The Influence of Additives Upon the Energetic Parameters and Physicochemical Properties of Environmentally Friendly Biomass Pellets

Authors

  • Daniela Gheorghe 0000-0002-3835-7318
  • Ana Neacsu Institute of Physical Chemistry Ilie Murgulescu

DOI:

https://doi.org/10.29356/jmcs.v68i3.2032

Keywords:

Biomass pellets, raw materials, combustion calorimetry, additives dosage

Abstract

Abstract. Solid biomass fuels are economical and practical renewable energy sources. Exploitation of agricultural biomass as a fuel offers considerable advantages in different domains as energy supply as far as the climate is involved. In this study we intended to investigate the feasibility of alternative agricultural residues of grape pomace and corn cob pellets with addition of sawdust, starch, and waste rapeseed oil and to examine how these additives affects the calorific powers and pellets physical properties. Sawdust, starch, and waste rapeseed oil addition was 10 %. Pellets were produced by a manual single pellet press. The calorific powers of the biomass samples were experimentally determined using an oxygen bomb calorimeter (model 6200 adiabatic calorimeter Parr Instruments). The results show that waste rapeseed oil addition significantly increases the calorific powers in grape pomace and corn cob pellets. The highest calorific value was obtained for the grape pomace pellets containing 10 % waste rapeseed oil, 22.14 MJ/kg, compared to grape pomace control pellets, of 21.35 MJ/kg. The calorific values of corn cob control pellets were also increased when adding 10 % waste rapeseed oil, from 17.29 MJ/kg to 19.76 MJ/kg.

The results obtained in this work, related to calorific powers, moisture, ash, volatile, sulphur and nitrogen content, fixed carbon, bulk density, fuel value index, energy density and combustion efficiency, revealed that depending on additives used and their dosage, an acceptable fuel pellet could be produced.

 

Resumen. Los combustibles de biomasa sólida son fuentes de energía renovables económicas y prácticas. Al tomar en consideración el clima, la explotación de la biomasa proveniente de la agricultura como combustible ofrece ventajas considerables como fuente de energía en diferentes ámbitos. En este trabajo estudiamos la factibilidad utilizar residuos agrícolas de pastillas de orujo de uva y elote adicionándole aserrín, almidón y desperdicio de canola para analizar como estos aditivos afectan el potencial calórico y las propiedades físicas de las pastillas. El aserrín, almidón y canola se agregaron al 10%. Las pastillas se obtuvieron en una pastilladora manual. Experimentalmente, las potencias calóricas de las muestras de biomasa se determinaron con una bomba calorimétrica de oxígeno (calorímetro adiabático Parr Instruments modelo 6200). Los resultados muestran que la adición de canola incrementa significativamente la potencia calórica de las pastillas de orujo y elote. El valor calórico más alto se obtuvo con las pastillas de orujo a las que se les adicionó un 10% de canola, y fue de 22.14 MJ/kg, comparado con el control de pastillas de orujo que tiene un valor de 21.35 MJ/kg. Las potencias calóricas de las pastillas de control de elote también se incrementaron al adicionar 10% de canola, pasando de 17.29 MJ/kg a 19.76 MJ/kg.

Downloads

Download data is not yet available.

References

Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. Renew. Sust. Energy Rev. 2011, 15, 2262-2289. DOI: https://doi.org/10.1016/j.rser.2011.02.015. DOI: https://doi.org/10.1016/j.rser.2011.02.015

https://market-entry-romania.blogspot.ro/2017/02/waste-to-energy-potential-in-romania.html, accesed in January 2023.

Radu, L. in: The agricultural crops production of Romania, Ovidius University Annals, Economic Sciences Series, 2018, XVIII.

