The Influence of Additives Upon the Energetic Parameters and Physicochemical Properties of Environmentally Friendly Biomass Pellets
DOI:
https://doi.org/10.29356/jmcs.v68i3.2032Keywords:
Biomass pellets, raw materials, combustion calorimetry, additives dosageAbstract
Abstract. Solid biomass fuels are economical and practical renewable energy sources. Exploitation of agricultural biomass as a fuel offers considerable advantages in different domains as energy supply as far as the climate is involved. In this study we intended to investigate the feasibility of alternative agricultural residues of grape pomace and corn cob pellets with addition of sawdust, starch, and waste rapeseed oil and to examine how these additives affects the calorific powers and pellets physical properties. Sawdust, starch, and waste rapeseed oil addition was 10 %. Pellets were produced by a manual single pellet press. The calorific powers of the biomass samples were experimentally determined using an oxygen bomb calorimeter (model 6200 adiabatic calorimeter Parr Instruments). The results show that waste rapeseed oil addition significantly increases the calorific powers in grape pomace and corn cob pellets. The highest calorific value was obtained for the grape pomace pellets containing 10 % waste rapeseed oil, 22.14 MJ/kg, compared to grape pomace control pellets, of 21.35 MJ/kg. The calorific values of corn cob control pellets were also increased when adding 10 % waste rapeseed oil, from 17.29 MJ/kg to 19.76 MJ/kg.
The results obtained in this work, related to calorific powers, moisture, ash, volatile, sulphur and nitrogen content, fixed carbon, bulk density, fuel value index, energy density and combustion efficiency, revealed that depending on additives used and their dosage, an acceptable fuel pellet could be produced.
Resumen. Los combustibles de biomasa sólida son fuentes de energía renovables económicas y prácticas. Al tomar en consideración el clima, la explotación de la biomasa proveniente de la agricultura como combustible ofrece ventajas considerables como fuente de energía en diferentes ámbitos. En este trabajo estudiamos la factibilidad utilizar residuos agrícolas de pastillas de orujo de uva y elote adicionándole aserrín, almidón y desperdicio de canola para analizar como estos aditivos afectan el potencial calórico y las propiedades físicas de las pastillas. El aserrín, almidón y canola se agregaron al 10%. Las pastillas se obtuvieron en una pastilladora manual. Experimentalmente, las potencias calóricas de las muestras de biomasa se determinaron con una bomba calorimétrica de oxígeno (calorímetro adiabático Parr Instruments modelo 6200). Los resultados muestran que la adición de canola incrementa significativamente la potencia calórica de las pastillas de orujo y elote. El valor calórico más alto se obtuvo con las pastillas de orujo a las que se les adicionó un 10% de canola, y fue de 22.14 MJ/kg, comparado con el control de pastillas de orujo que tiene un valor de 21.35 MJ/kg. Las potencias calóricas de las pastillas de control de elote también se incrementaron al adicionar 10% de canola, pasando de 17.29 MJ/kg a 19.76 MJ/kg.
Downloads
References
Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. Renew. Sust. Energy Rev. 2011, 15, 2262-2289. DOI: https://doi.org/10.1016/j.rser.2011.02.015. DOI: https://doi.org/10.1016/j.rser.2011.02.015
https://market-entry-romania.blogspot.ro/2017/02/waste-to-energy-potential-in-romania.html, accesed in January 2023.
Radu, L. in: The agricultural crops production of Romania, Ovidius University Annals, Economic Sciences Series, 2018, XVIII.
Smaga, M.; Wielgosiński, G.; Kochański, A.; Korczak, K. Acta Innovations. 2018, 26, 81-92. DOI: 10.32933/ActaInnovations.26.9. DOI: https://doi.org/10.32933/ActaInnovations.26.9
Lehtikangas, P. Biomass Bioenerg. 2001, 20, 301-360. DOI: https://doi.org/10.1016/S0961-9534(00)00092-1. DOI: https://doi.org/10.1016/S0961-9534(00)00092-1
Grover, V.; Hogland, W. in: Recovering energy from waste-various aspects, Science Publishers, Inc Enfield (NH), USA, Plymouth, UK, 338 pages, ISBN 1-57808-200-5.
