Electrochemical Behavior of Ni(II) Complexes with N2S2 and N6 Ligands as Potential Catalysts in Hydrogen Evolution Reaction
DOI:
https://doi.org/10.29356/jmcs.v59i4.86Keywords:
Electrochemistry, Ni(II) complexes, N2S2 ligand, N6 ligandAbstract
In this work, two Ni(II) complexes with the tetradentate ligand N2S2 (pdto=1,8-bis(2-pyridyl)-3,6-dithioctane,) and the hexa-dentate ligand N6 (bdahp= 2,9-bis-(2’,5’-diazahexanyl)-1,10-phenan-throline) were prepared in order to explore its electrochemical behavior, that indicate their potential use as molecular catalysts for the hydrogen evolution reaction. The Ni(II)-pdto complex presented two consecutive one electron transfer [Ni(ΙΙ)-(pdto)] + 1e- [Ni(Ι)-(pd-to)] and [Ni(Ι)-(pdto)] + 1 e- → Ni(0) + pdto. On the other hand the Ni(II)-bdahp complex presented the electrochemical reduction Ni(ΙΙ)-(bdahp) + 1e- Ni(Ι)-(bdahp) followed by a coupled chemical reaction in an ECi mechanism, where a de-coordination of the diimin-ic moiety of the bdahp ligand was proposed. It was demonstrated that the pdto ligand promotes reduction over Ni(II) at less negative reduc-tion potential in comparison when the ligand bdahp is presented.Downloads
References
Berardi, S.; Drouet, S.; Francàs, L.; Gimbert-Suriñach, C.; Gut-tentag, M.; Richmond, C.; Stolla, T.; Llobet, A., Chem. Soc. Rev., 2014, 43, 7501-7519. DOI: https://doi.org/10.1039/C3CS60405E
Eckenhoff, W.T.; McNamara, W.R.; Du, P.; Eisenberg, R., Bio-chim. Biophys. Acta, 2013, 1827, 958-973. DOI: https://doi.org/10.1016/j.bbabio.2013.05.003
Losse, S.; Vos, J.G.; Rau, S., Coord. Chem. Rev., 2010, 254, 2492-2504. DOI: https://doi.org/10.1016/j.ccr.2010.06.004
Dempsey, J. L.; Brinschwin, B.S.; Winkler, J. R.; Gray, H. B., Ac-counts Chem. Res., 2009, 42, 12, 1995-2004. DOI: https://doi.org/10.1021/ar900253e
Du, P.; Schneider, J. ; William, G.L. ; Brennesel, W. ; Eisenberg R., J. Am. Chem. Soc., 2009, 48, 4952-4962. DOI: https://doi.org/10.1021/ic900389z
Jacques, P.-A.; Artero, V.; Pécaut, J.; Fontecave, M., P. Nat. Acad. Sci. USA, 2009, 106, 49, 20627-20632. DOI: https://doi.org/10.1073/pnas.0907775106
Tong, L.; Kopecky, A.; Zong, R.; Gagnon, K.J.; Ahlquist, M.S.G.; Thummel, R.P., Inorg. Chem., 2015, 54, 7873-7884. DOI: https://doi.org/10.1021/acs.inorgchem.5b00915
Sasaki, Y.; Kato, H.; Kudo, A., J. Am. Chem. Soc., 2013, 135, 5441?5449. DOI: https://doi.org/10.1021/ja400238r
Queyriaux, N.; Jane, R.T.; Massin, J.; Artero, V.; Chavarot-Ker-lidou, M.; Queyriaux N., Coord. Chem. Rev., 2015, 46, 1-17.