Smaga, M.; Wielgosiński, G.; Kochański, A.; Korczak, K. Acta Innovations. 2018, 26, 81-92. DOI: 10.32933/ActaInnovations.26.9. DOI: https://doi.org/10.32933/ActaInnovations.26.9

Lehtikangas, P. Biomass Bioenerg. 2001, 20, 301-360. DOI: https://doi.org/10.1016/S0961-9534(00)00092-1. DOI: https://doi.org/10.1016/S0961-9534(00)00092-1

Grover, V.; Hogland, W. in: Recovering energy from waste-various aspects, Science Publishers, Inc Enfield (NH), USA, Plymouth, UK, 338 pages, ISBN 1-57808-200-5.

Malat’ák, J.; Velebil, J.; Malat’áková, J.; Passian, L.; Bradna, J.; Tamelová, B.; Gendek, A.; Aniszewska, M. Materials. 2022, 15, 7288-7302. DOI: https://doi.org/10.3390/ma15207288

Spinei, M.; Oroian, M. Foods. 2021, 10, 867-872. DOI: https://doi.org/10.3390/foods10040867

Scoma, A.; Rebecchi, S.; Bertin, L.; Fava, F. Crit. Rev. Biotechnol. 2016, 36, 175-189. DOI: https://doi.org/10.3109/07388551.2014.947238. DOI: https://doi.org/10.3109/07388551.2014.947238

www.statista.com/statistic/Romania-production -of- grapes/, accesed in February 2023.

Chowdhary, P.; Gupta, A.; Gnansounou, E.; Pandey, A.; Chaturnedi, P. Environ. Pollut. 2021, 278, 116796. DOI: https://doi.org/10.1016/j.envpol.2021.116796. DOI: https://doi.org/10.1016/j.envpol.2021.116796

Golub, M. in: Agricultural mechanization in Asia, Africa and Latin America. 2012, 43, 72-79.

Kim, S.; Dale, B.E. Biomass Bioenerg. 2004, 26, 361-375. DOI: https://doi.org/10.1016/j.biombioe.2003.08.002. DOI: https://doi.org/10.1016/j.biombioe.2003.08.002

Burg, P.; Masan, V.; Ludin, D. Eng. for Rural Development. 2017, 1333-1338.

Jindaporn, J.; Charoenporn, L. Energ. Procedia. 2017, 138, 1147-1152. DOI: https://doi.org/10.1016/j.egypro.2017.10.223. DOI: https://doi.org/10.1016/j.egypro.2017.10.223

Tarasov, D.; Shahi, C.; Leitch, M. ISRN Forestry, 2013, 1-6, Hindawi Publishing Corporation, Article ID 876939. DOI: https://doi.org/10.1155/2013/876939

Gageanu, I.; Cujbescu, D.; Persu, C.; Voicu, G. Eng. Rural Dev. 2018, 17, 1632–1638.

Obernberger, I.; Thek, G. Biomass Bioenergy. 2004, 27, 653−669. DOI: https://doi.org/10.1016/j.biombioe.2003.07.006. DOI: https://doi.org/10.1016/j.biombioe.2003.07.006

Nielsen, N. P. K. Ph.D. Thesis, University of Copenhagen, Copenhagen, Denmark, 2009.

Stahl, M.; Berghel, J.; Frodeson, S.; Granström, K.; Renström, R. Energy Fuels. 2012, 26, 1937−1945. DOI: https://doi.org/10.1021/ef201968r

Demir, V. G.; Yaman, P.; Efe, M.O.; Yuksel, H., ICOEST, International Conference on Environmental Science and Technology, 28 september-2 october 2016.

Falemara, B.C.; Joshua, V.I.; Aina, O.O.; Nuhu, R.D. Recycling. 2018, 3, 37-42. DOI: https://doi.org/10.3390/recycling3030037. DOI: https://doi.org/10.3390/recycling3030037

Yuliah, Y.; Kartawidjaja, M.; Suryaningsih, S.; Ulfi, K. International Conference on Biomass: Technology, Application, and Sustainable Development IOP Publishing IOP Conf. Series: Earth and Environmental Science. 2017, 65, 1-8. DOI: https://doi.org/10.1088/1755-1315/65/1/012021

Rasid, R. A.; Elamparithy, G.; Ismail, M.; Harun, N. J. Chem. Eng. Ind. Biotech. 2021, 07, 1 – 6.