Malat’ák, J.; Velebil, J.; Malat’áková, J.; Passian, L.; Bradna, J.; Tamelová, B.; Gendek, A.; Aniszewska, M. Materials. 2022, 15, 7288-7302. DOI: https://doi.org/10.3390/ma15207288
Spinei, M.; Oroian, M. Foods. 2021, 10, 867-872. DOI: https://doi.org/10.3390/foods10040867
Scoma, A.; Rebecchi, S.; Bertin, L.; Fava, F. Crit. Rev. Biotechnol. 2016, 36, 175-189. DOI: https://doi.org/10.3109/07388551.2014.947238. DOI: https://doi.org/10.3109/07388551.2014.947238
www.statista.com/statistic/Romania-production -of- grapes/, accesed in February 2023.
Chowdhary, P.; Gupta, A.; Gnansounou, E.; Pandey, A.; Chaturnedi, P. Environ. Pollut. 2021, 278, 116796. DOI: https://doi.org/10.1016/j.envpol.2021.116796. DOI: https://doi.org/10.1016/j.envpol.2021.116796
Golub, M. in: Agricultural mechanization in Asia, Africa and Latin America. 2012, 43, 72-79.
Kim, S.; Dale, B.E. Biomass Bioenerg. 2004, 26, 361-375. DOI: https://doi.org/10.1016/j.biombioe.2003.08.002. DOI: https://doi.org/10.1016/j.biombioe.2003.08.002
Burg, P.; Masan, V.; Ludin, D. Eng. for Rural Development. 2017, 1333-1338.
Jindaporn, J.; Charoenporn, L. Energ. Procedia. 2017, 138, 1147-1152. DOI: https://doi.org/10.1016/j.egypro.2017.10.223. DOI: https://doi.org/10.1016/j.egypro.2017.10.223
Tarasov, D.; Shahi, C.; Leitch, M. ISRN Forestry, 2013, 1-6, Hindawi Publishing Corporation, Article ID 876939. DOI: https://doi.org/10.1155/2013/876939
Gageanu, I.; Cujbescu, D.; Persu, C.; Voicu, G. Eng. Rural Dev. 2018, 17, 1632–1638.
Obernberger, I.; Thek, G. Biomass Bioenergy. 2004, 27, 653−669. DOI: https://doi.org/10.1016/j.biombioe.2003.07.006. DOI: https://doi.org/10.1016/j.biombioe.2003.07.006
Nielsen, N. P. K. Ph.D. Thesis, University of Copenhagen, Copenhagen, Denmark, 2009.
Stahl, M.; Berghel, J.; Frodeson, S.; Granström, K.; Renström, R. Energy Fuels. 2012, 26, 1937−1945. DOI: https://doi.org/10.1021/ef201968r
Demir, V. G.; Yaman, P.; Efe, M.O.; Yuksel, H., ICOEST, International Conference on Environmental Science and Technology, 28 september-2 october 2016.
Falemara, B.C.; Joshua, V.I.; Aina, O.O.; Nuhu, R.D. Recycling. 2018, 3, 37-42. DOI: https://doi.org/10.3390/recycling3030037. DOI: https://doi.org/10.3390/recycling3030037
Yuliah, Y.; Kartawidjaja, M.; Suryaningsih, S.; Ulfi, K. International Conference on Biomass: Technology, Application, and Sustainable Development IOP Publishing IOP Conf. Series: Earth and Environmental Science. 2017, 65, 1-8. DOI: https://doi.org/10.1088/1755-1315/65/1/012021
Rasid, R. A.; Elamparithy, G.; Ismail, M.; Harun, N. J. Chem. Eng. Ind. Biotech. 2021, 07, 1 – 6.
Obidzinski, S.; Piekut, J.; Dec, D. Renew. Energy. 2016, 87, 289–297. DOI: https://doi.org/10.1016/j.renene.2015.10.025. DOI: https://doi.org/10.1016/j.renene.2015.10.025
Obidzinski, S.; Doł˙zynska, M.; Kowczyk-Sadowy, M.; Jadwisienczak, K.; Sobczak, P. Energies. 2019, 12, 4687-4691. DOI: https://doi.org/10.3390/en12244687. DOI: https://doi.org/10.3390/en12244687
Gageanu, I.; Persu, C.; Cujbescu, D.; Gheorghe, G.; Voicu, G. Eng. Rural Dev. 2019, 18, 362–367.
