A Quantum Mechanical Analysis of the Electronic Response of BN Nanocluster to Formaldehyde

Authors

  • Vahid Vahabi Islamic Azad University
  • Hamed Soleymanabadi Islamic Azad University

DOI:

https://doi.org/10.29356/jmcs.v60i1.68

Keywords:

Nanostructures, Surfaces, Ab initio calculations, Electronic structure

Abstract

It has been previously demonstrated that the electronic properties of pristine BN nanotubes and graphene-like sheets are not sensitive toward presence of H2CO gas. Here, the adsorption of H2CO on the external surface of B12N12 nano-cage is studied using X3LYP and Minnesota density functional calculations. Three different adsorption behaviors were found including physisorption, chemisorption, and chemical functionalization. Gibbs free energy changes at room temperature and 1 atm pressure is in the range of -0.07 to -2.00 eV (X3LYP). The HOMO-LUMO energy gap of the cluster dramatically decreases after the H2CO chemisorption. Thus, B12N12 nanocluster may be used in gas sensor devices for H2CO detection.

Downloads

Download data is not yet available.

Author Biographies

Vahid Vahabi, Islamic Azad University

Department of Chemistry, College of Science, Central Tehran Branch

Hamed Soleymanabadi, Islamic Azad University

Young Researchers and Elite club, Shahr-e-Rey Branch

References

Mine, Y.; Melander, N.; Richter, D.; Lancaster, D.G.; Petrov, K.P.; Tittel, F.K. Appl. Phys. B. 1997, 65, 771-774. DOI: https://doi.org/10.1007/s003400050344

Dingle, P.; Franklin,P. Ind. Built. Environ. 2002, 11, 111-116. DOI: https://doi.org/10.1159/000064247

Vairavamurthy, A.; Roberts, J.M.; Newman, L. Atmos. Environ. 1992, 26, 1965-1993. DOI: https://doi.org/10.1016/0960-1686(92)90083-W

Beheshtian, J.; Peyghan, A.; Bagheri, Z. Struct. Chem. 2013, 24, 1331-1337

Beheshtian, J.; Peyghan, A.; Noei, M. Sens. Actuators B: Chem. 2013, 181, 829–834 DOI: https://doi.org/10.1016/j.snb.2013.02.086

Noei, M.; Peyghan, A. J. Mol. Model. 2013, 19, 3843-3850 DOI: https://doi.org/10.1007/s00894-013-1922-9

Rastegar, S.; Peyghan, A.; Soleymanabadi, H. Physica E. 2015, 68, 22-27 DOI: https://doi.org/10.1016/j.physe.2014.12.005

Peyghan, A.; Noei, M. J. Mex. Chem. Soc. 2014, 58, 46-51.

Nagarajan, V.; Chandiramouli, R.; Sriram, S.; Gopinath, P. J. Nano-struct Chem. 2014, 4, 1-16. DOI: https://doi.org/10.1007/s40097-014-0087-0

Beheshtian, J.; Peyghan, A.; Bagheri, Z.; Kamfiroozi, M. Struct. Chem. 2012, 23, 1567-1572. DOI: https://doi.org/10.1007/s11224-012-9970-9

Nazari, M.; Ghasemi, N.; Maddah, H.; Motlagh, M. J Nanostruct Chem, 2014, 4, 1-5. DOI: https://doi.org/10.1007/s40097-014-0099-9

Peyghan, A.; Soleymanabadi, H.; Bagheri, Z. J. Mex. Chem. Soc. 2015, 59, 66-72.

Noei, M.; Ebrahimikia, M.; Saghapour, Y.; Khodaverdi, M.; Salari, A.; Ahmadaghaei, N. J. Nanostruct Chem. 2015, 5, 213-217. DOI: https://doi.org/10.1007/s40097-015-0152-3

Talwatkar, S.; Sunatkari, A.; Tamgadge, Y.; Pahurkar, V.; Muley, G. J Nanostruct Chem. 2015, 5, 205-212. DOI: https://doi.org/10.1007/s40097-015-0151-4

Beheshtian, J.; Peyghan, A.; Bagheri, Z. J. Mol. Mod., 2013, 19, 2197-2203. DOI: https://doi.org/10.1007/s00894-012-1751-2

Beheshtian, J.; Peyghan, A.; Bagheri, Z. Struct. Chem. 2013, 24, DOI: https://doi.org/10.1007/s11224-012-0172-2

- 170.

