The Role of the π Acceptor Character of Polypyridine Ligands on the Electrochemical Response of Co(II) Complexes and its Effect on the Homogenous Electron Transfer Rate Constant with the Enzyme Glucose Oxidase
DOI:
https://doi.org/10.29356/jmcs.v59i4.85Keywords:
Co(II) complexes, polypyridine ligands, electrochemis-try, redox mediator, glucose oxidase, DFT calculations.Abstract
In this work the electrochemical behavior of Co(II) com-plexes with substituted bidentate and tridentate polypyridine ligands [CoL3](BF4)2 and [CoL´2](NO3)2 in 0.1M phosphate buffer pH 7.2 was studied. A reversible electrochemical process Co(II)Ln → Co(III) Ln +1eˉ was observed. A linear relationship between the redox poten-tial (E°) and the pKa of the non-coordinated ligand was found. It was demonstrated by DFT calculations the use of pKa value as a descriptor of the π acceptor character of a ligand. The electrochemical response in the presence of glucose oxidase (GOx) was also studied. It was pos-sible to establish a tendency between the homogeneous electron trans-fer rate constant (ks) and the redox potential (E°) for the compounds studied in this work and other examples taken from the literature.Downloads
References
Lee, D. K.; Ahn K-S.; Thogiti, S.; Kim, J. H., Dyes and Pig. 2015, 117, 83-91. DOI: https://doi.org/10.1016/j.dyepig.2015.02.002
Sun, Z-Z.; Li, Q-S.; Zhang, M.; Li, Z-S., J. Power Sources 2015, 294, 264-271. DOI: https://doi.org/10.1016/j.jpowsour.2015.06.094
Kirner, J.T.; Elliott, C.M., J. Phys. Chem., 2015, 119, 17502-17514. DOI: https://doi.org/10.1021/acs.jpcc.5b02513
Shen, C.; Wang, X.; Jiang, X-F.; Zhu, H.; Li, F.; Yang, J.; Xu, Q-H.; Wang, Q., J. Phys. Chem., 2015, 119, 9774-9781. DOI: https://doi.org/10.1021/acs.jpcc.5b03313
Jung, H.; Koo, B.; Kim, J-Y.; Kim, T.; Son, H.J.; Kim, B-S.; Kim,
Y.; Lee, D-K.; Kim, H.; Cho, J.; Ko, M.J., ACS Appl. Mater. In-terfaces 2014, 6, 19191-19200. DOI: https://doi.org/10.1021/am5051982
Ondersma, J. W. ; Hamann, T. W., Coord. Chem. Rev. 2013, 257, 1533-1543. DOI: https://doi.org/10.1016/j.ccr.2012.09.010
Nolana, J. P.; Jones, T. W.; Donne, S. W.; Wilsona, G. J., Electro-chim. Acta, 2013, 108, 690-697. DOI: https://doi.org/10.1016/j.electacta.2013.07.016
Salvatori, P.; Marotta, G.; Cinti, A.; Mosconi, E.; Panigrahi, M.; Giribabu, L.; Nazeeruddin, M.K.; De Angelis, F., Inorg. Chim. Acta, 2013, 13, 106-112. DOI: https://doi.org/10.1016/j.ica.2013.07.003
Mba, M.; D’Acunzo, M.; Salice, P.; Caro?glio, T.; Maggini, M.; Caramori, S.; Campana, A.; Aliprandi, A.; Argazzi, R.; Carli, S.; Bignozzi, C.A., J. Phys. Chem., 2013, 117, 19885-19896. DOI: https://doi.org/10.1021/jp4067586
Mosconi, E.; Yum, J-H.; Kessler, F.; Gómez García, C.J.; Zuccac-cia, C.; Cinti A.; Nazeeruddin, M.K.; Grätzel, M.; De Angelis, F., J. Am. Chem. Soc., 2012, 134, 19438-19453. DOI: https://doi.org/10.1021/ja3079016
Zong X.; Liang M.; Fan C.; Tang K.; Li G.; Sun, Z.; Xue, S., J. Phys. Chem., 2012, 116, 11241-11250. DOI: https://doi.org/10.1021/jp301406x
