DFT and Molecular Docking Studies of Melatonin and Some Analogues Interaction with Xanthine Oxidase as a Possible Antiradical Mechanism
DOI:
https://doi.org/10.29356/jmcs.v68i1.2072Keywords:
antiradical properties, Density Functional Theory, melatonin, xanthine oxidase, molecular dockingAbstract
Melatonin (Mel) and some of its active metabolites such as N1-acetyl-5-methoxykynuramine (AMK), N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), 6-hydroxymelatonin (6OHM), and the analogues Ir and It recently designed by Galano's group, have been studied within density functional theory (DFT). The purpose is to evaluate some plausible mechanisms of action of melatonin's metabolites and analogues with the free radicals (FR): OH ̇, NO ̇2, HOO ̇, and CH3O͘ . We calculated global chemical reactivity descriptors from conceptual DFT to evaluate their antiradical properties. We used water and pentyl ethanoate as solvents to simulate the physiological conditions, modeled via the continuum solvation model based on density (SMD). We assess the following plausible mechanisms: single electrons transfer (SET), hydrogen atom transfer (HAT) and xanthine oxidase (XO) inhibition. We performed our calculations at the M06-2X/6-31+G* level of theory. The results indicate that Mel, AMK, AFMK, 6OHM, It, and Ir are good antiradicals towards the FRs: NO ̇2 and CH3O , while It and Ir could be suitable XO inhibitors.
Keywords: Antiradical properties; Density Functional Theory; melatonin; xanthine oxidase; molecular docking.
Resumen. La melatonina (Mel) y algunos de sus metabolitos activos como N1-acetil-5-metoxiquinuramina (AMK), N1-acetil-N2-formil-5-metoxiquinuramina (AFMK), 6-hidroximelatonina (6OHM) y los análogos Ir e It, diseñados recientemente por el grupo de Galano, han sido estudiados con la teoría de funcionales de la densidad (DFT). El propósito es evaluar algunos mecanismos de acción plausibles de los metabolitos y análogos de la melatonina con los radicales libres (FR):OH ̇, NO ̇2, HOO ̇ y CH3O ̇. Calculamos los descriptores de reactividad química global a partir de DFT conceptual para evaluar sus propiedades antirradicales. Usamos agua y etanoato de pentilo como solventes para simular las condiciones fisiológicas, modeladas a través del modelo continuo de solvatación basado en la densidad (SMD). Evaluamos los siguientes mecanismos plausibles: transferencia de electrones individuales (SET), transferencia de átomos de hidrógeno (HAT) e inhibición de la xantina oxidasa (XO). Realizamos nuestros cálculos al nivel de teoría M06-2X/6-31+G*. Los resultados indican que Mel, AMK, AFMK, 6OHM, It e Ir son buenos antirradicales frente a los FRs: NO ̇2 y CH3O ̇, mientras que It e Ir podrían ser inhibidores adecuados de XO.
Downloads
References
Dharmaraja, A. T. J. Med. Chem. 2017, 60, 3221–3240. DOI: https://doi.org/10.1021/acs.jmedchem.6b01243. DOI: https://doi.org/10.1021/acs.jmedchem.6b01243
Kostić, D. A.; Dimitrijević, D. S.; Stojanović, G. S.; Palić, I. R.; Đorđević, A. S.; Ickovski, J. D. J. Chem. 2015, 2015, 294858. DOI: https://doi.org/10.1155/2015/294858. DOI: https://doi.org/10.1155/2015/294858
