Microwave-Assisted Reactivity of a Fischer Alkynyl Carbene Complex with Benzylidene Anilines

Authors

DOI:

https://doi.org/10.29356/jmcs.v68i1.1863

Keywords:

Fischer carbene complexes, benzylidene anilines, microwave irradiation, DFT analysis, electronic effect

Abstract

The reaction between the Fischer carbene complex (CO)5Cr=C(OEt)CºCPh and various benzylidene anilines RCH=NR1 was promoted by microwave irradiation, generating stable cross-conjugated metallahexatrienes in 45-70 % yield. Compared to conventional heating, the present conditions provided shorter reaction times with moderate yields. The geometrical configuration and the most stable conformation for each of the Fischer carbene complexes and their oxidation products were established by NMR and DFT analysis. The reaction mechanism was explored by DFT calculations of the potential energy surface, suggesting a 1,4-addition/ring closure/electrocyclic opening cascade process.

 

Resumen. Se reporta la reactividad entre el carbeno de Fischer (CO)5Cr=C(OEt)CºCPh y las bencilidén anilinas, RCH=NR1, empleando irradiación de microondas. Los resultados indican que el calentamiento por microondas generó metalohexatrienos cruzados estables en rendimientos de 45-70 %, mostrando además, que los nuevos complejos se obtienen en tiempos de reacción más cortos y rendimientos moderados en comparación con las condiciones de calentamiento convencional. La configuración geométrica y la conformación más estable para los complejos carbénicos de Fischer y de sus derivados oxidados fueron establecidos por medio de RMN y DFT. La exploración de la superficie de energía potencial por cálculos DFT mostró que el proceso consistió en una reacción en cascada incluyendo una secuencia de adición-1,4, cierre de anillo y apertura electrocíclica.

Downloads

Download data is not yet available.

References

de Meijere, A. Pure Appl. Chem. 1996, 68, 61–72. DOI: https://doi.org/10.1351/pac199668010061. DOI: https://doi.org/10.1351/pac199668010061

de Meijere, A.; Schirmer, H.; Duetsch, M. Angew. Chem. 2000, 39, 3965–4002. DOI: https://doi.org/10.1002/1521-3773(20001117)39:22<3964::aid-anie3964>3.0.co;2-c. DOI: https://doi.org/10.1002/1521-3773(20001117)39:22<3964::AID-ANIE3964>3.0.CO;2-C

Wu, Y.-T.; de Meijere, A. Top. Organomet. Chem. 2004, 13, 21–57. DOI: https://doi.org/10.1007/b98762. DOI: https://doi.org/10.1007/b98762

Barluenga, J.; Santamaría, J.; Tomás, M. Chem. Rev. 2004, 104, 2259–2283. DOI: https://doi.org/10.1021/cr0306079. DOI: https://doi.org/10.1021/cr0306079

Dötz, K. H.; Stendel, J. J. Chem. Rev. 2009, 109, 3227–3274. DOI: https://doi.org/10.1021/cr900034e

Santamaría, J.; Aguilar, E. Org. Chem. Front. 2016, 3, 1561–1588. DOI: https://doi.org/10.1039/c6qo00206d. DOI: https://doi.org/10.1039/C6QO00206D

Fernández-Rodríguez, M. Á.; García-García, P.; Aguilar, E. Chem. Commun. 2010, 46, 7670–7687. DOI: https://doi.org/10.1039/c0cc02337j. DOI: https://doi.org/10.1039/c0cc02337j

Feliciano, A.; Vázquez, J. L.; Benítez‐Puebla, L. J.; Velazco‐Cabral, I.; Cruz Cruz, D.; Delgado, F.; Vázquez, M. A. Chem. – A Eur. J. 2021, 27, 8233–8251. DOI: https://doi.org/10.1002/chem.202005434. DOI: https://doi.org/10.1002/chem.202005434

Dötz, K. H. in: Verlag chemie; Fischer, E. O., Ed.; Weinheim, 1983.