Chopra, N.; Luyken, R.; Cherrey, K.; Crespi, V. Cohen, M. Louie,

S. Zettl, A. Science. 1995, 269, 966-967. DOI: https://doi.org/10.1126/science.269.5226.966

Oku, T.; Kuno, M.; Kitahara, H.; Narita, I. Int. J. Inorg. Mater. 2001, 3, 597-612. DOI: https://doi.org/10.1016/S1466-6049(01)00169-6

Seifert, G.; Fowler, P.; Mitchell, D.; Porezag, D.; Frauenheim, T. Chem. Phys. Lett. 1997, 268, 352-358. DOI: https://doi.org/10.1016/S0009-2614(97)00214-5

Oku, T.; Narita, I.; Nishiwaki, A.; Koi, N. Defec. Diff. Forum. 2004, 226, 113-141. DOI: https://doi.org/10.4028/www.scientific.net/DDF.226-228.113

Jia, J.; Wang, H.; Pei, X.; Wu, H. Appl. Surf. Sci. 2007, 253 4485-4489. DOI: https://doi.org/10.1016/j.apsusc.2006.09.066

Beheshtian, J.; Bagheri, Z.; Kamfiroozi, M.; Ahmadi, A. J. Mol. Model., 2012, 18, 2653-2658. DOI: https://doi.org/10.1007/s00894-012-1476-2

Saha, M.; Das, S. J Nanostruct Chem, 2014, 4, 1-9.

Goodarzi, Z.; Maghrebi, M.; Zavareh, A.; Mokhtari-Hosseini, B.; Ebrahimi-hoseinzadeh, B.; Zarmi, A.; Barshan-tashnizi, M. J Nanostruct Chem, 2015, 5, 237-242. DOI: https://doi.org/10.1007/s40097-015-0154-1

Mahdavian, L. J Nanostruct Chem. 2012, 3, 1-9. DOI: https://doi.org/10.1186/2193-8865-3-1

Saha, M.; Das, S. J Nanostruct Chem. 2014, 4, 1-9. DOI: https://doi.org/10.1007/s40097-014-0094-1

Li, L.; Feng, D.; Fang, X.; Han, X.; Zhang, Y. J Nanostruct Chem. 2014, 4, 1-8. DOI: https://doi.org/10.1007/s40097-014-0117-y

Peyghan, A.; Noei, M.; Yourdkhani, S. Superlattices Microstruct. 2013, 59, 115–122. DOI: https://doi.org/10.1016/j.spmi.2013.04.005

Tabtimsai, C.; Ruangpornvisuti, V.; Wanno, B. Physica E. 2013, 49, 61-67. DOI: https://doi.org/10.1016/j.physe.2013.01.019

Wang, R.; Zhu, R.; Zhang, D. Chem. Phys. Lett. 2008, 467, 131-135. DOI: https://doi.org/10.1016/j.cplett.2008.11.002

Xu, X.; Goddard, W. PNAS. 2004, 101, 2673-2677. DOI: https://doi.org/10.1073/pnas.0308730100

Rassolov, V.; Ratner, M.; Pople, J.; Redfern, P.; Curtiss, L. J. Com-put. Chem. 2001, 22, 976-984. DOI: https://doi.org/10.1002/jcc.1058.abs

Schmidt, M. et al. J. Comput. Chem. 1993, 14, 1347-1363 DOI: https://doi.org/10.1002/jcc.540141112

O’boyle, N.; Tenderholt, A.; Langner, K. J. Comput. Chem. 2008, 29, 839-845. DOI: https://doi.org/10.1002/jcc.20823

Ahmadi, A.; Hadipour, N.; Kamfiroozi, M.; Bagheri, Z. Sens. Ac-tuators B: Chem., 2012, 161, 1025-1029. DOI: https://doi.org/10.1016/j.snb.2011.12.001

Hadipour, N.; Peyghan, A.; Soleymanabadi, H. J. Phys. Chem. C. 2015, 119, 6398-6404. DOI: https://doi.org/10.1021/jp513019z

Zhao, Y.; Truhlar, D. J. Chem. Phys. 2006, 125, 194101-194118. DOI: https://doi.org/10.1063/1.2370993

Zhao, Y.; Truhlar, D. Theor Chem Account. 2006, 120: 215-241. DOI: https://doi.org/10.1007/s00214-007-0310-x

Zhao, Y.; Truhlar, D. J. Phys. Chem. A. 2006, 110, 13126-13130. DOI: https://doi.org/10.1021/jp066479k

Matxain, J.; Eriksson, L.; Mercero, J.; Lopez, X.; Piris, M.; Ugal-de, J.; Poater, J.; Matito, E.; Solá, M. J. Phys. Chem. C. 2007, 111, 13354-13360. DOI: https://doi.org/10.1021/jp073773j

×

Downloads

Published

2017-10-12

Issue

Section

Regular Articles
x

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...