Giorgi, C.; Marchi, S.; Simoes, I. C. M.; Ren, Z.; Morciano, G.; Perrone, M.; Patalas-Krawczyk, P.; Borchard, S.; Jędrak, P.; Pierzynowska, K.; et al. Chapter Six. in: Mitochondria and Longevity; López-Otín, C., Galluzzi, L. B. T.-I. R. of C. and M. B., Eds.; Academic Press, 2018; 340, 209–344 DOI: https://doi.org/https://doi.org/10.1016/bs.ircmb.2018.05.006. DOI: https://doi.org/10.1016/bs.ircmb.2018.05.006
Phaniendra, A.; Jestadi, D. B.; Periyasamy, L. Indian J. Clin. Biochem. 2015, 30, 11–26. DOI: https://doi.org/10.1007/s12291-014-0446-0. DOI: https://doi.org/10.1007/s12291-014-0446-0
Alkadi, H. Infect. Disord. Drug. Targets. 2020, 20, 16–26. DOI: https://doi.org/10.2174/1871526518666180628124323. DOI: https://doi.org/10.2174/1871526518666180628124323
Oroian, M.; Escriche, I. Int. Food Res. J. 2015, 74, 10–36. DOI: https://doi.org/10.1016/j.foodres.2015.04.018. DOI: https://doi.org/10.1016/j.foodres.2015.04.018
Jamshidi-kia, F.; Wibowo, J. P.; Elachouri, M.; Masumi, R.; Salehifard-Jouneghani, A.; Abolhasanzadeh, Z.; Lorigooini, Z. J. Herbmed. Pharmacol. 2020, 9, 191–199. DOI: https://doi.org/10.34172/jhp.2020.25. DOI: https://doi.org/10.34172/jhp.2020.25
Galano, A.; Tan, D. X.; Reiter, R. J. J. Pineal Res. 2011, 51, 1–16. DOI: https://doi.org/10.1111/j.1600-079X.2011.00916.x. DOI: https://doi.org/10.1111/j.1600-079X.2011.00916.x
Galano, A. RSC Adv. 2016, 6, 22951–22963. DOI: https://doi.org/10.1039/c6ra00549g. DOI: https://doi.org/10.1039/C6RA00549G
Poeggeler, B.; Saarela, S.; Reiter, R. J.; Tan, D. X.; Chen, L. D.; Manchester, L. C.; Barlow-Walden, L. R. Ann. N. Y. Acad. Sci. 1994, 738, 419–420. DOI: https://doi.org/10.1111/j.1749-6632.1994.tb21831.x. DOI: https://doi.org/10.1111/j.1749-6632.1994.tb21831.x
Galano, A.; Reiter, R. J. J. Pineal Res. 2018, 65, e12514. DOI: https://doi.org/https://doi.org/10.1111/jpi.12514. DOI: https://doi.org/10.1111/jpi.12514
Álvarez-Diduk, R.; Galano, A.; Tan, D. X.; Reiter, R. J. Theor. Chem. Acc. 2016, 135, 38. DOI: https://doi.org/10.1007/s00214-015-1785-5. DOI: https://doi.org/10.1007/s00214-015-1785-5
Ramis, M. R.; Esteban, S.; Miralles, A.; Tan, D.-X.; Reiter, R. J. Curr. Med. Chem, 2015, 22, 2690–2711. DOI: https://doi.org/10.2174/0929867322666150619104143. DOI: https://doi.org/10.2174/0929867322666150619104143
Galano, A.; Tan, D. X.; Reiter, R. J. J. Pineal Res. 2013, 54, 245–257. DOI: https://doi.org/10.1111/jpi.12010. DOI: https://doi.org/10.1111/jpi.12010
Álvarez-Diduk, R.; Galano, A.; Tan, D. X.; Reiter, R. J. J. Phys. Chem. B. 2015, 119, 8535–8543. DOI: https://doi.org/10.1021/acs.jpcb.5b04920. DOI: https://doi.org/10.1021/acs.jpcb.5b04920
Hardeland, R. Endocrine. 2005, 27, 119–130. DOI: https://doi.org/10.1385/endo:27:2:119. DOI: https://doi.org/10.1385/ENDO:27:2:119
Costa, J. D.; Ramos, R. D.; Costa, K. D.; Brasil, D. D.; Silva, C. H.; Ferreira, E. F.; Borges, R. D.; Campos, J. M.; Macêdo, W. J.; Santos, C. B. Mol. 2018. DOI: https://doi.org/10.3390/molecules23112801. DOI: https://doi.org/10.3390/molecules23112801
