In silico, Synthesis and Biological Investigations of Pyrrolo[3,4-C]Pyrrole Hydroxamic Acid Derivatives as Potential Anticancer Agents
DOI:
https://doi.org/10.29356/jmcs.v61i4.460Keywords:
Molecular docking studies, DFT, pyrrolo[3, 4-c]pyrrole hydroxamic acid, synthesis, antiproliferative activity, HDAC, biological assays.Abstract
Based in a general structural pharmacophore model of suberoylanilide hydroxamic acid (commercially known as Vorinostat©), we synthesized a series of new pyrrolo[3,4-c]pyrrole hydroxamic acid derivatives, 9a-c, to be tested as candidates for anti-cancer drugs. The evaluation of their possible biological activity was assessed in two ways: a) computational characterization from molecular calculations and quantum reactivity descriptors and b) biological assays. Molecular docking and density functional theory calculations were performed to assess the binding properties of our newly synthesized pyrrolo[3,4-c] pyrrole hydroxamic acid derivatives, employing as the biological target the histone deacetylase isoforms available in the protein data bank. Furthermore, to characterize the effect of changing the functional groups that we varied while designing our drug model, and to improve the assessment of the binding energy, conceptual density functional theory reactivity descriptors were calculated to rationalize the capability of the new drugs to interact with the histones active site. Our findings show that the newly synthesized derivative, 9c, display the best energetic coupling with the biological target and the more favorable values of the density functional theory descriptors to interact with the active site. The biological assay of the anti-cancer drug candidates was done using three different techniques: i) anti-proliferative activity on two breast cancer cell lines; ii) Histone H3 acetylation; and iii) DNA damage. Docking studies were performed on histone deacetylase enzymes. The biological function of these enzymes is the deacetylation of histones. We analyze the level of histone acetylation in two cell lines. The computational findings are in good agreement with the biological evaluation. Our main contribution is that one of our newly synthesized derivatives, 9c, performs better than the commercial reference suberoylanilide hydroxamic acid.Downloads
References
Zhu, Y.; Li, H.-F.; Lu, S.; Zheng, Y.-X.; Wu, Z.; Tang, W.-F.; Zhou, X.; Lu, T. Eur. J. Med. Chem. 2010, 45, 1777-1791. DOI: https://doi.org/10.1016/j.ejmech.2010.01.010
Hanessian, S.; Auzzas, L.; Giannini, G.; Marzi, M.; Cabri, W.; Barbarino, M.; Vesci, L.; Pisano, C. Bioorg. Med. Chem. Lett. 2007, 17, 6261-6265. DOI: https://doi.org/10.1016/j.bmcl.2007.09.014
Glauben, R.; Sonnenberg, E.; Zeitz, M.; Siegmund, B. Cancer Lett. 2009, 280, 154-159. DOI: https://doi.org/10.1016/j.canlet.2008.11.019
Marks, P. Oncogene 2007, 26, 1351-1356. DOI: https://doi.org/10.1038/sj.onc.1210204
Botrugno, O. A.; Robert, T.; Vanoli, F.; Foiani, M.; Minucci, S. Clin. Cancer Res. 2012, 18, 2436-2442. DOI: https://doi.org/10.1158/1078-0432.CCR-11-0767
Samuni, Y.; Wink, D. A.; Krishna, M. C.; Mitchell, J. B.; Goldstein, S. Free Radic. Biol. Med. 2014, 73, 291-298. DOI: https://doi.org/10.1016/j.freeradbiomed.2014.05.019
Stone, H. B.; Bernhard, E. J.; Coleman, C. N.; Deye, J.; Capala, J.; Mitchell, J. B.; Brown, J. M. Transl. Oncol. 2016; 9, 46-56. DOI: https://doi.org/10.1016/j.tranon.2016.01.002
Butler, L. M.; Agus, D. B.; Scher, H. I.; Higgins, B.; Rose, A.; Cordon-Cardo, C.; Thaler, H. T.; Rifkind, R. A.; Marks, P. A.; Richon, V. M. Cancer Res. 2000, 60, 5165-5170.
