Electrochemical Behavior of Ni(II) Complexes with N2S2 and N6 Ligands as Potential Catalysts in Hydrogen Evolution Reaction

Authors

  • Vanessa Ramírez-Delgado Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C.
  • Guadalupe Osorio-Monreal Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C.
  • Luis Felipe Hernández-Ayala Universidad Nacional Autónoma de México
  • Yolanda Reyes-Vidal Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C.
  • Juan Carlos García-Ramos Universidad Nacional Autónoma de México
  • Lena Ruiz-Azuara Universidad Nacional Autónoma de México
  • Luis Ortiz-Frade Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C.

DOI:

https://doi.org/10.29356/jmcs.v59i4.86

Keywords:

Electrochemistry, Ni(II) complexes, N2S2 ligand, N6 ligand

Abstract

In this work, two Ni(II) complexes with the tetradentate ligand N2S2 (pdto=1,8-bis(2-pyridyl)-3,6-dithioctane,) and the hexa-dentate ligand N6 (bdahp= 2,9-bis-(2’,5’-diazahexanyl)-1,10-phenan-throline) were prepared in order to explore its electrochemical behavior, that indicate their potential use as molecular catalysts for the hydrogen evolution reaction. The Ni(II)-pdto complex presented two consecutive one electron transfer [Ni(ΙΙ)-(pdto)] + 1e- [Ni(Ι)-(pd-to)] and [Ni(Ι)-(pdto)] + 1 e- → Ni(0) + pdto. On the other hand the Ni(II)-bdahp complex presented the electrochemical reduction Ni(ΙΙ)-(bdahp) + 1e- Ni(Ι)-(bdahp) followed by a coupled chemical reaction in an ECi mechanism, where a de-coordination of the diimin-ic moiety of the bdahp ligand was proposed. It was demonstrated that the pdto ligand promotes reduction over Ni(II) at less negative reduc-tion potential in comparison when the ligand bdahp is presented.

Downloads

Download data is not yet available.

Author Biographies

Luis Felipe Hernández-Ayala, Universidad Nacional Autónoma de México

Laboratorio de Química Inorgánica Medicinal. Departamento de Química Inorgánica y Nuclear, Facultad de Química

Yolanda Reyes-Vidal, Centro de Investigación y Desarrollo Tecnológico en Electroquímica S.C.

Catedra Conacyt -CIDETEQ

Juan Carlos García-Ramos, Universidad Nacional Autónoma de México

Laboratorio de Química Inorgánica Medicinal. Departamento de Química Inorgánica y Nuclear, Facultad de Química

Currently a postdoctoral fellow at Departamento de Fisicoquímica, Instituto de Química, UNAM

Lena Ruiz-Azuara, Universidad Nacional Autónoma de México

Laboratorio de Química Inorgánica Medicinal. Departamento de Química Inorgánica y Nuclear, Facultad de Química

References

Berardi, S.; Drouet, S.; Francàs, L.; Gimbert-Suriñach, C.; Gut-tentag, M.; Richmond, C.; Stolla, T.; Llobet, A., Chem. Soc. Rev., 2014, 43, 7501-7519. DOI: https://doi.org/10.1039/C3CS60405E

Eckenhoff, W.T.; McNamara, W.R.; Du, P.; Eisenberg, R., Bio-chim. Biophys. Acta, 2013, 1827, 958-973. DOI: https://doi.org/10.1016/j.bbabio.2013.05.003

Losse, S.; Vos, J.G.; Rau, S., Coord. Chem. Rev., 2010, 254, 2492-2504. DOI: https://doi.org/10.1016/j.ccr.2010.06.004

Dempsey, J. L.; Brinschwin, B.S.; Winkler, J. R.; Gray, H. B., Ac-counts Chem. Res., 2009, 42, 12, 1995-2004. DOI: https://doi.org/10.1021/ar900253e