Guerra-Vargas, M. A.; Rosales-Hernández, M. C.; Martínez-Fonseca, N.; Padilla-Martínez, I.; Fonseca-Sabater, Y.; Martínez-Ramos, F. Med. Chem. Res. 2018, 27, 1186–1197. DOI: https://doi.org/10.1007/s00044-018-2139-3. DOI: https://doi.org/10.1007/s00044-018-2139-3
Kaçmaz, A.; User, E. Y.; Şehirli, A. Ö.; Tilki, M.; Ozkan, S.; Şener, G. Surg. Today. 2005, 35, 744–750. DOI: https://doi.org/10.1007/s00595-005-3027-2. DOI: https://doi.org/10.1007/s00595-005-3027-2
Okutan, H.; Savas, C.; Delibas, N. Interact. Cardiovasc. Thorac. Surg. 2004, 3, 519–522. DOI: https://doi.org/10.1016/j.icvts.2004.05.005. DOI: https://doi.org/10.1016/j.icvts.2004.05.005
Juan, C. A.; Pérez de la Lastra, J. M.; Plou, F. J.; Pérez-Lebeña, E. Int. J. Mol. Sci. 2021. DOI: https://doi.org/10.3390/ijms22094642. DOI: https://doi.org/10.3390/ijms22094642
Teixeira, A.; Morfim, M. P.; de Cordova, C. A. S.; Charão, C. C. T.; de Lima, V. R.; Creczynski-Pasa, T. B. J. Pineal Res. 2003, 35, 262–268. DOI: https://doi.org/https://doi.org/10.1034/j.1600-079X.2003.00085.x. DOI: https://doi.org/10.1034/j.1600-079X.2003.00085.x
Zhou, J.; Zhang, S.; Zhao, X.; Wei, T. J. Pineal Res. 2008, 45, 157–165. DOI: https://doi.org/https://doi.org/10.1111/j.1600-079X.2008.00570.x. DOI: https://doi.org/10.1111/j.1600-079X.2008.00570.x
Castañeda-Arriaga, R.; Pérez-González, A.; Reina, M.; Galano, A. Theor. Chem. Acc. 2020, 139, 1–12. DOI: https://doi.org/10.1007/s00214-020-02641-9. DOI: https://doi.org/10.1007/s00214-020-02641-9
Reina, M.; Castañeda-Arriaga, R.; Perez-Gonzalez, A.; Guzman-Lopez, E. G.; Tan, D.-X.; Reiter, R. J.; Galano, A. Melatonin Res. 2018, 1, 27–58. DOI: https://doi.org/10.32794/mr11250003. DOI: https://doi.org/10.32794/mr11250003
Galano, A.; Raúl Alvarez-Idaboy, J. Int. J. Quantum. Chem. 2019, 119, e25665. DOI: https://doi.org/10.1002/qua.25665. DOI: https://doi.org/10.1002/qua.25665
Reina, M.; Martínez, A. Comput. Theor. Chem. 2018, 1123, 111–118. DOI: https://doi.org/https://doi.org/10.1016/j.comptc.2017.11.017. DOI: https://doi.org/10.1016/j.comptc.2017.11.017
Galano, A. Phys. Chem. Chem. Phys. 2011, 13, 7178–7188. DOI: https://doi.org/10.1039/c0cp02801k. DOI: https://doi.org/10.1039/c0cp02801k
Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793–1874. DOI: https://doi.org/10.1021/cr990029p. DOI: https://doi.org/10.1021/cr990029p
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian 09. Revision C.01. Gaussian 09. Revision C.01, Gaussian, Inc, Wallingford CT. Gaussian, Inc.: Wallingford CT 2010.
Manzanilla, B.; Robles, J. J. Mol. Model. 2022, 28, 68. DOI: https://doi.org/10.1007/s00894-022-05056-4. DOI: https://doi.org/10.1007/s00894-022-05056-4
Cannington, P. H.; Ham, N. S. J. Electron. Spectrosc. Relat. Phenom. 1983, 32, 139–151. DOI: https://doi.org/10.1016/0368-2048(83)85092-0. DOI: https://doi.org/10.1016/0368-2048(83)85092-0
Marenich, A. V; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B. 2009, 113, 6378–6396. DOI: https://doi.org/10.1021/jp810292n. DOI: https://doi.org/10.1021/jp810292n
Spartan, W. I. Spartan 08. Irvine, CA. 2008.