Chen, X.; Ren, H.; Peng, W.; Zhang, H.; Lu, J.; Zhuang, L., J. Phys. Chem., 2014, 118, 20791-20798 DOI: https://doi.org/10.1021/jp5061792
Helm, M.L.; Stewart, M.P. ; Bullock, R.M.; DuBois, M.R.; Du-Bois, D.L., Science 2011, 333, 863-866 DOI: https://doi.org/10.1126/science.1205864
DuBois, D. L., Inorg. Chem., 2014, 53, 3935-3960. DOI: https://doi.org/10.1021/ic4026969
Stewart, M. P.; Ho, M-H.; Wiese, S.; Lindstrom, M.L.; Thogerson, C.E.; Raugei, S.; Bullock, R.M.; Helm, M.L., J. Am. Chem. Soc. 2013, 135, 6033?6046. DOI: https://doi.org/10.1021/ja400181a
Gross, M.A.; Reynal, A.; Durrant, J.R.; Reisner, E., J. Am. Chem. Soc., 2014, 136, 356-366. DOI: https://doi.org/10.1021/ja410592d
Thoi, V.S.; Sun, Y.; Long, J.R.; Chang, C.J., Chem. Soc. Rev., 2013, 42, 2388. DOI: https://doi.org/10.1039/C2CS35272A
Eckenhoff, W.T.; Eisenberg, R.; Dalton Trans., 2012, 41, 13004-13021. DOI: https://doi.org/10.1039/c2dt30823a
Han, Z.; Shen, L.; Brennessel, W.W.; Holland, P.L.; Eisenberg, R., J.Am. Chem. Soc., 2013, 135, 14659-14669. DOI: https://doi.org/10.1021/ja405257s
Das, A.; Han, Z.; Brennessel, W.W.; Holland, P.L.; Eisenberg, R., ACS Catal., 2015, 5, 1397-1406. DOI: https://doi.org/10.1021/acscatal.5b00045
Xu, You; Xu, R., Appl. Sur. Sci., 2015, 351, 779-793. DOI: https://doi.org/10.1016/j.apsusc.2015.05.171
Wang, M.; Han K.; Zhang, S.; Sun L., Coord. Chem. Rev., 2015, 287, 1-14. DOI: https://doi.org/10.1016/j.ccr.2014.12.005
Goodwin, H.A.; Lions, F., J. Am. Chem. Soc., 1960, 82, 5013-5023. DOI: https://doi.org/10.1021/ja01504a001
Brubaker, G.R.; Brown, J.N.; Yoo, M.K.; Kinsey, R.A.; Kutchan,
M. ; Mottel, E.A., Inorg. Chem., 1979, 18, 299-302. DOI: https://doi.org/10.1021/ic50192a018
Manzanera Estrada, M.; Flores-Alamo, M.; Grevy. M., J.-M.; Ruiz-Azuara, L.; Ortiz-Frade, L.; Acta Crystallogr. E, 2012, 68, m135. DOI: https://doi.org/10.1107/S1600536811056145
Ortiz-Frade, L.; Manríquez, J.; González, I.; Moreno.-Esparza, R.; Ruiz-Azuara, L., Polyhedron, 2010, 29, 328-332. DOI: https://doi.org/10.1016/j.poly.2009.05.053
Ortiz-Frade, L.A.; Ruiz-Ramírez, L.; González, I.; Marín-Becerra, A.; Alcarazo, M.; Alvarado-Rodriguez, J.G.; Moreno-Esparza, R., Inorg. Chem., 2003, 42, 1825-1834. DOI: https://doi.org/10.1021/ic025849q
Popovitch, J.M.; Addison, A.W.; Butcher, R.J.; Prushan, M.J., J. Chem Crystallogr., 2012, 42, 295-298. DOI: https://doi.org/10.1007/s10870-011-0239-8
Castineiras, A.; Paredes, M.; Hiller, W., Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 1984, 40, 2078-2079. DOI: https://doi.org/10.1107/S0108270184010696
Castineiras, A.; Hiller, W.; Strahle, J.; Paredes, M.; Sordo, J., Acta Crystallogr. Sect. C: Cryst. Struct. Commun.,1985, 41, 41-43. DOI: https://doi.org/10.1107/S0108270185002712
Kolotilov, S.V.; Goreshnik, E.A.; Pavlishchuk, V.V.; Yatsimirskii, K.B., Russ. J. Inorg. Chem.,2000, 45, 967-975.
Castineiras, A.; Diaz, G.; Florencio, F.; García-Blanco, S.; Martínez-Carrera, S.J., Cristallogr. Spectrosc. Res., 1988, 18, 395-401. DOI: https://doi.org/10.1007/BF01195692
Castineiras, A.; Diaz, G.; Florencio, F.; García-Blanco, S.; Martínez-Carrera, S., Z. Anorg. Allg. Chem., 1988, 101-110, 567.
Humphrey, D.G.; Fallon, G.D.; Murray, K.S., J. Chem. Soc. Com-mun., 1988, 1356-1358.
Rajendiran, V.; Murali, M.; Suresh, E.; Sinha, S.; Somasundaram, K.; Palaniandavar, M., Dalton Trans., 2008, 1, 148-163. DOI: https://doi.org/10.1039/B710578A
Castiñeiras, A.; Molleda, C.; Masaguer, J.R.; Coto, V., Transition Met. Chem., 1984, 8, 129-131. DOI: https://doi.org/10.1007/BF00956017
Ramírez-Delgado, V.; Morales León, R.E.; Hernández-Ayala, L. F.; Ramírez Coutiño, V.A.; Rodríguez, F.J.; Osorio-Monreal, G.; García-Ramos, J.C.; Flores-Alamo, M.; Ruiz-Azuara, L.; Or-tiz-Frade, L., Polyhedron, 2014, 74, 72-78. DOI: https://doi.org/10.1016/j.poly.2014.03.001
Pavlischchuk, V.V.; Koltilov, S.V.; Michael, E.S.; Prushan, J.; Ad-dison, A.W., Inorg. Chim. Acta, 1998, 278, 217-222. DOI: https://doi.org/10.1016/S0020-1693(98)00030-9
Pavlishchuk, V.V.; Kolotilov, S.V.; Addison, A.W.; Sinn, E.; Prushan, M.J., Russ. J. Inorg. Chem., 2000, 45, 544-550.
