Computational Modeling of the Dehydrogenation of Methylamine

Autores/as

  • Kirsten Ivey San Diego State University
  • Belynda Sanders San Diego State University
  • Chris Estela San Diego State University
  • Andrew L. Cooksy L. Cooksy San Diego State University

DOI:

https://doi.org/10.29356/jmcs.v55i1.846

Palabras clave:

Tryptophan tryptophyl quinine, TTQ, density functional theory, COSMO-RS, solvent model.

Resumen

The reaction sequence early in the metabolism of methylamine by the dehydrogenase cofactor tryptophan tryptophyl quinone (TTQ) is investigated by a large series of density functional theory calculations. Free energy corrections are calculated at the reactant and intermediate geometries, and solvation effects are estimated by use of the semi-empirical COSMO-RS solvent model. Two competing reaction paths are found to have very similar reaction free energies, and the free energies of activation are found to depend heavily on adequate modeling of the solvent

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Kirsten Ivey, San Diego State University

Department of Chemistry and Biochemistry

Belynda Sanders, San Diego State University

Department of Chemistry and Biochemistry

Chris Estela, San Diego State University

Department of Chemistry and Biochemistry

Andrew L. Cooksy L. Cooksy, San Diego State University

Department of Chemistry and Biochemistry

Citas

Backes, G.; Davidson, V. L.; Huitema, F.; Duine, J. A.; Sanders- Loehr, J. Biochemistry 1991, 30, 9201-9210.

Davidson, V. L.; Kumar, M. A.; Wu, J. Biochemistry 1992, 31,1504-1508.

McIntire, W. S. FASEB J. 1994, 8, 513-21.

Klinman, J. P.; Mu, D. Ann. Rev. Biochem. 1994, 63, 299-344.

Pang, J.; Scrutton, N. S; de Visser, S. P.; Sutcliffe, M. J. J. Phys. Chem. A 2010, 114, 1212-1217.

Masgrau, L.; Ranaghan, K. E.; Scrutton, N. S.; Mulholland, A. J.; Sutcliffe, M. J. J. Phys. Chem. B 2007, 111, 3032-3047.

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven,

T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck,

A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian 03, Revision B.02, Gaussian, Inc., Pittsburgh PA, 2003..

Eckert, F.; Klamt, A. AiCHE J. 2002, 48, 369-385.

Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.

Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.

Dunning, J. T. H. J. Chem. Phys. 1989, 90, 1007-1023.

Lui, R.; Cooksy, A. L. J. Comp. Theor. Chem. 2006, 2, 1395-1402.

Klamt, A. J. Phys. Chem. 1995, 99, 2224-2235.

Becke, A. D. Phys. Rev. A, 1988, 38, 3098-100.

Perdew, J. P. Phys. Rev. B, 1986 33, 8822-8824.

Schafer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys., 1994, 100, 5829-5835.

Godbout, N.; Salahub, D. R.; Andzelm, J.; Wimmer, E. Can. J. Chem. 1992, 70, 560-571.

×

Descargas

Publicado

2019-04-22
x

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Loading...