Du, P.; Schneider, J. ; William, G.L. ; Brennesel, W. ; Eisenberg R., J. Am. Chem. Soc., 2009, 48, 4952-4962. DOI: https://doi.org/10.1021/ic900389z

Jacques, P.-A.; Artero, V.; Pécaut, J.; Fontecave, M., P. Nat. Acad. Sci. USA, 2009, 106, 49, 20627-20632. DOI: https://doi.org/10.1073/pnas.0907775106

Tong, L.; Kopecky, A.; Zong, R.; Gagnon, K.J.; Ahlquist, M.S.G.; Thummel, R.P., Inorg. Chem., 2015, 54, 7873-7884. DOI: https://doi.org/10.1021/acs.inorgchem.5b00915

Sasaki, Y.; Kato, H.; Kudo, A., J. Am. Chem. Soc., 2013, 135, 5441?5449. DOI: https://doi.org/10.1021/ja400238r

Queyriaux, N.; Jane, R.T.; Massin, J.; Artero, V.; Chavarot-Ker-lidou, M.; Queyriaux N., Coord. Chem. Rev., 2015, 46, 1-17.

Chen, X.; Ren, H.; Peng, W.; Zhang, H.; Lu, J.; Zhuang, L., J. Phys. Chem., 2014, 118, 20791-20798 DOI: https://doi.org/10.1021/jp5061792

Helm, M.L.; Stewart, M.P. ; Bullock, R.M.; DuBois, M.R.; Du-Bois, D.L., Science 2011, 333, 863-866 DOI: https://doi.org/10.1126/science.1205864

DuBois, D. L., Inorg. Chem., 2014, 53, 3935-3960. DOI: https://doi.org/10.1021/ic4026969

Stewart, M. P.; Ho, M-H.; Wiese, S.; Lindstrom, M.L.; Thogerson, C.E.; Raugei, S.; Bullock, R.M.; Helm, M.L., J. Am. Chem. Soc. 2013, 135, 6033?6046. DOI: https://doi.org/10.1021/ja400181a

Gross, M.A.; Reynal, A.; Durrant, J.R.; Reisner, E., J. Am. Chem. Soc., 2014, 136, 356-366. DOI: https://doi.org/10.1021/ja410592d

Thoi, V.S.; Sun, Y.; Long, J.R.; Chang, C.J., Chem. Soc. Rev., 2013, 42, 2388. DOI: https://doi.org/10.1039/C2CS35272A

Eckenhoff, W.T.; Eisenberg, R.; Dalton Trans., 2012, 41, 13004-13021. DOI: https://doi.org/10.1039/c2dt30823a

Han, Z.; Shen, L.; Brennessel, W.W.; Holland, P.L.; Eisenberg, R., J.Am. Chem. Soc., 2013, 135, 14659-14669. DOI: https://doi.org/10.1021/ja405257s

Das, A.; Han, Z.; Brennessel, W.W.; Holland, P.L.; Eisenberg, R., ACS Catal., 2015, 5, 1397-1406. DOI: https://doi.org/10.1021/acscatal.5b00045

Xu, You; Xu, R., Appl. Sur. Sci., 2015, 351, 779-793. DOI: https://doi.org/10.1016/j.apsusc.2015.05.171

Wang, M.; Han K.; Zhang, S.; Sun L., Coord. Chem. Rev., 2015, 287, 1-14. DOI: https://doi.org/10.1016/j.ccr.2014.12.005

Goodwin, H.A.; Lions, F., J. Am. Chem. Soc., 1960, 82, 5013-5023. DOI: https://doi.org/10.1021/ja01504a001

Brubaker, G.R.; Brown, J.N.; Yoo, M.K.; Kinsey, R.A.; Kutchan,

M. ; Mottel, E.A., Inorg. Chem., 1979, 18, 299-302. DOI: https://doi.org/10.1021/ic50192a018

Manzanera Estrada, M.; Flores-Alamo, M.; Grevy. M., J.-M.; Ruiz-Azuara, L.; Ortiz-Frade, L.; Acta Crystallogr. E, 2012, 68, m135. DOI: https://doi.org/10.1107/S1600536811056145