Chan, K. S.; Wulff, W. D. J. Am. Chem. Soc. 1986, 108, 5229–5236. DOI: https://doi.org/10.1021/ja00277a029

de La Cruz, F. N.; López, J.; Jiménez-Halla, J. Ó. C.; Flores-Álamo, M.; Tamaríz, J.; Delgado, F.; Vázquez, M. A. Org. Biomol. Chem. 2015, 13, 11753–11760. DOI: https://doi.org/10.1039/c5ob01655j. DOI: https://doi.org/10.1039/C5OB01655J

López, J.; de la Cruz, F. N.; Flores-Conde, M. I.; Flores-Álamo, M.; Delgado, F.; Tamariz, J.; Vázquez, M. A. Eur. J. Org. Chem. 2016, 2016, 1314–1323. DOI: https://doi.org/10.1002/ejoc.201501211. DOI: https://doi.org/10.1002/ejoc.201501211

Reyes, L.; Mendoza, H.; Vázquez, M. A.; Ortega-Jiménez, F.; Fuentes-Benítes, A.; Flores-Conde, M. I.; Jiménez-Vázquez, H.; Miranda, R.; Tamariz, J.; Delgado, F. Organometallics. 2008, 27, 4334–4345. DOI: https://doi.org/10.1021/om8002416. DOI: https://doi.org/10.1021/om8002416

Benítez-Puebla, L. J.; López, J.; Flores-Álamo, M.; Cruz, D. C.; Peña-Cabrera, E.; Delgado, F.; Tamariz, J.; Vázquez, M. A. Eur. J. Org. Chem. 2019, 2019, 6571–6578. DOI: https://doi.org/10.1002/ejoc.201901047. DOI: https://doi.org/10.1002/ejoc.201901047

Aumann, R.; Yu, Z.; Fröhlich, R.; Zippel, F. Eur. J. Inorg. Chem. 1998, 1998, 1623–1629. DOI: https://doi.org/10.1002/(SICI)1099-0682(199811)1998:11<1623::AID-EJIC1623>3.0.CO;2-P. DOI: https://doi.org/10.1002/(SICI)1099-0682(199811)1998:11<1623::AID-EJIC1623>3.0.CO;2-P

Rivado-Casas, L.; Campos, P. J.; Sampedro, D. Organometallics. 2010, 29, 3117–3124. DOI: https://doi.org/10.1021/om100219h. DOI: https://doi.org/10.1021/om100219h

Aumann, R.; Yu, Z.; Fröhlich, R. J. Organometallic Chem. 1997, 549, 311–318. DOI: https://doi.org/10.1016/S0022-328X(97)00526-3. DOI: https://doi.org/10.1016/S0022-328X(97)00526-3

Herndon, J. W. Coord. Chem. Rev. 2018, 356, 1–114. DOI: https://doi.org/10.1016/j.ccr.2017.09.003. DOI: https://doi.org/10.1016/j.ccr.2017.09.003

Barluenga, J.; Aguilar, E. in: Advances in Organometallic Chemistry; Elsevier Inc., 2017; 67, 1–150. DOI: https://doi.org/10.1016/bs.adomc.2017.04.001. DOI: https://doi.org/10.1016/bs.adomc.2017.04.001

Barluenga, J.; Tomás, M.; López-Pelegrín, J. A.; Rubio, E. Tetrahedron Lett. 1997, 38, 3981–3984. DOI: https://doi.org/10.1016/S0040-4039(97)00737-5. DOI: https://doi.org/10.1016/S0040-4039(97)00737-5

Aumann, R.; Yu, Z.; Fröhlich, R. Organometallics. 1998, 17, 2897–2905. DOI: https://doi.org/10.1021/om980068b. DOI: https://doi.org/10.1021/om980068b

Aumann, R. Eur. J. Org. Chem. 2000, 17–31. DOI: https://doi.org/10.1002/(SICI)1099-0690(200001)2000:1<17::AID-EJOC17>3.0.CO;2-T. DOI: https://doi.org/10.1002/(SICI)1099-0690(200001)2000:1<17::AID-EJOC17>3.0.CO;2-T

Hegedus, L. S.; McGuire, M. A.; Schultze, L. M.; Yijun, C.; Anderson, O. P. J. Am. Chem. Soc. 1984, 106, 2680–2687. DOI: https://doi.org/10.1021/ja00321a032. DOI: https://doi.org/10.1021/ja00321a032

Funke, F.; Duetsch, M.; Stein, F.; Noltemeyerl, M.; De Meijere, A. Chem. Ber. 1994, 127, 911–920. DOI: https://doi.org/10.1002/cber.19941270520

Rivado-casas, L.; Sampedro, D.; Campos, P. J.; Fusi, S.; Zanirato, V.; Olivucci, M. J. Org. Chem. 2009, 74, 4666–4674. DOI: https://doi.org/10.1021/jo802792j DOI: https://doi.org/10.1021/jo802792j

Blanco-Lomas, M.; Caballero, A.; Campos, P. J.; González, H. F.; López-Sola, S.; Rivado-Casas, L.; Rodríguez, M. A.; Sampedro, D. Organometallics. 2011, 30, 3677–3682. DOI: https://doi.org/https://doi.org/10.1021/om200438y. DOI: https://doi.org/10.1021/om200438y

