Labun, P. Appl. Sci. 2021, 11, 2096. DOI: https://doi.org/10.3390/app11052096. DOI: https://doi.org/10.3390/app11052096

Veerapandi, L.; Nivetha, T.; Karunyah-Amirthadharshini, N.; Sinthiya, R. Solid State Technol. 2021, 64, 4107-4113.

Mendoza, L.; Cotoras, M.; Vivanco, M.; Matsuhiro, B.; Torres, S.; Aguirre, M. J. Chil. Chem. Soc. 2013, 3, 1725-1727. DOI: https://doi.org/10.4067/S0717-97072013000200018. DOI: https://doi.org/10.4067/S0717-97072013000200018

Schaefer, H.M.; Rentzsch, M.; Breuer, M. Nat. Prod. Commun. 2008, 3, 1267-1272. DOI: https://doi.org/10.1177/1934578X0800300808. DOI: https://doi.org/10.1177/1934578X0800300808

Aly, A.A.; Ali, H.G.; Eliwa, N.E. J. Food. Meas. Charact. 2019, 13, 911-920. DOI: https://doi.org/10.1007/s11694-018-0005-0. DOI: https://doi.org/10.1007/s11694-018-0005-0

Abdel-Aal, E.S.; Hucl, P. Cereal. Chem. 1999, 76, 350-354. DOI: https://doi.org/10.1094/CCHEM.1999.76.3.350. DOI: https://doi.org/10.1094/CCHEM.1999.76.3.350

Cretu, G.; Totu, E.E.; Miron, A.R.; Nechifor, A.C. Rom. Biotechnol. Lett. 2013, 18, 8271-8278.

Cretu, G.C.; Morlock, G.E. Food. Chem. 2014, 146, 104-112. DOI: https://doi.org/10.1016/j.foodchem.2013.09.038. DOI: https://doi.org/10.1016/j.foodchem.2013.09.038

Giusti, M.M.; Wrolstad, R.E. Curr. Protoc. Food. Anal. Chem. 2001, 1, F1-2. DOI: https://doi.org/10.1002/0471142913.faf0102s00 DOI: https://doi.org/10.1002/0471142913.faf0102s00

Sánchez-Quezada, V.; Gaytán-Martínez, M.; Recio, I.; Loarca-Piña, G. Food. Chem. 2023, 421, 136118. DOI: https://doi.org/10.1016/j.foodchem.2023.136118. DOI: https://doi.org/10.1016/j.foodchem.2023.136118

Spinardi, A.; Cola, G.; Gardana, C.S.; Mignani, I. Front. Plant. Sci. 2019, 10, 1045. DOI: https://doi.org/10.3389/fpls.2019.01045. DOI: https://doi.org/10.3389/fpls.2019.01045

Woisky, R.G.; Salatino, A. J. Apic. Res. 1998, 37, 99-105. DOI: https://doi.org/10.1080/00218839.1998.11100961. DOI: https://doi.org/10.1080/00218839.1998.11100961

Hosu, A.; Cimpoiu, C.; David, L.; Moldovan, B. J. Anal. Methods. Chem. 2016, 1, 1-16. DOI: https://doi.org/10.1155/2016/2345375. DOI: https://doi.org/10.1155/2016/2345375

Untea, A.; Lupu, A.; Saracila, M.; Panaite, T. Bull. UASVM. Anim. Sci. Biotechnol. 2018, 75, 111-114. DOI: https://doi.org/10.15835/buasvmcn-asb:2018.0009. DOI: https://doi.org/10.15835/buasvmcn-asb:2018.0009

Orsini, F.; Vovk, I.; Glavnik, V.; Jug, U.; Corradini, D. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 290-301. DOI: https://doi.org/10.1080/10826076.2019.1585630. DOI: https://doi.org/10.1080/10826076.2019.1585630

