In silico, Synthesis and Biological Investigations of Pyrrolo[3,4-C]Pyrrole Hydroxamic Acid Derivatives as Potential Anticancer Agents

Authors

  • Luis Bahena Universidad de Guanajuato
  • Carlos Cervantes Universidad de Guanajuato
  • Karla J Soto-Arredondo Universidad de Guanajuato
  • Minerva Martínez-Alfaro Universidad de Guanajuato
  • Natanael Zarco Universidad de Guanajuato
  • Marco A. García-Revilla Universidad de Guanajuato
  • Yolanda Alcaraz-Contreras Universidad de Guanajuato
  • Lourdes Palma Tirado UNAM
  • Miguel A. Vázquez Universidad de Guanajuato
  • Juvencio Robles Universidad de Guanajuato

DOI:

https://doi.org/10.29356/jmcs.v61i4.460

Keywords:

Molecular docking studies, DFT, pyrrolo[3, 4-c]pyrrole hydroxamic acid, synthesis, antiproliferative activity, HDAC, biological assays.

Abstract

Based in a general structural pharmacophore model of suberoylanilide hydroxamic acid (commercially known as Vorinostat©), we synthesized a series of new pyrrolo[3,4-c]pyrrole hydroxamic acid derivatives, 9a-c, to be tested as candidates for anti-cancer drugs. The evaluation of their possible biological activity was assessed in two ways: a) computational characterization from molecular calculations and quantum reactivity descriptors and b) biological assays. Molecular docking and density functional theory calculations were performed to assess the binding properties of our newly synthesized pyrrolo[3,4-c] pyrrole hydroxamic acid derivatives, employing as the biological target the histone deacetylase isoforms available in the protein data bank. Furthermore, to characterize the effect of changing the functional groups that we varied while designing our drug model, and to improve the assessment of the binding energy, conceptual density functional theory reactivity descriptors were calculated to rationalize the capability of the new drugs to interact with the histones active site. Our findings show that the newly synthesized derivative, 9c, display the best energetic coupling with the biological target and the more favorable values of the density functional theory descriptors to interact with the active site. The biological assay of the anti-cancer drug candidates was done using three different techniques: i) anti-proliferative activity on two breast cancer cell lines; ii) Histone H3 acetylation; and iii) DNA damage. Docking studies were performed on histone deacetylase enzymes. The biological function of these enzymes is the deacetylation of histones. We analyze the level of histone acetylation in two cell lines. The computational findings are in good agreement with the biological evaluation. Our main contribution is that one of our newly synthesized derivatives, 9c, performs better than the commercial reference suberoylanilide hydroxamic acid.

Downloads

Download data is not yet available.

Author Biographies

Luis Bahena, Universidad de Guanajuato

Departamento de Farmacia, División de Ciencias Naturales y Exactas

Carlos Cervantes, Universidad de Guanajuato

Departamento de Química, División de Ciencias Naturales y Exactas

Karla J Soto-Arredondo, Universidad de Guanajuato

Departamento de Farmacia, División de Ciencias Naturales y Exactas

Minerva Martínez-Alfaro, Universidad de Guanajuato

Departamento de Farmacia, División de Ciencias Naturales y Exactas

Natanael Zarco, Universidad de Guanajuato

Departamento de Farmacia, División de Ciencias Naturales y Exactas

Marco A. García-Revilla, Universidad de Guanajuato

Departamento de Química, División de Ciencias Naturales y Exactas

Yolanda Alcaraz-Contreras, Universidad de Guanajuato

Departamento de Farmacia, División de Ciencias Naturales y Exactas

Lourdes Palma Tirado, UNAM

Instituto de Neurobiología

Miguel A. Vázquez, Universidad de Guanajuato

Departamento de Química, División de Ciencias Naturales y Exactas

Juvencio Robles, Universidad de Guanajuato

Departamento de Farmacia, División de Ciencias Naturales y Exactas

References

Zhu, Y.; Li, H.-F.; Lu, S.; Zheng, Y.-X.; Wu, Z.; Tang, W.-F.; Zhou, X.; Lu, T. Eur. J. Med. Chem. 2010, 45, 1777-1791. DOI: https://doi.org/10.1016/j.ejmech.2010.01.010

Hanessian, S.; Auzzas, L.; Giannini, G.; Marzi, M.; Cabri, W.; Barbarino, M.; Vesci, L.; Pisano, C. Bioorg. Med. Chem. Lett. 2007, 17, 6261-6265. DOI: https://doi.org/10.1016/j.bmcl.2007.09.014