Bermejo, E.; Castineiras, A.; Dominguez, R.; Strahle, J.; Hiller, W., Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 1993, 49,324-326. DOI: https://doi.org/10.1107/S0108270192006474
Worrell, J.H.; Genova, J.J.; Dubois, T.D. J. Inorg. Nucl. Chem., 1978, 40, 441-446. DOI: https://doi.org/10.1016/0022-1902(78)80420-5
Bermejo, E.; Castiñeiras, A.; Domínguez, A.R.; Strähle, J.; Hiller, W. Acta Crystallogr. C, 1993, 49, 1918-1920. DOI: https://doi.org/10.1107/S010827019300352X
Cotton, F. A.; Wilkinson, G., Advanced Inorganic Chemistry, John Wiley and Sons 5th ed., New York, 1988.
Huheey, J. E.; Keiter, E. A.; Keiter, R. L., Inorganic Chemistry. 4th ed., Harper Collins College Editions, New York, 1999.
Lever A.B. P., Inorg. Chem., 1990, 29, 1271-1285. DOI: https://doi.org/10.1021/ic00331a030
Stranger, R; McMahon, K.L; Gahan, L.R.; Bruce, J.I.; Hambley, T.W. Inorg. Chem. 1997, 36, 3466-3475. DOI: https://doi.org/10.1021/ic9614531
D. Sutton, Electronic Spectra of Transition Metal Complexes. Mc-Graw Hill, 1968, London, Great Britain.
Bard, A.J.; Faulkner, L.R., Electrochemical Methods, Fundamen-tals and Applications. 2nd ed, John Wiley and Sons, New York, 2001.
Kissinger, P. T. and Heineman, W. R., Laboratory Techniques in Electroanalytical Chemistry, Marcel Dekker, Inc. New York, USA, 1996.
Zanello, P., Inorganic Electrochemistry, theory, practice and appli-cation, The Royal Society of Chemistry, Cambridge, UK, 2003.
Lappin A. Graham; McAuley Alexander The redox chemistry of Nickel, 281-295.
Tokel-Takvoryan, N.E.; Hemingway, R. E.; Bard, A. J., J. Am. Chem. Soc., 1973, 95, 6582-6589. DOI: https://doi.org/10.1021/ja00801a011
Tanaka, N.; Sato, Y.; Bull. Chem. Soc. Jap. ,1968, 41, 2059-2064. DOI: https://doi.org/10.1246/bcsj.41.2059
Margel, S.; Smith, W.; Anson, F.C. J. Electrochem. Soc., 1978, 125, 241-246. DOI: https://doi.org/10.1149/1.2131421
Tanaka, N.; Sato, Y., Inorg. Nucl. Chem. Lett., 1968, 4, 487-490. DOI: https://doi.org/10.1016/0020-1650(68)80016-9
Tanaka, N.; Sato, Y., Inorg. Nucl. Chem. Lett., 1966, 2, 359-362. DOI: https://doi.org/10.1016/0020-1650(66)80016-8
Tanaka, N.; Sato, Y., Electrochim. Acta.,1968, 335-346. DOI: https://doi.org/10.1016/0013-4686(68)87006-9
Christensen P.A. ; Hamnett A.; Higgins S.J.; Timney, J. A., J. Elec-troanal. Chem., 1995, 395, 195-209.
Salvatore, D.; Paolo, U., J. Electroanal. Chem., 1987, 219, 259-271.
Nicholson, R. S., Anal. Chem. 1965, 37, 1351-1355. DOI: https://doi.org/10.1021/ac60230a016
Perpone, S.P.; Kretlow, W.J., Anal. Chem. 1966, 38, 1760-1763. DOI: https://doi.org/10.1021/ac60244a034
Solomon, E.I.; Lever A.P.B., Inorganic Electronic Structure and Spectroscopy, Volume II: Applications and Case Studies, Wiley, New York, 1999, 255-262.
Gritzner, G. and Küta J., Pure Appl. Chem., 1984, 4, 461-466. DOI: https://doi.org/10.1351/pac198456040461
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