Mannu, A.; Garroni, S.; Porras, J.I.; Mele, A. Recycling. Processes. 2020, 8, 366-370. DOI: https://doi.org/10.3390/pr8030366. DOI: https://doi.org/10.3390/pr8030366
Demirbas, A. Energy Convers. Manage. 2009, 50, 923-927. DOI: https://doi.org/10.1016/j.enconman.2008.12.023. DOI: https://doi.org/10.1016/j.enconman.2008.12.023
Misljenovic, N.; Mosbye, J.; Schüller, R.B.; Lekang, O. I.; Bringas, C. S. Ann. Trans. Nordic Rheology Soc. 2014, 22, 211-218.
Misljenovic, N.; Mosbye, J.; Schuller, R.B.; Lekang, O.I.; Salas-Bringas, C. Fuel Process. Technol. 2015,134, 214-222. DOI: https://doi.org/10.1016/j.fuproc.2015.01.037. DOI: https://doi.org/10.1016/j.fuproc.2015.01.037
Emadi, B.; Iroba, K.L.; Tabil, L.G. Appl. Energ. 2018, 198, 312-319. DOI: https://doi.org/10.1016/j.apenergy.2016.12.027. DOI: https://doi.org/10.1016/j.apenergy.2016.12.027
Saletnik, A.; Saletnik, B.; Puchalski, C. Energies. 2021, 14, 6486-6492. DOI: https://doi.org/10.3390/en14206486
Chen, G.; Liu, C.; Ma, W.; Zhang, X.; Li, Y.; Yan, B.; Zhou, W. Biores. Technol. 2014, 166, 500-507. DOI: https://doi.org/10.1016/j.biortech.2014.05.090
Wattana, W.; Phetklung, S.; Jakaew, W.; Chumuthai, S.; Sriam, P.; Chanurai, N. in: International Conference on Alternative Energy in Developing Countries and Emerging Economies 2017, AEDCEE, Bangkok, Thailand.
Wang, Y.; Sun, Y.; Wu, K. BioRes. 2019, 14, 537-553. DOI: https://doi.org/10.15376/biores.14.1.537-553
Samson, R.; Duxbury, P. in: Assessment of pelletized biofuels, 2000, Resource efficient agricultural production Canada. DOI: http://dx.doi.org/10.13140/RG.2.2.20841.70248.
ASTM D3173-03 Standard test method for moisture in the analysis sample of coal and coke. 2008.
Chen, Q.; Swithenbank, J.; Sharifi, V.N. in: Review of biomass and solid recovered fuel (SRF) pelletisation technologies, 2008, EPSRC Supergen bioenergy theme 4 (heat and power), SUWIC, Sheffield University.
Sokhansanj, S.; Cushman, J.; Wright, L. CIGR Electronic Journal. 2003, 5, 1-21.
Burg, P.; Ludín, D.; Rutkowski, K.; Krakowiak-Bal, A.; Trávníček, P.; Zemánek, P.; Turan, J.; Višacki, V. Int. Agrophys. 2016, 30, 261-265. DOI: https://doi.org/10.1515/intag-2015-0082. DOI: https://doi.org/10.1515/intag-2015-0082
Malik, B.; Pirzadah, T.B.; Islam, S. T.; Tahir, I.; Kumar, M.; Rehman, R. in: Agricultural biomass based potential materials. 2015, Springer International Publishing Switzerland K. R. Hakeem et al. (eds.).
Gendek, A.; Aniszewska, M.; Malatak, J.; Velebil, J. Biomass Bioenerg. 2018, 117, 173-179. DOI: https://doi.org/10.1016/j.biombioe.2018.07.025. DOI: https://doi.org/10.1016/j.biombioe.2018.07.025
www.parrinst.com, Bulletin 2811, 1-4, accessed in November 2023.
Gheorghe, D.; Neacsu, A. Rev. Roum. Chim. 2019, 64, 633-639. DOI: https://doi.org/10.33224/rrch%2F2019.64.7.10. DOI: https://doi.org/10.33224/rrch/2019.64.7.10
ASTM D5865, Standard Test Method for Gross Calorific Value of coal and coke, 2013, www.astm.org, accessed in January 2023.
Parr Instrument Company, 6200 Isoperibolic Calorimeter, 2014, http://www.parrinst.com/products/oxygenbomb-calorimeters/6200isoperibolcalorimeter, accesed in February 2023.