Ortiz-Frade, L.; Manríquez, J.; González, I.; Moreno.-Esparza, R.; Ruiz-Azuara, L., Polyhedron, 2010, 29, 328-332. DOI: https://doi.org/10.1016/j.poly.2009.05.053

Ortiz-Frade, L.A.; Ruiz-Ramírez, L.; González, I.; Marín-Becerra, A.; Alcarazo, M.; Alvarado-Rodriguez, J.G.; Moreno-Esparza, R., Inorg. Chem., 2003, 42, 1825-1834. DOI: https://doi.org/10.1021/ic025849q

Popovitch, J.M.; Addison, A.W.; Butcher, R.J.; Prushan, M.J., J. Chem Crystallogr., 2012, 42, 295-298. DOI: https://doi.org/10.1007/s10870-011-0239-8

Castineiras, A.; Paredes, M.; Hiller, W., Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 1984, 40, 2078-2079. DOI: https://doi.org/10.1107/S0108270184010696

Castineiras, A.; Hiller, W.; Strahle, J.; Paredes, M.; Sordo, J., Acta Crystallogr. Sect. C: Cryst. Struct. Commun.,1985, 41, 41-43. DOI: https://doi.org/10.1107/S0108270185002712

Kolotilov, S.V.; Goreshnik, E.A.; Pavlishchuk, V.V.; Yatsimirskii, K.B., Russ. J. Inorg. Chem.,2000, 45, 967-975.

Castineiras, A.; Diaz, G.; Florencio, F.; García-Blanco, S.; Martínez-Carrera, S.J., Cristallogr. Spectrosc. Res., 1988, 18, 395-401. DOI: https://doi.org/10.1007/BF01195692

Castineiras, A.; Diaz, G.; Florencio, F.; García-Blanco, S.; Martínez-Carrera, S., Z. Anorg. Allg. Chem., 1988, 101-110, 567.

Humphrey, D.G.; Fallon, G.D.; Murray, K.S., J. Chem. Soc. Com-mun., 1988, 1356-1358.

Rajendiran, V.; Murali, M.; Suresh, E.; Sinha, S.; Somasundaram, K.; Palaniandavar, M., Dalton Trans., 2008, 1, 148-163. DOI: https://doi.org/10.1039/B710578A

Castiñeiras, A.; Molleda, C.; Masaguer, J.R.; Coto, V., Transition Met. Chem., 1984, 8, 129-131. DOI: https://doi.org/10.1007/BF00956017

Ramírez-Delgado, V.; Morales León, R.E.; Hernández-Ayala, L. F.; Ramírez Coutiño, V.A.; Rodríguez, F.J.; Osorio-Monreal, G.; García-Ramos, J.C.; Flores-Alamo, M.; Ruiz-Azuara, L.; Or-tiz-Frade, L., Polyhedron, 2014, 74, 72-78. DOI: https://doi.org/10.1016/j.poly.2014.03.001

Pavlischchuk, V.V.; Koltilov, S.V.; Michael, E.S.; Prushan, J.; Ad-dison, A.W., Inorg. Chim. Acta, 1998, 278, 217-222. DOI: https://doi.org/10.1016/S0020-1693(98)00030-9

Pavlishchuk, V.V.; Kolotilov, S.V.; Addison, A.W.; Sinn, E.; Prushan, M.J., Russ. J. Inorg. Chem., 2000, 45, 544-550.