Bernal-Gallardo, J.O.; Molina-Torres, J.; Angoa-Pérez, M.V.; Cárdenas-Valdovinos, J.G.; García-Ruíz, I.; Ceja-Díaz, J.A.; Mena-Violante, H.G. Horticulturae. 2021, 8, 1-17. DOI: https://doi.org/10.3390/horticulturae8010015. DOI: https://doi.org/10.3390/horticulturae8010015

Aguirre, M.J.; Chen, Y.Y.; Isaacs, M.; Matsuhiro, B.; Mendoza, L.; Torres, S. Food. Chem. 2010, 121, 44-48. DOI: https://doi.org/10.1016/j.foodchem.2009.11.088. DOI: https://doi.org/10.1016/j.foodchem.2009.11.088

Jeremias-Duarte, L.; Clasen-Chaves, V.; Pereira dos Santos-Nascimento, M.V.; Calvete, E.; Li, M.; Ciraolo, E.; Ghigo, A.; Hirsch, E.; Oliveira-Simões, C.M.; Reginatto. F.H.; Dalmarco, E.M. Food. Chem. 2018, 247, 56-65. DOI: https://doi.org/10.1016/j.foodchem.2017.12.015. DOI: https://doi.org/10.1016/j.foodchem.2017.12.015

Ponder, A.; Hallmann, E.; Kwolek, M.; Średnicka-Tober, D.; Kazimierczak, R. Curr. Issues. Mol. Biol. 2021, 43, 36-51. DOI: https://doi.org/10.3390/cimb43010004. DOI: https://doi.org/10.3390/cimb43010004

Cerezo, A.B.; Cătunescu, G.M.; González, M.M.P.; Hornedo-Ortega, R.; Pop, C.R.; Rusu, C.C.; Chirilă, F.; Rotar, A.M.; García-Parrilla, M.C.; Troncoso, A.M. Antioxidants. 2020, 9, 1-22. DOI: https://doi.org/10.3390/antiox9060478. DOI: https://doi.org/10.3390/antiox9060478

Lee, S.G.; Vance, T.M.; Nam, T.G.; Kim, D.O.; Koo, S.I.; Chun, O.K. J. Food. Meas. Charac. 2016, 10, 562-568. DOI: https://doi.org/10.1007/s11694-016-9337-9. DOI: https://doi.org/10.1007/s11694-016-9337-9

Winardiantika, V.; Lee, Y.H.; Park, N.I.; Yeoung, Y.R. Hortic. Environ. Biotechnol. 2017, 56, 732-739. DOI: https://doi.org/10.1007/s13580-015-0052-y. DOI: https://doi.org/10.1007/s13580-015-0052-y

Ornelas-Paz, J.J.; Yahia, E.M.; Ramírez-Bustamante, N.; Pérez-Martínez, J.D.; Escalante-Minakata, M.dP.; Ibarra-Junquera, V.; Acosta-Muñiz, C.; Guerrero-Prieto, V.; Ochoa-Reyes, E. Food. Chem. 2013, 138, 372-381. DOI: https://doi.org/10.1016/j.foodchem.2012.11.006. DOI: https://doi.org/10.1016/j.foodchem.2012.11.006

Da Fonseca-Machado, A.P.; Duarte-Pereira, A.L.; Fernández-Barbero, G.; Martínez, J. Food. Chem. 2017, 231, 1-10. DOI: https://doi.org/10.1016/j.foodchem.2017.03.060. DOI: https://doi.org/10.1016/j.foodchem.2017.03.060

Zorzi, M; Gai, F; Medana, C; Aigotti, R; Morello, S; Peiretti, PG Foods. 2020, 9, 623. DOI: https://doi.org/10.3390/foods9050623. DOI: https://doi.org/10.3390/foods9050623

Mustafa, A.M.; Angeloni, S.; Abouelenein, D.; Acquaticci, L.; Xiao, J.; Sagratini, G.; Maggi, F.; Vittori, S.; Caprioli, G. Food. Chem. 2022, 367, 130743. DOI: https://doi.org/10.1016/j.foodchem.2021.130743. DOI: https://doi.org/10.1016/j.foodchem.2021.130743