Glauben, R.; Sonnenberg, E.; Zeitz, M.; Siegmund, B. Cancer Lett. 2009, 280, 154-159. DOI: https://doi.org/10.1016/j.canlet.2008.11.019

Marks, P. Oncogene 2007, 26, 1351-1356. DOI: https://doi.org/10.1038/sj.onc.1210204

Botrugno, O. A.; Robert, T.; Vanoli, F.; Foiani, M.; Minucci, S. Clin. Cancer Res. 2012, 18, 2436-2442. DOI: https://doi.org/10.1158/1078-0432.CCR-11-0767

Samuni, Y.; Wink, D. A.; Krishna, M. C.; Mitchell, J. B.; Goldstein, S. Free Radic. Biol. Med. 2014, 73, 291-298. DOI: https://doi.org/10.1016/j.freeradbiomed.2014.05.019

Stone, H. B.; Bernhard, E. J.; Coleman, C. N.; Deye, J.; Capala, J.; Mitchell, J. B.; Brown, J. M. Transl. Oncol. 2016; 9, 46-56. DOI: https://doi.org/10.1016/j.tranon.2016.01.002

Butler, L. M.; Agus, D. B.; Scher, H. I.; Higgins, B.; Rose, A.; Cordon-Cardo, C.; Thaler, H. T.; Rifkind, R. A.; Marks, P. A.; Richon, V. M. Cancer Res. 2000, 60, 5165-5170.

Manal, M.; Chandrasekar, M.; Priya, J. G.; Nanjan, M. Bioorg. Chem. 2016, 67, 18-42. DOI: https://doi.org/10.1016/j.bioorg.2016.05.005

Miller, T. A.; Witter, D. J.; Belvedere, S. J. Med. Chem. 2003, 46, 5097-5116. DOI: https://doi.org/10.1021/jm0303094

Jung, M.; Brosch, G.; Kölle, D.; Scherf, H.; Gerhäuser, C.; Loidl, P. J. Med. Chem. 1999, 42, 4669-4679. DOI: https://doi.org/10.1021/jm991091h

Whitehead, L.; Dobler, M. R.; Radetich, B.; Zhu, Y.; Atadja, P. W.; Claiborne, T.; Grob, J. E.; McRiner, A.; Pancost, M. R.; Patnaik, A. Bioorg. Med. Chem. 2011, 19, 4626-4634. DOI: https://doi.org/10.1016/j.bmc.2011.06.030

Khajuria, R.; Dham, S.; Kapoor, K. K. RSC Adv. 2016, 6, 37039-37066. DOI: https://doi.org/10.1039/C6RA03411J

Bhardwaj, V.; Gumber, D.; Abbot, V.; Dhiman, S.; Sharma, P. RSC Adv. 2015, 5, 15233-15266. DOI: https://doi.org/10.1039/C4RA15710A

Estevez, V.; Villacampa, M.; Menendez, J. C. Chem. Soc. Rev. 2010, 39, 4402-4421. DOI: https://doi.org/10.1039/b917644f

Hu, D. X.; Withall, D. M.; Challis, G. L.; Thomson, R. J. Chem. Rev. 2016, 116, 7818-7853. DOI: https://doi.org/10.1021/acs.chemrev.6b00024

Howard, J. A.; Hoy, V. J.; O’Hagan, D.; Smith, G. T. Tetrahedron 1996, 52, 12613-12622. DOI: https://doi.org/10.1016/0040-4020(96)00749-1

Ragno, R.; Simeoni, S.; Rotili, D.; Caroli, A.; Botta, G.; Brosch, G.; Massa, S.; Mai, A. Eur. J. Med. Chem. 2008, 43, 621-632. DOI: https://doi.org/10.1016/j.ejmech.2007.05.004

Ontoria, J. M.; Altamura, S.; Di Marco, A.; Ferrigno, F.; Laufer, R.; Muraglia, E.; Palumbi, M. C.; Rowley, M.; Scarpelli, R.; Schultz-Fademrecht, C. J. Med. Chem. 2009, 52, 6782-6789. DOI: https://doi.org/10.1021/jm900555u

Pham-The, H.; Casañola-Martin G.; Diéguez-Santana, K.; Nguyen-Hai, N.; Ngoc, N. T.; Vu-Duc, L.; Le-Thi-Thu, H. SAR and QSAR Environ. Res. 2017, 28, 199-220. DOI: https://doi.org/10.1080/1062936X.2017.1294198

Yuriev, E.; Ramsland, P. A. J. Mol. Recognit. 2013, 26, 215-239. DOI: https://doi.org/10.1002/jmr.2266

Villaseñor-Granados, T., García, S., Vázquez, M. A., Robles, J. Theor. Chem. Acc. 2016, 135, 210. DOI: https://doi.org/10.1007/s00214-016-1965-y

Chermette, H.; J. Comput. Chem. 1999, 20, 129-154. DOI: https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.3.CO;2-1

Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793-1873. DOI: https://doi.org/10.1021/cr990029p

Gázquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3-10.