Bermejo, E.; Castineiras, A.; Dominguez, R.; Strahle, J.; Hiller, W., Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 1993, 49,324-326. DOI: https://doi.org/10.1107/S0108270192006474

Worrell, J.H.; Genova, J.J.; Dubois, T.D. J. Inorg. Nucl. Chem., 1978, 40, 441-446. DOI: https://doi.org/10.1016/0022-1902(78)80420-5

Bermejo, E.; Castiñeiras, A.; Domínguez, A.R.; Strähle, J.; Hiller, W. Acta Crystallogr. C, 1993, 49, 1918-1920. DOI: https://doi.org/10.1107/S010827019300352X

Cotton, F. A.; Wilkinson, G., Advanced Inorganic Chemistry, John Wiley and Sons 5th ed., New York, 1988.

Huheey, J. E.; Keiter, E. A.; Keiter, R. L., Inorganic Chemistry. 4th ed., Harper Collins College Editions, New York, 1999.

Lever A.B. P., Inorg. Chem., 1990, 29, 1271-1285. DOI: https://doi.org/10.1021/ic00331a030

Stranger, R; McMahon, K.L; Gahan, L.R.; Bruce, J.I.; Hambley, T.W. Inorg. Chem. 1997, 36, 3466-3475. DOI: https://doi.org/10.1021/ic9614531

D. Sutton, Electronic Spectra of Transition Metal Complexes. Mc-Graw Hill, 1968, London, Great Britain.

Bard, A.J.; Faulkner, L.R., Electrochemical Methods, Fundamen-tals and Applications. 2nd ed, John Wiley and Sons, New York, 2001.

Kissinger, P. T. and Heineman, W. R., Laboratory Techniques in Electroanalytical Chemistry, Marcel Dekker, Inc. New York, USA, 1996.

Zanello, P., Inorganic Electrochemistry, theory, practice and appli-cation, The Royal Society of Chemistry, Cambridge, UK, 2003.

Lappin A. Graham; McAuley Alexander The redox chemistry of Nickel, 281-295.

Tokel-Takvoryan, N.E.; Hemingway, R. E.; Bard, A. J., J. Am. Chem. Soc., 1973, 95, 6582-6589. DOI: https://doi.org/10.1021/ja00801a011

Tanaka, N.; Sato, Y.; Bull. Chem. Soc. Jap. ,1968, 41, 2059-2064. DOI: https://doi.org/10.1246/bcsj.41.2059

Margel, S.; Smith, W.; Anson, F.C. J. Electrochem. Soc., 1978, 125, 241-246. DOI: https://doi.org/10.1149/1.2131421

Tanaka, N.; Sato, Y., Inorg. Nucl. Chem. Lett., 1968, 4, 487-490. DOI: https://doi.org/10.1016/0020-1650(68)80016-9

Tanaka, N.; Sato, Y., Inorg. Nucl. Chem. Lett., 1966, 2, 359-362. DOI: https://doi.org/10.1016/0020-1650(66)80016-8

Tanaka, N.; Sato, Y., Electrochim. Acta.,1968, 335-346. DOI: https://doi.org/10.1016/0013-4686(68)87006-9

Christensen P.A. ; Hamnett A.; Higgins S.J.; Timney, J. A., J. Elec-troanal. Chem., 1995, 395, 195-209.

Salvatore, D.; Paolo, U., J. Electroanal. Chem., 1987, 219, 259-271.

Nicholson, R. S., Anal. Chem. 1965, 37, 1351-1355. DOI: https://doi.org/10.1021/ac60230a016

Perpone, S.P.; Kretlow, W.J., Anal. Chem. 1966, 38, 1760-1763. DOI: https://doi.org/10.1021/ac60244a034

Solomon, E.I.; Lever A.P.B., Inorganic Electronic Structure and Spectroscopy, Volume II: Applications and Case Studies, Wiley, New York, 1999, 255-262.

Gritzner, G. and Küta J., Pure Appl. Chem., 1984, 4, 461-466. DOI: https://doi.org/10.1351/pac198456040461

×

Downloads

Published

2017-10-12
x

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Loading...