Halgren, T. A. J. Comput. Chem. 1996, 17, 490–519. DOI: https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P. DOI: https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
Halgren, T. A. J. Comput. Chem. 1996, 17, 520–552. DOI: https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0.CO;2-W. DOI: https://doi.org/10.1002/(SICI)1096-987X(199604)17:6<520::AID-JCC2>3.3.CO;2-W
Halgren, T. A. J. Comput. Chem. 1996, 17, 553–586. DOI: https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<553::AID-JCC3>3.0.CO;2-T. DOI: https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<553::AID-JCC3>3.0.CO;2-T
Halgren, T. A.; Nachbar, R. B. J. Comput. Chem. 1996, 17, 587–615. DOI: https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<587::AID-JCC4>3.0.CO;2-Q. DOI: https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<587::AID-JCC4>3.0.CO;2-Q
Ho, J.; Coote, M. L. Theor. Chem. Acc. 2009, 125, 3–21. DOI: https://doi.org/10.1007/s00214-009-0667-0. DOI: https://doi.org/10.1007/s00214-009-0667-0
Janak, J. F. Phys. Rev. B. 1978, 18, 7165–7168. DOI: https://doi.org/10.1103/PhysRevB.18.7165. DOI: https://doi.org/10.1103/PhysRevB.18.7165
Casida, M. E. Phys. Rev. B. 1999, 59, 4694–4698. DOI: https://doi.org/10.1103/PhysRevB.59.4694. DOI: https://doi.org/10.1103/PhysRevB.59.4694
Saha, B.; Bhattacharyya, P. K. RSC Adv. 2016, 6, 79768–79780. DOI: https://doi.org/10.1039/C6RA15016K. DOI: https://doi.org/10.1039/C6RA15016K
Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512–7516. DOI: https://doi.org/10.1021/ja00364a005. DOI: https://doi.org/10.1021/ja00364a005
Yang, W.; Parr, R. G. PNAS. 1985, 82, 6723–6726 DOI: https://doi.org/10.1073/pnas.82.20.6723. DOI: https://doi.org/10.1073/pnas.82.20.6723
Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049–4050. DOI: https://doi.org/10.1021/ja00326a036. DOI: https://doi.org/10.1021/ja00326a036
Gázquez, J. L.; Cedillo, A.; Vela, A. J. Phys. Chem. A. 2007, 111, 1966–1970. DOI: https://doi.org/10.1021/jp065459f. DOI: https://doi.org/10.1021/jp065459f
Duarte Ramos Matos, G.; Kyu, D. Y.; Loeffler, H. H.; Chodera, J. D.; Shirts, M. R.; Mobley, D. L. J. Chem. Eng. Data. 2017, 62,1559–1569. DOI: https://doi.org/10.1021/acs.jced.7b00104. DOI: https://doi.org/10.1021/acs.jced.7b00104
Leo, A. J. Chem. Rev. 1993, 93, 1281–1306. DOI: https://doi.org/10.1021/cr00020a001. DOI: https://doi.org/10.1021/cr00020a001
Spartan, W. I. Spartan 18. Irvine, CA. 2018.
Ghose, A. K.; Pritchett, A.; Crippen, G. M. J. Comput. Chem. 1988, 9, 80–90. DOI: https://doi.org/10.1002/jcc.540090111. DOI: https://doi.org/10.1002/jcc.540090111
Martínez, A.; Vargas, R.; Galano, A. J. Phys. Chem. B. 2009, 113, 12113–12120. DOI: https://doi.org/10.1021/jp903958h. DOI: https://doi.org/10.1021/jp903958h
Enroth, C.; Eger, B. T.; Okamoto, K.; Nishino, T.; Nishino, T.; Pai, E. F. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 10723–10728. DOI: https://doi.org/10.1073/pnas.97.20.10723. DOI: https://doi.org/10.1073/pnas.97.20.10723
Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A. J. J. Comput. Chem. 2009, 30, 2785–2791. DOI: https://doi.org/10.1002/jcc.21256. DOI: https://doi.org/10.1002/jcc.21256
Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. J. Comput. Chem. 1998, 19, 1639–1662. DOI: https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B. DOI: https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
BIOVIA. Discovery Studio Visualizer. Dassault Systèmes: San Diego 2020.