Manal, M.; Chandrasekar, M.; Priya, J. G.; Nanjan, M. Bioorg. Chem. 2016, 67, 18-42. DOI: https://doi.org/10.1016/j.bioorg.2016.05.005
Miller, T. A.; Witter, D. J.; Belvedere, S. J. Med. Chem. 2003, 46, 5097-5116. DOI: https://doi.org/10.1021/jm0303094
Jung, M.; Brosch, G.; Kölle, D.; Scherf, H.; Gerhäuser, C.; Loidl, P. J. Med. Chem. 1999, 42, 4669-4679. DOI: https://doi.org/10.1021/jm991091h
Whitehead, L.; Dobler, M. R.; Radetich, B.; Zhu, Y.; Atadja, P. W.; Claiborne, T.; Grob, J. E.; McRiner, A.; Pancost, M. R.; Patnaik, A. Bioorg. Med. Chem. 2011, 19, 4626-4634. DOI: https://doi.org/10.1016/j.bmc.2011.06.030
Khajuria, R.; Dham, S.; Kapoor, K. K. RSC Adv. 2016, 6, 37039-37066. DOI: https://doi.org/10.1039/C6RA03411J
Bhardwaj, V.; Gumber, D.; Abbot, V.; Dhiman, S.; Sharma, P. RSC Adv. 2015, 5, 15233-15266. DOI: https://doi.org/10.1039/C4RA15710A
Estevez, V.; Villacampa, M.; Menendez, J. C. Chem. Soc. Rev. 2010, 39, 4402-4421. DOI: https://doi.org/10.1039/b917644f
Hu, D. X.; Withall, D. M.; Challis, G. L.; Thomson, R. J. Chem. Rev. 2016, 116, 7818-7853. DOI: https://doi.org/10.1021/acs.chemrev.6b00024
Howard, J. A.; Hoy, V. J.; O’Hagan, D.; Smith, G. T. Tetrahedron 1996, 52, 12613-12622. DOI: https://doi.org/10.1016/0040-4020(96)00749-1
Ragno, R.; Simeoni, S.; Rotili, D.; Caroli, A.; Botta, G.; Brosch, G.; Massa, S.; Mai, A. Eur. J. Med. Chem. 2008, 43, 621-632. DOI: https://doi.org/10.1016/j.ejmech.2007.05.004
Ontoria, J. M.; Altamura, S.; Di Marco, A.; Ferrigno, F.; Laufer, R.; Muraglia, E.; Palumbi, M. C.; Rowley, M.; Scarpelli, R.; Schultz-Fademrecht, C. J. Med. Chem. 2009, 52, 6782-6789. DOI: https://doi.org/10.1021/jm900555u
Pham-The, H.; Casañola-Martin G.; Diéguez-Santana, K.; Nguyen-Hai, N.; Ngoc, N. T.; Vu-Duc, L.; Le-Thi-Thu, H. SAR and QSAR Environ. Res. 2017, 28, 199-220. DOI: https://doi.org/10.1080/1062936X.2017.1294198
Yuriev, E.; Ramsland, P. A. J. Mol. Recognit. 2013, 26, 215-239. DOI: https://doi.org/10.1002/jmr.2266
Villaseñor-Granados, T., García, S., Vázquez, M. A., Robles, J. Theor. Chem. Acc. 2016, 135, 210. DOI: https://doi.org/10.1007/s00214-016-1965-y
Chermette, H.; J. Comput. Chem. 1999, 20, 129-154. DOI: https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.3.CO;2-1
Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103, 1793-1873. DOI: https://doi.org/10.1021/cr990029p
Gázquez, J. L. J. Mex. Chem. Soc. 2008, 52, 3-10.
Liu, S. B. Acta Phys.-Chim. Sin. 2009, 25, 590-600.