González, H. F.; Blanco-Lomas, M.; Rivado-Casas, L.; Rodríguez, M. A.; Campos, P. J.; Sampedro, D. Organometallics. 2012, 31, 6572–6581. DOI: https://doi.org/https://doi.org/10.1021/om300570q. DOI: https://doi.org/10.1021/om300570q

Luo, N.; Zheng, Z.; Yu, Z. Org. Lett. 2011, 13, 3384–3387. DOI: https://doi.org/10.1021/ol201139w. DOI: https://doi.org/10.1021/ol201139w

Fernandez, I.; Cossío, F. P.; Sierra, M. A. Acc. Chem. Res. 2011, 44, 479–490. DOI: https://doi.org/10.1021/ar100159h

Rivero, A. R.; Fernández, I.; Sierra, M. A. Chem. Eur. J. 2014, 20, 1359–1366. DOI: https://doi.org/10.1002/chem.201302029. DOI: https://doi.org/10.1002/chem.201302029

Hegedus, L. S.; Weck, G. De; D’Andrea, S. J. Am. Chem. Soc. 1988, 110, 2122–2126. DOI: https://doi.org/10.1021/ja00215a019. DOI: https://doi.org/10.1021/ja00215a019

Su, M. Der. ACS Omega. 2017, 2, 5395–5406. DOI: https://doi.org/10.1021/acsomega.7b00766. DOI: https://doi.org/10.1021/acsomega.7b00766

Arrieta, A.; Cossio, F. P.; Fernandez, I.; Gomez-Gallego, M.; Lecea, B.; Mancheño, M. J.; Sierra, M. A. J. Am. Chem. Soc. 2000, 122, 11509–11510. DOI: https://doi.org/10.1021/ja000706t. DOI: https://doi.org/10.1021/ja000706t

Hutchinson, E. J.; Kerr, J.; Magennis, E. J. Chem. Commun. 2002, 2262–2263. DOI: https://doi.org/10.1039/B206981B DOI: https://doi.org/10.1039/B206981B

Shanmugasundaram, M.; Garcia-Martinez, I.; Li, Q.; Estrada, A.; Martinez, N. E.; Martinez, L. E. Tetrahedron Lett. 2005, 46, 7545–7548. DOI: https://doi.org/10.1016/j.tetlet.2005.08.158. DOI: https://doi.org/10.1016/j.tetlet.2005.08.158

Artillo, A.; Sala, G. Della; De Santis, M.; Llordes, A.; Ricart, S.; Spinella, A. J. Organomet. Chem. 2007, 692, 1277–1284. DOI: https://doi.org/10.1016/j.jorganchem.2006.08.097. DOI: https://doi.org/10.1016/j.jorganchem.2006.08.097

Spinella, A.; Caruso, T.; Pastore, U.; Ricart, S. J. Organomet. Chem. 2003, 684, 266–268. DOI: https://doi.org/10.1016/S0022-328X(03)00756-3. DOI: https://doi.org/10.1016/S0022-328X(03)00756-3

Kashinath, D.; Mioskowski, C.; Falck, J. R.; Goli, M.; Meunier, S.; Baati, R.; Wagner, A. Org. Biomol. Chem. 2009, 7, 1771–1774. DOI: https://doi.org/10.1039/b903244b. DOI: https://doi.org/10.1039/b903244b

Vázquez, M. A.; Reyes, L.; Miranda, R.; García, J. J.; Jiménez-Vázquez, H. A.; Tamariz, J.; Delgado, F. Organometallics. 2005, 24, 3413–3421. DOI: https://doi.org/10.1021/om050159q. DOI: https://doi.org/10.1021/om050159q

Montenegro, M. M.; Vega-Báez, J. L.; Vázquez, M. A.; Flores-Conde, M. I.; Sánchez, A.; González-Tototzin, M. A.; Gutiérrez, R. U.; Lazcano-Seres, J. M.; Ayala, F.; Zepeda, L. G.; Tamariz, J.; Delgado, F. J. Organomet. Chem. 2016, 825–826, 41–54. DOI: https://doi.org/10.1016/j.jorganchem.2016.10.017. DOI: https://doi.org/10.1016/j.jorganchem.2016.10.017

Feliciano, A.; Padilla, R.; Escalante, C. H.; Herbert-Pucheta, E.; Vázquez, M. A.; Tamariz, J.; Delgado, F. J. Organometallic Chem. 2020, 923, 121360. DOI: https://doi.org/10.1016/j.jorganchem.2020.121360 DOI: https://doi.org/10.1016/j.jorganchem.2020.121360