Neacsu, A.; Gheorghe, D. Rev. Roum. Chim. 2021, 66, 321-329. DOI: 10.33224/rrch.2021.66.4.02. DOI: https://doi.org/10.29356/jmcs.v66i1.1627
Parr Analytical Methods for Oxygen Bombs No 207M, accessed in January 2023
Onukak, I. E.; Mohammed-Dabo, I.A.; Ameh, A.O.; Okoduwa, I.D.S.I.R.; Fasanya, O.O. Recycling. 2017, 2, 1-19. DOI: https://doi.org/10.3390/recycling2040017. DOI: https://doi.org/10.3390/recycling2040017
Villanueva, M.; Proupin, J.; Rodriguez-Anon, J.A.; Fraga-Grueiro, L.; Salgado, J.; Barros, N. J Therm. Anal. Calorim. 2011, 104, 61–67. DOI: https://doi.org/10.1007/s10973-010-1177-y. DOI: https://doi.org/10.1007/s10973-010-1177-y
Miao, M.; Kong, H.; Deng, B.; Chen, L.; Yang, H.; Lyu, J.; Zhang, M. Fuel Process. Technol. 2020, 208, 106517. DOI: https://doi.org/10.1016/j.fuproc.2020.106517. DOI: https://doi.org/10.1016/j.fuproc.2020.106517
Wang, T.; Yang, Q.; Wang, Y.; Wang, J.; Zhang, Y.; Pan, W.P. Biores. Technol. 2020, 297, 122388. DOI: https://doi.org/10.1016/j.biortech.2019.122388. DOI: https://doi.org/10.1016/j.biortech.2019.122388
Lu, Z.; Chen, X.; Yao, S.; Qin, H.; Zhang, L.; Yao, X.; Yu, Z.; Lu, J. Fuel. 2019, 258, 116150. DOI: https://doi.org/10.1016/j.fuel.2019.116150. DOI: https://doi.org/10.1016/j.fuel.2019.116150
Sadiku, N.A.; Oluyege, A.O.; Sadiku, I.B. Lignocellulose. 2016, 5, 34–49.
Holtmeyer, M.L.; Li, G.; Kumfer, B.M.; Li, S.; Axelbaum, R.L. Energy Fuels. 2013, 27, 7762–7771. DOI: https://doi.org/10.1021/ef4013505. DOI: https://doi.org/10.1021/ef4013505
Ivanova, T.; Muntean, A.; Havrland, B.; Hutla, P. BIO Web of Conferences 10. https://doi.org/10.1051/bioconf/20181002007,Contemporary Research Trends in Agricultural Engineering.2018. DOI: https://doi.org/10.1051/bioconf/20181002006
ASTM D3174-04 Standard test method for ash in the analysis sample of coal and coke from coal. 2003, www.astm.org, accessed January 2023.
ISO 1171:2010 Solid mineral fuels-determination of ash.
Ivanova, T.; Muntean, A.; Titei,V.; Havrland, B.; Kolarikova, M. Agronomy Res. 2015, 13, 311-317.
Vijayanand, C.; Kamaraj, S.; Karthikeyan, S.; Sriramajayam, S. Intl. J. Agric. Sci. 2016, 8, 2124-2127.
Lunguleasa, A.; Dobrev, T.; Fotin, A. Pro Ligno. 2015, 11, 686-691.
Mierzwa-Hersztek, M.; Gondek, K.; Jewiarz, M.; Dziedzic, K. J. Mater. Cycles. 2019, 21, 786-800. DOI: https://doi.org/10.1007/s10163-019-00832-6. DOI: https://doi.org/10.1007/s10163-019-00832-6
Neacsu, A.; Gheorghe, D. J. Mex.Chem.Soc. 2022, 66, 408-420. DOI: https://doi.org/10.29356/jmcs.v66i4.1739. DOI: https://doi.org/10.29356/jmcs.v66i4.1739
Sadaka, S.; Johnson, D.M. Technical Report. 2010, Agriculture and Natural Resources, University of Arkansas System.
Nussbaumer, T.; Good, J. Biomass for Energy and Industry.1998, 10th European Conference and Technology Exhibition, Würzburg (Germany).
Chen, Y.S.; Workman, E.C. Jr. Wood and Fiber Sci. 1990, 22, 378-387.
Minitab Statistical Software https://www.minitab.com/en-us/products/minitab/, accessed in November 2023.
Spîrchez, C.; Lunguleasa, A. Wood Res.2019, 64, 549-556.