Feldt, S.M.; Wang, G.; Boschloo, G.; Hagfeldt, A., J. Phys. Chem., 2011, 115, 21500-21507. DOI: https://doi.org/10.1021/jp2061392
Bai, Y.; Zhang, J.; Zhou, D.; Wang, Y.; Zhang, M.; Wang, P., J. Am. Chem. Soc., 2011, 133, 11442-11445. DOI: https://doi.org/10.1021/ja203708k
Kavan, L.; Yum, J-H.; Grätzel, M., Nano Lett., 2011, 11, 5501-5506. DOI: https://doi.org/10.1021/nl203329c
Kavan, L.; Yum, J-H.; Nazeeruddin, M.K.; Grätzel M., ACS Nano, 2011, 11, 9171-9178. DOI: https://doi.org/10.1021/nn203416d
DeVries, M.J.; Pellin, M.J.; Hupp, J.T., Langmuir, 2010, 26, 11, 9082-9087. DOI: https://doi.org/10.1021/la904643t
Lee, H.J.; Chen, P.; Moon, S-J.; Sauvage, F.; Sivula, K.; Bessho, T.; Gamelin, D.R.; Comte, P.; Zakeeruddin, S.M.; Seok, S.; Grät-zel, M.; Nazeeruddin, Md. K., Langmuir, 2009, 25, 7602-7608. DOI: https://doi.org/10.1021/la900247r
Sapp, S.A.; Elliott, C.M.; Contado, C.; Caramori, S.; Bignozzi, C. A., J. Am. Chem. Soc., 2002, 124, 11215-11222. DOI: https://doi.org/10.1021/ja027355y
Carter, M.T.; Rodriguez, M.; Bard A.J., J. Am. Chem. Soc., 1989, 111, 8901-8911. DOI: https://doi.org/10.1021/ja00206a020
Niu, S.; Sun, J.; Nan, C.; Lin, J., Sens. Actuators B, 2013, 176, 58-63. DOI: https://doi.org/10.1016/j.snb.2012.08.085
Sheng-Zhen, C.; Qiang, C.; Fang-Yi, P.; Xin-Xin, H.; Yu-Ling, J., Chin. J. Anal. Chem., 2012, 40, 1194-1200.
Santiago-Berríos, M.B.; Declet-Flores, C.; David, A., Borrero, S.; Vélez, M.M.; Díaz-Díaz, A.; Guadalupe, A.R.; Colón, J.L., Lang-muir, 2012, 4447-4452. DOI: https://doi.org/10.1021/la2035104
Liu, A.; Wang K.; Weng, S.; Lei, Y.; Lin, L.; Chen, W.; Lin, X.; Chen, Y., Trend. Anal. Chem., 2012, 37, 101-111. DOI: https://doi.org/10.1016/j.trac.2012.03.008
Zhou, P.; He, L.; Gan, G.; Ni, S.; Li, H.; Li, W., J. Electroanal. Chem., 2012, 665, 63-69. DOI: https://doi.org/10.1016/j.jelechem.2011.11.026
Xu, S.; Lu C.; Shao, J.; Li, Q.; Li, H.; Li, W., J. Electroanal. Chem., 2011, 661, 287-293. DOI: https://doi.org/10.1016/j.jelechem.2011.07.047
Liu, X.; Qu, X.; Fan, H.; Ai, S.; Han, R., Electrochim. Acta, 2010, 55, 6491-6495. DOI: https://doi.org/10.1016/j.electacta.2010.06.034
Li, F.; Chen, W.; Tang, C.; Zhang, S., Talanta, 2008, 77, 1-8. DOI: https://doi.org/10.1016/j.talanta.2008.06.011
Niu, S-Y.; Zhang, S-S.; Wang, L.; Li, X.M., J. Electroanal. Chem., 2006, 597, 111-118. DOI: https://doi.org/10.1016/j.jelechem.2006.09.005
Erdem, A.; Ariksoysal, D.O.; Karadeniz, H.; Kara, P.; Sengonul, A.; Sayiner, A.A.; Ozsoz, M., Electrochem. Comm., 2005, 7, 815-820. DOI: https://doi.org/10.1016/j.elecom.2005.05.006
Elicia, L.S. Wong Mearns, F.J.; Gooding, J.J., Sens. Actuator., 2005, 111-112, 515-521. DOI: https://doi.org/10.1016/j.snb.2005.03.072
Jin, B.; Ji, X.; Nakmura, T., Electrochim. Acta, 2004, 50, 1049-1055. DOI: https://doi.org/10.1016/j.electacta.2004.08.017
Zhang, R-Y.; Pang, D-W.; Zhang, Z-L.; Yan, J-W.; Yao, J-L.; Tian, Z-Q.; Mao B-W.; Sun, S-G., J. Phys. Chem., 2002, 106, 11233-11239. DOI: https://doi.org/10.1021/jp025817o
Ji, L-N.; Zou, X-H.; Liu, J-G., Coord. Chem. Rev., 2001, 216-217, DOI: https://doi.org/10.1016/S0010-8545(01)00338-1
-536.