Flores-Conde, M. I.; de la Cruz, F. N.; Lopez, J.; Jiménez-Halla, J. Ó. C.; Peña-Cabrera, E.; Flores-Álamo, M.; Delgado, F.; Vázquez, M. Á. Appl. Organomet. Chem. 2017, e4202, 1–12. DOI: https://doi.org/https://doi.org/10.1002/aoc.4202. DOI: https://doi.org/10.1002/aoc.4202

Vázquez, M. Á.; Landa, M.; Reyes, L.; Miranda, R.; Tamariz, J.; Delgado, F. Synth. Commun. 2004, 34, 2705–2718. DOI: https://doi.org/10.1081/SCC-200026190. DOI: https://doi.org/10.1081/SCC-200026190

Lee, S. Y. A.; Yang, H. C.; Su, F. Y. Tetrahedron Lett. 2001, 42, 301–303. DOI: https://doi.org/10.1016/S0040-4039(00)01954-7. DOI: https://doi.org/10.1016/S0040-4039(00)01954-7

Wang, X.; Yang, Y.; Zhao, Y.; Wang, S.; Hu, W.; Li, J.; Wang, Z.; Yang, F.; Zhao, J. J. Org. Chem. 2020, 85, 6188–6194. DOI: https://doi.org/10.1021/acs.joc.0c00485. DOI: https://doi.org/10.1021/acs.joc.0c00485

Sheldrick, G. M. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64, 112–122. DOI: https://doi.org/10.1107/S0108767307043930. DOI: https://doi.org/10.1107/S0108767307043930

Sheldrick, G. M. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. DOI: https://doi.org/10.1107/S2053229614024218. DOI: https://doi.org/10.1107/S2053229614024218

Sheldrick, G. M. Acta Crystallogr. Sect. A Found. Crystallogr. 2015, 71, 3–8. DOI: https://doi.org/10.1107/S2053273314026370. DOI: https://doi.org/10.1107/S2053273314026370

Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341. DOI: https://doi.org/10.1107/S0021889808042726. DOI: https://doi.org/10.1107/S0021889808042726

Zhao, Y.; Truhlar, D. G. J. Chem. Phys. 2006, 125. DOI: https://doi.org/10.1063/1.2370993. DOI: https://doi.org/10.1063/1.2370993

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ort, D. J. F. Gaussian Inc: Wallingford CT 2016.

Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. R. J. Comput. Chem. 1983, 4, 294–301. DOI: https://doi.org/10.1002/jcc.540040303. DOI: https://doi.org/10.1002/jcc.540040303

Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270–283. DOI: https://doi.org/10.1063/1.448799. DOI: https://doi.org/10.1063/1.448799

Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215–241. DOI: https://doi.org/10.1007/s00214-007-0310-x. DOI: https://doi.org/10.1007/s00214-007-0310-x

Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999–3093. DOI: https://doi.org/10.1021/cr9904009. DOI: https://doi.org/10.1021/cr9904009

Cammi, R.; Mennucci, B.; Tomasi, J.; Generale, C.; Uni, V.; Scienze, V.; Industriale, C.; Uni, V. J. Phys. Chem. A. 2000, 104, 5631–5637. DOI: https://doi.org/10.1021/jp000156l

Vázquez, M. A.; Cessa, L.; Vega, J. L.; Miranda, R.; Herrera, R.; Jiménez-Vázquez, H. A.; Tamariz, J.; Delgado, F. Organometallics. 2004, 23, 1918–1927. DOI: https://doi.org/10.1021/om0343317. DOI: https://doi.org/10.1021/om0343317

Aumann, R.; Heinen, H.; Hinterding, P.; Strater, N.; Krebs, B. Chem Ber. 1991, 124, 1229–1236. DOI: https://doi.org/10.1002/cber.19911240541

Aumann, R.; Jasper, B.; Fröhlich, R. Organometallics. 1995, 14, 231–237. DOI: https://doi.org/10.1021/om00001a035. DOI: https://doi.org/10.1021/om00001a035

Merlic, C. A.; Xu, D. J. Am. Chem. Soc. 1991, 113, 7418–7420. DOI: https://doi.org/10.1021/ja00019a047. DOI: https://doi.org/10.1021/ja00019a047

Aumann, R.; Michael, K.; Roths, K.; Frohlich, R. Synlett. 1994, 1041–1044. DOI: https://doi.org/10.1055/s-1994-23079 DOI: https://doi.org/10.1055/s-1994-23079

×

Downloads

Additional Files

Published

2024-01-01

Issue

Section

Special Issue dedicated to Prof. Joaquín Tamariz
x

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...