Chattaraj, P. K., Ed., Chemical Reactivity Theory: A Density Functional View, CRC Press; Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2009. DOI: https://doi.org/10.1201/9781420065442
Bergman, J.; Lindgren, G. Tetrahedron Lett. 1989, 34, 4597-4600. DOI: https://doi.org/10.1016/S0040-4039(01)80754-1
Shao, Y.; Molnar, L. F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S. T.; Gilbert, A. T.; Slipchenko, L. V.; Levchenko, S. V.; O’Neill, D. P. Phys. Chem. Chem. Phys. 2006, 8, 3172-3191. DOI: https://doi.org/10.1039/B517914A
Thomsen, R.; Christensen, M. H. J. Med. Chem. 2006, 49, 3315-3321. 31. Lauffer, B. E.; Mintzer, R.; Fong, R.; Mukund, S.; Tam, C.; Zilberleyb, I.; Flicke, B.; Ritscher, A.; Fedorowicz, G.; Vallero, R. J. Biol. Chem. 2013, 288, 26926-26943. DOI: https://doi.org/10.1074/jbc.M113.490706
Somoza, J. R.; Skene, R. J.; Katz, B. A.; Mol, C.; Ho, J. D.; Jennings, A. J.; Luong, C.; Arvai, A.; Buggy, J. J.; Chi, E. Structure 2004, 12, 1325-1334. DOI: https://doi.org/10.1016/j.str.2004.04.012
Bottomley, M. J.; Surdo, P. L.; Di Giovine, P.; Cirillo, A.; Scarpelli, R.; Ferrigno, F.; Jones, P.; Neddermann, P.; De Francesco, R.; Steinkühler, C. J. Biol. Chem. 2008, 283, 26694-26704. DOI: https://doi.org/10.1074/jbc.M803514200
Schuetz, A.; Min, J.; Allali-Hassani, A.; Schapira, M.; Shuen, M.; Loppnau, P.; Mazitschek, R.; Kwiatkowski, N. P.; Lewis, T. A.; Maglathin, R. L. J. Biol. Chem 2008, 283, 11355-11363. DOI: https://doi.org/10.1074/jbc.M707362200
Ouyang, H.; Ali, Y. O.; Ravichandran, M.; Dong, A.; Qiu, W.; MacKenzie, F.; Dhe-Paganon, S.; Arrowsmith, C. H.; Zhai, R. G. J. Biol. Chem. 2012, 287, 2317-2327. DOI: https://doi.org/10.1074/jbc.M111.273730
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Gaussian, Inc.: Wallingford, CT, USA, 2009.
Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Revised ed.; Oxford University Press New York, NY, USA, 1994. DOI: https://doi.org/10.1093/oso/9780195092769.001.0001
Martinez-Ariza, G.; Dietrich, J.; De Moliner, F.; Hulme, C. Synlett. 2013, 24, 1801-1804. DOI: https://doi.org/10.1055/s-0033-1338872
Nie, J.; Guo, H. C.; Cahard, D.; Ma, J. A. Chem. Rev. 2010, 111, 455-529. DOI: https://doi.org/10.1021/cr100166a
Wang, D.; Helquist, P.; Wiest, O. J. Org. Chem. 2007, 72, 5446-5449. DOI: https://doi.org/10.1021/jo070739s
Lee J. H.; Choy M. L.; Ngo, L.; Foster, S. S.; Marks, P. A. Proc. Natl. Acad. Sci. 2010, 107, 14639-14644. DOI: https://doi.org/10.1073/pnas.1008522107
Speit, G.; Kojima, H.; Burlinson, B.; Collins, A. R.; Kasper, P.; Plappert-Helbig, U.; Uno, Y.; Vasquez, M.; Beevers, C.; De Boeck, M. Mut. Res. Genetic Toxicol. Environ. Mutagen. 2015, 783, 6-12. DOI: https://doi.org/10.1016/j.mrgentox.2014.09.006
Martinez-Alfaro, M.; Palma-Tirado, L.; Sandoval-Zapata, F.; Carabez-Trejo, A. Toxicol. Lett. 2006, 163, 198-205. DOI: https://doi.org/10.1016/j.toxlet.2005.10.021
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