Iuni-Iui, Z.; Hong C.; Ruifu, Y., Biotechnol Adv., 1997, 15, 43-
Wang, J.; Cai, X.; Rivas, G.; Shiraishi, H.; Farias, P.A.M.; Dontha, N., Anal. Chem., 1996, 68, 2629-2634. DOI: https://doi.org/10.1021/ac9602433
Wang, J.; Palecek, E.; Nielsen, P.E.; Rivas, G.; Cai, X.; Shiraishi, H.; Dontha, N.; Luo, D.; Farias, P.A.M., J. Am. Chem. Soc., 1996, 118, 7667-7670. DOI: https://doi.org/10.1021/ja9608050
Tong, L.; Kopecky A.; Zong, R.; Gagnon, K.J.; Ahlquist, M.S.G.; Thummel, R.P., Inorg. Chem., 2015, 54, 7873-7884. DOI: https://doi.org/10.1021/acs.inorgchem.5b00915
Sasaki, Y.; Kato, H.; Kudo, A., J. Am. Chem. Soc., 2013, 135, 5441?5449. DOI: https://doi.org/10.1021/ja400238r
Queyriaux, N.; Jane, R.T.; Massin, J.; Artero, V.; Chavarot-Ker-lidou, M.; Queyriaux, N., Coord. Chem. Rev., 2015, 46, 1-17.
Eckenhoff, W.T.; McNamara, W.R.; Du, P.; Eisemberg, R., Bio-chim. Biophys. Acta, 2013, 1827, 958-973. DOI: https://doi.org/10.1016/j.bbabio.2013.05.003
Losse, S.; Vos J.G.; Rau, S., Coord. Chem. Rev., 2010, 254, 2492-2504. DOI: https://doi.org/10.1016/j.ccr.2010.06.004
Chen, X.; Ren, H.; Peng, W.; Zhang, H.; Lu, J.; Zhuang, L., J. Phys. Chem., 2014, 118, 20791-20798. DOI: https://doi.org/10.1021/jp5061792
Zhang, P.; Wang, M.; Gloaguen, F.; Chen, L.; Quentel, F.; Sun, L., Chem. Commun., 2013, 49, 9455. DOI: https://doi.org/10.1039/c3cc43491e
Ward, A.L. ; Elbaz, L. ; Kerr, J.B.; Arnold, J., Inorg. Chem., 2012, 51, 4694-4706. DOI: https://doi.org/10.1021/ic2026957
Isaacs, M.; Canales, J.C.; Aguirre, M.J.; Estiu, G.; Caruso, F.; Fer-raudi, G.; Costamagna, J., Inorg. Chim. Acta, 2002, 339, 224-232. DOI: https://doi.org/10.1016/S0020-1693(02)00942-8
Chiaricato, G. Jr.; Arana, C.R.; Casado, C.; Cuadrado, I.; Abruña, H.D., Inorg. Chim. Acta, 2000, 300-302, 32-42. DOI: https://doi.org/10.1016/S0020-1693(99)00420-X
La, K-M.; Wong, K-Y.; Yang, S-M. ; Che, C-M., J. Chem. Soc. Dalton Trans, 1995, 1103-1107.