Wojcieszak, D.; Przybył, J.; Czajkowski, L.; Majka, J.; Pawłowski, A. Materials. 2022, 15, 2831-2836. DOI: https://doi.org/10.3390/ma15082831
Yunita, L.; Irmaya, A.I. IOP Conf. Ser.: Earth Environ. Sci. 2018, 212, 012079, DOI: https://doi.org/10.1088/1755-1315/212/1/012079. DOI: https://doi.org/10.1088/1755-1315/212/1/012079
Sofyan Munawar, S.; Subiyanto, B. Proc. Environm. Sci. 2014, 20, 336-341. DOI: https://doi.org/10.1016/j.proenv.2014.03.042. DOI: https://doi.org/10.1016/j.proenv.2014.03.042
Akhtar, J.; Imran, M.; Ali, A.M.; Nawaz, Z.; Muhammad, A.; Butt, K.R.; Jillani, M.S.; Naeem, H.A. Energies. 2021, 14, 4218-4231. DOI: https://doi.org/10.3390/en14144218
Chen, W. H.; Lin, B. J.; Lin, Y. Y.; Chu, Y. S.; Show, A.; Ong, H. C.; Chang, J. S.; Ho, S.H.; Culaba, A. B.; Pétrissans, A.; Pétrissans, M. Prog. Energy Combust. Sci. 2021, 82-87. DOI: https://doi.org/10.1016/j.pecs.2020.100887. DOI: https://doi.org/10.1016/j.pecs.2020.100887
Wang, L.; Riva, L.; Skreiberg, O.; Khalil, R.; Bartocci, P.; Yang, Q.; Yang, H.; Wang, X.; Chen, D.; Rudolfsson, M.; Nielsen, H.K. Energy Fuels. 2020,34,15343-15354. DOI: https://doi.org/10.1021/acs.energyfuels.0c02671. DOI: https://doi.org/10.1021/acs.energyfuels.0c02671
Gravalos, I.; Xyradakis, P.; Kateris, D.; Gialamas, T.; Bartzialis, D.; Giannoulis, K. Nat. Resour. 2016, 7, 57-68. DOI: https://doi.org/10.4236/nr.2016.71006. DOI: https://doi.org/10.4236/nr.2016.71006
Tian, X.; Dai, L.; Wang, Y.; Zeng, Z.; Zhang, S.; Jiang, L.; Yang, X.; Yue, L.; Liu, Y.; Ruan, R. Bioresour. Technol. 2020, 297, 122490. DOI: https://doi.org/10.1016/j.biortech.2019.122490. DOI: https://doi.org/10.1016/j.biortech.2019.122490
www.extension.psu.edu/manufacturing-fuel-pellets-from-biomass, accessed in November 2023.
Saracoglu, N.; Gunduz, G. Energy Sources. Part A, 2009, 31, 1708–1718. DOI: https://doi.org/10.1080/15567030802459677. DOI: https://doi.org/10.1080/15567030802459677
Lalak, J.; Martyniak, D.; Kasprzycka, A.; Żurek, G.; Moroń, W.; Chmielewska, M.; Wiącek, D.; Tys, J. Int. Agrophys. 2016, 30, 475-482. DOI: https://doi.org/10.1515/intag-2016-0021. DOI: https://doi.org/10.1515/intag-2016-0021
www.ecostan.com, accessed in November 2023.
Hasan, E.S.; Mashuni, M.J.; Ilmawati, W.; Wati, W.; Sudiana, N. J. Phys.: Conf. Series. 2017, 846, 012022. DOI: https://doi.org/10.1088/1742-6596/846/1/012022
Misljenovic, N.; Bach, Q.V.; Tran, K.Q.; Bringas, C. S.; Skreiberg, O. Energy Fuels. 2014, 28, 2554-2561. DOI: https://doi.org/10.1021/ef4023674. DOI: https://doi.org/10.1021/ef4023674
Shah, K.; Yusop, N. A. K. A.; Rohani, M. Z. M.; Fadil, J. M.; Manaf, N. A.; Hartono, N.A.; Tuyen, B.; Masaki, N.D.; Ahmad, T.; Ramli, A.S. Chem. Eng. Trans. 2021, 89, 127– 132.