Mahal, H. S.; Sharma, H. S.; Mukherjee, T. Free Radic. Biol. Med. 1999, 26, 557–565. DOI: https://doi.org/10.1016/s0891-5849(98)00226-3. DOI: https://doi.org/10.1016/S0891-5849(98)00226-3
Galano, A. A. Theor. Chem. Acc. 2016, 135, 157. DOI: https://doi.org/10.1007/s00214-016-1917-6. DOI: https://doi.org/10.1007/s00214-016-1917-6
Domingo, L. R.; Aurell, M. J.; Pérez, P.; Contreras, R. Tetrahedron. 2002, 58, 4417–4423. DOI: https://doi.org/https://doi.org/10.1016/S0040-4020(02)00410-6. DOI: https://doi.org/10.1016/S0040-4020(02)00410-6
Johns, J. R.; Platts, J. A. Org. Biomol. Chem. 2014, 12, 7820–7827. DOI: https://doi.org/10.1039/c4ob01396d. DOI: https://doi.org/10.1039/C4OB01396D
Galano, A.; Tan, D. X.; Reiter, R. J. RSC Adv. 2014, 4, 5220–5227. DOI: https://doi.org/10.1039/c3ra44604b. DOI: https://doi.org/10.1039/c3ra44604b
Romero, Y.; Martínez, A. J. Mol. Model. 2015, 21, 220. DOI: https://doi.org/10.1007/s00894-015-2773-3. DOI: https://doi.org/10.1007/s00894-015-2773-3
Chung, H. Y.; Baek, B. S.; Song, S. H.; Kim, M. S.; Huh, J. I.; Shim, K. H.; Kim, K. W.; Lee, K. H. Age (Omaha). 1997, 20, 127–140. DOI: https://doi.org/10.1007/s11357-997-0012-2. DOI: https://doi.org/10.1007/s11357-997-0012-2
Lin, H.-C.; Tsai, S.-H.; Chen, C.-S.; Chang, Y.-C.; Lee, C.-M.; Lai, Z.-Y.; Lin, C.-M. Biochem. Pharmacol. 2008, 75, 1416–1425. DOI: https://doi.org/10.1016/j.bcp.2007.11.023. DOI: https://doi.org/10.1016/j.bcp.2007.11.023
Kontoyianni, M.; McClellan, L. M.; Sokol, G. S. J. Med. Chem. 2004, 47, 558–565. DOI: https://doi.org/10.1021/jm0302997. DOI: https://doi.org/10.1021/jm0302997
Chen, Y.; Gao, Y.; Wu, F.; Luo, X.; Ju, X.; Liu, G. New J. Chem. 2020, 44, 19276–19287. DOI: https://doi.org/10.1039/D0NJ03221B. DOI: https://doi.org/10.1039/D0NJ03221B
Shen, L.; Ji, H.-F. Bioorg. Med. Chem. Lett. 2009, 19, 5990–5993. DOI: https://doi.org/10.1016/j.bmcl.2009.09.076. DOI: https://doi.org/10.1016/j.bmcl.2009.09.076
Fatima, I.; Zafar, H.; Khan, K. M.; Saad, S. M.; Javaid, S.; Perveen, S.; Choudhary, M. I. Bioorg. Chem. 2018, 79, 201–211. DOI: https://doi.org/10.1016/j.bioorg.2018.04.021. DOI: https://doi.org/10.1016/j.bioorg.2018.04.021
Santi, M. D.; Paulino Zunini, M.; Vera, B.; Bouzidi, C.; Dumontet, V.; Abin-Carriquiry, A.; Grougnet, R.; Ortega, M. G. Eur. J. Org. Chem. 2018, 143, 577–582. DOI: https://doi.org/10.1016/j.ejmech.2017.11.071. DOI: https://doi.org/10.1016/j.ejmech.2017.11.071


Downloads
Additional Files
Published
Issue
Section
License
Copyright (c) 2023 Brenda Manzanilla, Minerva Martinez-Alfaro, Juvencio Robles

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