Arana, C.; Yan, S.; Keshavarz, K. M.; Potts, K.T.; Abruña, H.D., Inorg. Chem., 1992, 31, 3680-3682. DOI: https://doi.org/10.1021/ic00043a034
Simpson, T.C.; Durand, R.R. Jr., Electrochim. Acta, 1988, 33, 581-583. DOI: https://doi.org/10.1016/0013-4686(88)80181-6
Heller, A.; Feldman, B., Chem. Rev., 2008, 108, 2482-2505. DOI: https://doi.org/10.1021/cr068069y
Zhang, C.X.; Haruyama, T.; Kobatake, E.; Aizawab, M., Anal. Chim. Acta, 2000, 408, 225-232. DOI: https://doi.org/10.1016/S0003-2670(99)00799-0
Harwood, G.W.J.; Pouton, C.W., Adv. Drug Deliver Rev., 1991, 18, 163-191. DOI: https://doi.org/10.1016/0169-409X(95)00093-M
Nakabayashi, Y.; Nakamura, K.; Kawachi, M.; Motoyama, T.; Ya-mauchi O., J. Biol. Inorg. Chem., 2003, 45-52. DOI: https://doi.org/10.1007/s00775-002-0385-8
Nakabayashi, Y.; Hirosaki, Y.; Yamauchi, O., Bioelectrochem., 2006, 69, 216-222. DOI: https://doi.org/10.1016/j.bioelechem.2006.03.002
Shklover, V.; Nesper, R.; Zakeeruddin, S.M.; Fraser, D.M.; Grät-zel, M., Inorg. Chim. Acta, 1996, 247, 237-245. DOI: https://doi.org/10.1016/0020-1693(96)88185-0
Castillo, J.; Gáspár, J.; Leth, S.; Niculescu, M.; Mortari, A.; Bon-tidean, I.; Soukharev, V.; Dorneanu, S. A.; Ryabov, A. D.; Csöregi, E., Sens. Actuactor. B, 2004, 102, 179-194. DOI: https://doi.org/10.1016/j.snb.2004.04.084
Johnson, J.M; Halsall, H.B.; Heineman ,W.R., Anal. Biochem., 1983, 133, 186- 189. DOI: https://doi.org/10.1016/0003-2697(83)90241-5
DiVirgilio-Thomas, J.M.; Heineman, W.R.; Seliskar, C.J., Anal. Chem., 2000, 72, 3461-3467. DOI: https://doi.org/10.1021/ac991418m
Vashist, S.; Zhenga, K.; Al-Rubeaan, D.; Luong, K.; Sheu, J.H., Anal. Chim. Acta, 2011, 703, 124-136. DOI: https://doi.org/10.1016/j.aca.2011.07.024
Zakeeruddin, S.M.; Fraser, D.M.; Nazeeruddin, M-K.; Grätzel, M., J. Electroanal. Chem., 1992, 337, 253-283. DOI: https://doi.org/10.1016/0022-0728(92)80542-C
Kurova, V. S.; Ershov, A. Yu.; Ryabov, A. D., Russ. Chem. Bull., Int. Ed., 2001, 10, 1849-1854. DOI: https://doi.org/10.1023/A:1014386113964
Chaubey, A.; Malhotra, B.D., Biosens. Bioelectron., 2002, 17, DOI: https://doi.org/10.1016/S0956-5663(01)00313-X
-456.
Lever, A. B. P., Inorg. Chem. 1990, 29, 1271-1285. DOI: https://doi.org/10.1021/ic00331a030
Nakamoto, K., Infrared spectra of inorganic and coordination compounds. 2da ed.; Wiley: 1963.
Huheey, J.E.; Keiter, E.A. ; Keiter, R.L. Inorganic Chemistry: Principles of Structure and Reactivity, Harper Collins College Publisher, New York, 1993.
Zanello, P.; Chemistry, R. S. o., Inorganic Electrochemistry: The-ory, Practice and Applications. Royal Society of Chemistry: Uni-versidad de Siena, Italia, 2003. DOI: https://doi.org/10.1039/9781847551146
Bard, A. J.; Faulkner, L. R. Electrochemical Methods, Fundamen-tals and Applications; Ed. John Wiley and Sons, 1980.