Rusmana, D.; Wahyudianingsih, R.; Elisabeth, M.; Balqis, B.; Maesaroh, M.; Widowati, W. Indones. Biomed. J. 2017, 9, 84-90. DOI: https://doi.org/10.18585/inabj.v9i2.281 DOI: https://doi.org/10.18585/inabj.v9i2.281

Cervantes, L.; Martinez-Ferri, E.; Soria, C.; Ariza, M.T. Food. Biosci. 2020, 37, 100680. DOI: https://doi.org/10.1016/j.fbio.2020.100680. DOI: https://doi.org/10.1016/j.fbio.2020.100680

Becker-Pertuzatti, P.; Teixeira-Barcia, M.; Gómez-Alonso, S.; Teixeira-Godoy, H.; Hermosin-Gutierrez, I. Food. Chem. 2021, 340, 127958. DOI: https://doi.org/10.1016/j.foodchem.2020.127958. DOI: https://doi.org/10.1016/j.foodchem.2020.127958

Singh, P.; Arif, Y.; Bajguz, A.; Hayat, S. Plant. Physiol. Biochem. 2021, 166, 10-19. DOI: https://doi.org/10.1016/j.plaphy.2021.05.023. DOI: https://doi.org/10.1016/j.plaphy.2021.05.023

García-Rodríguez, M.C.; Hernández-Cortés, L.M.; Arenas-Huertero, F. Arch. Latinoam. Nutr. 2022, 72, 205-217. https://doi.org/10.37527/2022.72.3.006. DOI: https://doi.org/10.37527/2022.72.3.006

Fernández-Lara, R.; Gordillo, B.; Rodríguez-Pulido, F.J.; González-Miret, M.L.; del Villar-Martínez, A.A.; Dávila-Ortiz, G.; Heredia, F.J. Food. Res. Int. 2015, 76, 645-653. DOI: https://doi.org/10.1016/j.foodres.2015.07.038. DOI: https://doi.org/10.1016/j.foodres.2015.07.038

Mollayi, S.; Farzaneh, M.; Ghanati, F.; Aboul-Enein, H.Y.; Ghassempour, A. Physiol. Mol. Plant. Pathol. 2016, 93, 93-98. DOI: https://doi.org/10.1016/j.pmpp.2015.12.002. DOI: https://doi.org/10.1016/j.pmpp.2015.12.002

Piovezan, M.; García-Seco, D.; Micke, G.A.; Gutiérrez-Mañero, J.; Ramos-Solano, B. Electrophoresis. 2013, 34, 2251-2258. DOI: https://doi.org/10.1002/elps.201300065. DOI: https://doi.org/10.1002/elps.201300065

Wu, R.; Frei, B.; Kennedy, J.A.; Zhao, Y. LWT-Food. Sci. Technol. 2010, 43, 1253-1264. DOI: https://doi.org/10.1016/j.lwt.2010.04.002. DOI: https://doi.org/10.1016/j.lwt.2010.04.002

Hwang, S.J.; Yoon, W.B.; Lee, O.H.; Cha, S.J.; Dai Kim, J. Food. Chem. 2014, 146, 71-77. DOI: https://doi.org/10.1016/j.foodchem.2013.09.035. DOI: https://doi.org/10.1016/j.foodchem.2013.09.035

Alonzo-Macías, M.; Cardador-Martínez, A.; Mounir, S.; Montejano-Gaitán, G.; Allaf, K. J. Food. Res. 2013, 2, 92-107. DOI: https://doi.org/10.5539/jfr.v2n2p92. DOI: https://doi.org/10.5539/jfr.v2n2p92

Sette, P.; Franceschinis, L.; Schebor, C.; Salvatori, D. Int. J. Food. Sci. Technol. 2017, 52, 313-328. DOI: https://doi.org/10.1111/ijfs.13283. DOI: https://doi.org/10.1111/ijfs.13283

Mlcek, J.; Jurikova, T.; Skrovankova, S.; Sochor, J. Molecules. 2016, 21, 1-15. DOI: https://doi.org/10.3390/molecules21050623. DOI: https://doi.org/10.3390/molecules21050623