Dhyani, V.; Bhaskar, T. Renew. Energy. 2018, 129, 695–716. DOI: https://doi.org/10.1016/j.renene.2017.04.035. DOI: https://doi.org/10.1016/j.renene.2017.04.035
Annamalai, K.; Sweeten, J.M.; Ramalingam, S.C. Trans. Asae.1987, 30, 1205-1208. DOI: https://doi.org/10.13031/2013.30545
Dumitrascu, R.; Lunguleasa, A.; Spirchez, C. Bioresurces. 2018, 13, 6985-7001. DOI: https://doi.org/10.15376/biores.13.3.6985-7001
Muhamad, A.; Farid Nasir, A.; Ab Saman Makhrani, K. Adv. Sci. Lett. 2017, 23, 4184-4187. DOI: https://doi.org/10.1166/asl.2017.8242. DOI: https://doi.org/10.1166/asl.2017.8242
Holubcik, M.; Nosek, R.; Jnadacka, J. Intl. J. Energ. Optim. Energ. 2012, 1, 20-40. DOI: https://doi.org/10.4018/ijeoe.2012040102. DOI: https://doi.org/10.4018/ijeoe.2012040102
Li, Y.; Liu, H. Biomass Bioenergy. 2000, 19, 177–186. DOI: https://doi.org/10.1016/S0961-9534(00)00026-X. DOI: https://doi.org/10.1016/S0961-9534(00)00026-X
Ajith Kumar, T.T.; Mech, N.; Ramesh, S.T.; Gandhimathi, R. J. Cleaner Prod. 2022, 350, 131312. DOI: https://doi.org/10.1016/j.jclepro.2022.131312. DOI: https://doi.org/10.1016/j.jclepro.2022.131312
Greinert, A.; Mrówczy’nska, M.; Grech, R.; Szefner, W. Energies. 2020, 13, 463-468. DOI: https://doi.org/10.3390/en13020463
Zajac, G.; Szyszlak-Bargłowicz, J.; Gołebiowski, W.; Szczepanik, M. Energies. 2018, 11, 2885-2889. DOI: https://doi.org/10.3390/en11112885
Grover, P.D. Proceedings of the International Workshop on Biomass Briquetting. Bankok, april, 1996, http://www.rwedp.org, accessed in November 2023.
Ebeling, J.M.; Jenkins, B.M. ASAE. 1985, 28, 898-902. DOI: https://doi.org/10.13031/2013.32359
Kuokkanen, M.; Kuokkanen, T.; Pohjonen, V. 2009, Energ. Res. University of Oulu. Proced. of the EnePro Conf. June 3rd, 2009, University of Oulu, Finland. Kalevaprint, Oulu, ISBN 978-951-42-9154-8. 36-40.
Lesego, M.; Mohlala, M.; Bodunrin, O.; Ayotunde, A.; Awosusi, M.; Daramola, O.; Nonhlanhla, P.; Cele, P.; Olubambi, A. Alexandria Eng. J. 2016, 55, 3025-3036. DOI: https://doi.org/10.1016/j.aej.2016.05.014. DOI: https://doi.org/10.1016/j.aej.2016.05.014
Demirbas, A. Energy Convers. Manage. 2001, 42, 183–188. DOI: https://doi.org/10.1016/S0196-8904(00)00050-9. DOI: https://doi.org/10.1016/S0196-8904(00)00050-9
Thabout, M.; Pagketanang, T.; Panyacharoen, K.; Mongkuta, P.; Wongwicha, P. Energy Procedia. 2015, 79, 890-895. DOI: https://doi.org/10.1016/j.egypro.2015.11.583
Khan, A.A.; De Jong, W.; Jansens, P.J.; Spliethoff, H. Fuel Process. Technol. 2009, 90, 21–50. DOI: https://doi.org/10.1016/J.FUPROC.2008.07.012. DOI: https://doi.org/10.1016/j.fuproc.2008.07.012
Maj, G.; Szyszlak-Bargłowicz, J.; Zajac, G.; Słowik, T.; Krzaczek, P.; Piekarski, W. Energies. 2019, 12, 4383-4390. DOI: https://doi.org/10.3390/en12224383
Loo, S.; Koppejan, J. The Handbook of Biomass Combustion and Co-firing, 2008, 134-173. https://www.researchgate.net/publication/237079687, accessed in November 2023.
Stahl, M.; Berghel, J.; Granstrom, K. BioResources. 2016, 11, 3373-3383. DOI: https://doi.org/10.15376/biores.11.2.3373-3383
Abbot, P.G.; Lowore, J. D. For. Ecol. Management. 1999, 11, 111–121. DOI: https://doi.org/10.1016/S0378-1127(98)00516-7


Downloads
Published
Issue
Section
License
Copyright (c) 2024 Daniela Gheorghe, Ana Neacsu

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