Gasque, L.; Medina, G.; Ruiz-Ram??rez, L.; Moreno-Esparza, R., Inorg. Chim. Acta 1999, 288, 106-111 DOI: https://doi.org/10.1016/S0020-1693(99)00034-1
Ortiz-Frade, L.A.; Ruiz-Ramírez, L.; González, I.; Marín-Becerra, A.; Alcarazo, M.; Alvarado-Rodriguez, J.G.; Moreno-Esparza R., Inorg. Chem. 2003, 42, 1825-1834 DOI: https://doi.org/10.1021/ic025849q
García-Ramos, J.C.; Galindo-Murillo, R.; Tovar-Tovar, A.; Alon-so-Saenz, A.L.; Gómez-Vidales, V.; Flores-Álamo, M.; Or-tiz-Frade, L.; Cortes-Guzmán, F.; Moreno Esparza, R.; Campero A.; Ruiz-Azuara, L. Chem. Eur. J., 2014, 20, 13730-13741 DOI: https://doi.org/10.1002/chem.201402775
Gazquez, J. L.; Cedillo, A.; Vela, A., J. Phys. Chem. A., 2007, 111, 1966-1970 DOI: https://doi.org/10.1021/jp065459f
Gazquez, J. L., J. Mex. Chem. Soc., 2008, 52, 3-10
Ramírez-Ram?rez, J. Z.; Vargas, R.; Garza, J.; Gazquez, J. L., J. Phys. Chem. A., 2010, 114,7945-7951. DOI: https://doi.org/10.1021/jp100309c
Wang, J., Electroanal. 2001, 13, 983-988. DOI: https://doi.org/10.1002/1521-4109(200108)13:12<983::AID-ELAN983>3.0.CO;2-#
Newman, J. D.; Turner, A. P. F., Biosens. Bioelectron. 2005, 20, 2435-2453. DOI: https://doi.org/10.1016/j.bios.2004.11.012
Cass, A. E.; Davis, G.; Francis, G. D.; Hill, H. A. O.; Aston, W. J.; Higgins, I. J.; Plotkin, E. V.; Scott, L. D.; Turner, A. P., Anal. Chem. 1984, 56, 667-671. DOI: https://doi.org/10.1021/ac00268a018
Nicholson, R. S.; Shain, I., Anal. Chem., 1964, 36, 706-723. DOI: https://doi.org/10.1021/ac60210a007
Savéant, J. M., Elements of Molecular and Biomolecular Electro-chemistry: An Electrochemical Approach to Electron Transfer Chemistry. Wiley: 2006. DOI: https://doi.org/10.1002/0471758078
Kohn, W.; Becke, A. D.; Parr, R. G.; J. Phys. Chem., 1996, 100, 12974-12980. DOI: https://doi.org/10.1021/jp960669l
Hohenberg, P.; Kohn, W.; Phys. Rev., 1964, 136, B864-B871. DOI: https://doi.org/10.1103/PhysRev.136.B864
Kohn, W.; Sham, L.; J. Phys. Rev., 1965, 140, A1133-A1138. DOI: https://doi.org/10.1103/PhysRev.140.A1133
Gaussian 09, Revision D.01, Frisch, M. J.; Trucks, G. W.; Schle-gel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakat-suji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Toma-si, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Dan-iels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
Becke, A. D.; Phys. Rev. A, 1988, 38, 3098-3100. DOI: https://doi.org/10.1103/PhysRevA.38.3098
Mielich, B.; Savin, A.; Stoll, H.; Peuss, H.; Chem. Phys. Lett., 1989, 157, 200-206. DOI: https://doi.org/10.1016/0009-2614(89)87234-3
Lee, C.; Yang, W.; Parr, R. G.; Phys. Rev. B., 1988, 37, 785-789. DOI: https://doi.org/10.1103/PhysRevB.37.785
Krishnan; R.; Binkley; J. S.; Seeger R.; Pople, J. A. J. Chem. Phys., 1980, 72, 650. DOI: https://doi.org/10.1063/1.438955
Clark T.; Chandrasekhar, J.; Spitznagel, G.W.; Schleyer, P. v. R. J. Comput. Chem., 1983, 4, 294. DOI: https://doi.org/10.1002/jcc.540040303
Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys., 1984, 80, 3265. DOI: https://doi.org/10.1063/1.447079
McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 563984.
Shishkin, O. V.; Gorb, L.; Luzanov, A. V.; Elstner, M.; Suhai, S.; Leszczynski, J.; J. Mol. Struct. (Theochem), 2003, 625, 295-303. DOI: https://doi.org/10.1016/S0166-1280(03)00032-0
Duke, R.F; Weibel, M.K.; Page, D.S,; Bulfrin, V.G.; Luthy, J. J. Am. Chem. Soc., 1969, 91, 3904-3909. DOI: https://doi.org/10.1021/ja01042a038
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