Vulić, J.J.; Velićanski, A.S.; Četojević-Simin, D.D.; Tumbas-Šaponjac, V.T.; Đilas, S.M.; Cvetković, D.D.; Markov, S.L. Acta. Period. Technol. 2014, 45, 99-116. DOI: https://doi.org/10.2298/APT1445099V. DOI: https://doi.org/10.2298/APT1445099V

Casati, C.B.; Baeza, R.; Sánchez, V. J. Berry. Res. 2019, 9, 431-447. DOI: https://doi.org/10.3233/JBR-190409. DOI: https://doi.org/10.3233/JBR-190409

Wiczkowski, W. Szawara-Nowak, D.; Topolska, J. Food. Res. Int. 2013, 51, 303-309. DOI: https://doi.org/10.1016/j.foodres.2012.12.015. DOI: https://doi.org/10.1016/j.foodres.2012.12.015

Gündeşli, M.A.; Korkmaz, N.; Okatan, V. Int. J. Agric. For. Life. Sci. 2019, 3, 350-361.

Ma, Y.; Ding, S.; Fei, Y.; Liu, G.; Jang, H.; Fang, J. Food. Control. 2019, 106. 106712. DOI: https://doi.org/10.1016/j.foodcont.2019.106712. DOI: https://doi.org/10.1016/j.foodcont.2019.106712

Carrillo, M.L.; Castillo, L.N.; Mauricio, R. Inf. Tecnol. 2011, 22, 21-28. DOI: http://doi.org/10.4067/S0718-07642011000500004- DOI: https://doi.org/10.4067/S0718-07642011000500004

Johnston, M.; McBride, M.; Dahiya, D.; Owusu-Apenten, R.; Nigam, P.S. AIMS. Microbiol. 2018, 4, 655-664. DOI: https://doi.org/10.3934/microbiol.2018.4.655. DOI: https://doi.org/10.3934/microbiol.2018.4.655

Carrillo-Tomalá, C.; Díaz-Torres, R. Rev. Cienc. UNEMI. 2020, 13, 69-77. DOI: https://doi.org/10.29076/issn.2528-7737vol13iss32.2020pp69-77p

Petruskevicius, A.; Viskelis, J.; Urbonaviciene, D.; Viskelis, P. Horticulturae. 2023, 9, 1-18. DOI: https://doi.org/10.3390/horticulturae9020288. DOI: https://doi.org/10.3390/horticulturae9020288

Sun, X.H.; Zhou, T.T.; Wei, C.H.; Lan, W.Q.; Zhao, Y.; Pan, Y.J.; Wu, V.C. Food Control. 2018, 94, 155-161. DOI: https://doi.org/10.1016/j.foodcont.2018.07.012. DOI: https://doi.org/10.1016/j.foodcont.2018.07.012

Gonelimali, F.D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S.R. Front. Microbiol. 2018, 9, 1-9. DOI: https://doi.org/10.3389/fmicb.2018.01639. DOI: https://doi.org/10.3389/fmicb.2018.01639

Mihok, E.; György, É.; Máthé, E. Acta. Agrar. Debreceniensis. 2019, 1, 27-32. DOI: https://doi.org/10.34101/actaagrar/1/2365. DOI: https://doi.org/10.34101/actaagrar/1/2365

Widyarman, A.S.; Widjaja, S.B.; Idrus, E. Sci. Dent. J. 2017, 1, 1-5. DOI: https://doi.org/10.26912/sdj.v1i1.1911. DOI: https://doi.org/10.26912/sdj.2017.01.01-01

Cárdenas-Valdovinos, J.G.; Oregel-Zamudio, E.; Oyoque-Salcedo, G.; Angoa-Pérez, M.V.; Padilla-Jiménez, S.M.; Molina-Torres, J.; Mena-Violante, H.G. J. Bioeng. 2018, 2, 17-25.

×

Downloads

Published

2025-06-11

Issue

Section

Regular Articles
x

Similar Articles

<< < 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.

Loading...