Liu, S. B. Acta Phys.-Chim. Sin. 2009, 25, 590-600.

Chattaraj, P. K., Ed., Chemical Reactivity Theory: A Density Functional View, CRC Press; Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2009. DOI: https://doi.org/10.1201/9781420065442

Bergman, J.; Lindgren, G. Tetrahedron Lett. 1989, 34, 4597-4600. DOI: https://doi.org/10.1016/S0040-4039(01)80754-1

Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S. T.; Gilbert, A. T.; Slipchenko, L. V.; Levchenko, S. V.; O’Neill, D. P. Phys. Chem. Chem. Phys. 2006, 8, 3172-3191. DOI: https://doi.org/10.1039/B517914A

Thomsen, R.; Christensen, M. H. J. Med. Chem. 2006, 49, 3315-3321. 31. Lauffer, B. E.; Mintzer, R.; Fong, R.; Mukund, S.; Tam, C.; Zilberleyb, I.; Flicke, B.; Ritscher, A.; Fedorowicz, G.; Vallero, R. J. Biol. Chem. 2013, 288, 26926-26943. DOI: https://doi.org/10.1074/jbc.M113.490706

Somoza, J. R.; Skene, R. J.; Katz, B. A.; Mol, C.; Ho, J. D.; Jennings, A. J.; Luong, C.; Arvai, A.; Buggy, J. J.; Chi, E. Structure 2004, 12, 1325-1334. DOI: https://doi.org/10.1016/j.str.2004.04.012

Bottomley, M. J.; Surdo, P. L.; Di Giovine, P.; Cirillo, A.; Scarpelli, R.; Ferrigno, F.; Jones, P.; Neddermann, P.; De Francesco, R.; Steinkühler, C. J. Biol. Chem. 2008, 283, 26694-26704. DOI: https://doi.org/10.1074/jbc.M803514200

Schuetz, A.; Min, J.; Allali-Hassani, A.; Schapira, M.; Shuen, M.; Loppnau, P.; Mazitschek, R.; Kwiatkowski, N. P.; Lewis, T. A.; Maglathin, R. L. J. Biol. Chem 2008, 283, 11355-11363. DOI: https://doi.org/10.1074/jbc.M707362200

Ouyang, H.; Ali, Y. O.; Ravichandran, M.; Dong, A.; Qiu, W.; MacKenzie, F.; Dhe-Paganon, S.; Arrowsmith, C. H.; Zhai, R. G. J. Biol. Chem. 2012, 287, 2317-2327. DOI: https://doi.org/10.1074/jbc.M111.273730

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Gaussian, Inc.: Wallingford, CT, USA, 2009.

Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Revised ed.; Oxford University Press New York, NY, USA, 1994. DOI: https://doi.org/10.1093/oso/9780195092769.001.0001

Martinez-Ariza, G.; Dietrich, J.; De Moliner, F.; Hulme, C. Synlett. 2013, 24, 1801-1804. DOI: https://doi.org/10.1055/s-0033-1338872

Nie, J.; Guo, H. C.; Cahard, D.; Ma, J. A. Chem. Rev. 2010, 111, 455-529. DOI: https://doi.org/10.1021/cr100166a

Wang, D.; Helquist, P.; Wiest, O. J. Org. Chem. 2007, 72, 5446-5449. DOI: https://doi.org/10.1021/jo070739s

Lee J. H.; Choy M. L.; Ngo, L.; Foster, S. S.; Marks, P. A. Proc. Natl. Acad. Sci. 2010, 107, 14639-14644. DOI: https://doi.org/10.1073/pnas.1008522107

Speit, G.; Kojima, H.; Burlinson, B.; Collins, A. R.; Kasper, P.; Plappert-Helbig, U.; Uno, Y.; Vasquez, M.; Beevers, C.; De Boeck, M. Mut. Res. Genetic Toxicol. Environ. Mutagen. 2015, 783, 6-12. DOI: https://doi.org/10.1016/j.mrgentox.2014.09.006

Martinez-Alfaro, M.; Palma-Tirado, L.; Sandoval-Zapata, F.; Carabez-Trejo, A. Toxicol. Lett. 2006, 163, 198-205. DOI: https://doi.org/10.1016/j.toxlet.2005.10.021

×

Published

2018-01-30

Issue

Section

Regular Articles
x

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...