Obidzinski, S.; Piekut, J.; Dec, D. Renew. Energy. 2016, 87, 289–297. DOI: https://doi.org/10.1016/j.renene.2015.10.025. DOI: https://doi.org/10.1016/j.renene.2015.10.025

Obidzinski, S.; Doł˙zynska, M.; Kowczyk-Sadowy, M.; Jadwisienczak, K.; Sobczak, P. Energies. 2019, 12, 4687-4691. DOI: https://doi.org/10.3390/en12244687. DOI: https://doi.org/10.3390/en12244687

Gageanu, I.; Persu, C.; Cujbescu, D.; Gheorghe, G.; Voicu, G. Eng. Rural Dev. 2019, 18, 362–367.

Mannu, A.; Garroni, S.; Porras, J.I.; Mele, A. Recycling. Processes. 2020, 8, 366-370. DOI: https://doi.org/10.3390/pr8030366. DOI: https://doi.org/10.3390/pr8030366

Demirbas, A. Energy Convers. Manage. 2009, 50, 923-927. DOI: https://doi.org/10.1016/j.enconman.2008.12.023. DOI: https://doi.org/10.1016/j.enconman.2008.12.023

Misljenovic, N.; Mosbye, J.; Schüller, R.B.; Lekang, O. I.; Bringas, C. S. Ann. Trans. Nordic Rheology Soc. 2014, 22, 211-218.

Misljenovic, N.; Mosbye, J.; Schuller, R.B.; Lekang, O.I.; Salas-Bringas, C. Fuel Process. Technol. 2015,134, 214-222. DOI: https://doi.org/10.1016/j.fuproc.2015.01.037. DOI: https://doi.org/10.1016/j.fuproc.2015.01.037

Emadi, B.; Iroba, K.L.; Tabil, L.G. Appl. Energ. 2018, 198, 312-319. DOI: https://doi.org/10.1016/j.apenergy.2016.12.027. DOI: https://doi.org/10.1016/j.apenergy.2016.12.027

Saletnik, A.; Saletnik, B.; Puchalski, C. Energies. 2021, 14, 6486-6492. DOI: https://doi.org/10.3390/en14206486

Chen, G.; Liu, C.; Ma, W.; Zhang, X.; Li, Y.; Yan, B.; Zhou, W. Biores. Technol. 2014, 166, 500-507. DOI: https://doi.org/10.1016/j.biortech.2014.05.090

Wattana, W.; Phetklung, S.; Jakaew, W.; Chumuthai, S.; Sriam, P.; Chanurai, N. in: International Conference on Alternative Energy in Developing Countries and Emerging Economies 2017, AEDCEE, Bangkok, Thailand.

Wang, Y.; Sun, Y.; Wu, K. BioRes. 2019, 14, 537-553. DOI: https://doi.org/10.15376/biores.14.1.537-553

Samson, R.; Duxbury, P. in: Assessment of pelletized biofuels, 2000, Resource efficient agricultural production Canada. DOI: http://dx.doi.org/10.13140/RG.2.2.20841.70248.

ASTM D3173-03 Standard test method for moisture in the analysis sample of coal and coke. 2008.

Chen, Q.; Swithenbank, J.; Sharifi, V.N. in: Review of biomass and solid recovered fuel (SRF) pelletisation technologies, 2008, EPSRC Supergen bioenergy theme 4 (heat and power), SUWIC, Sheffield University.

Sokhansanj, S.; Cushman, J.; Wright, L. CIGR Electronic Journal. 2003, 5, 1-21.

Burg, P.; Ludín, D.; Rutkowski, K.; Krakowiak-Bal, A.; Trávníček, P.; Zemánek, P.; Turan, J.; Višacki, V. Int. Agrophys. 2016, 30, 261-265. DOI: https://doi.org/10.1515/intag-2015-0082. DOI: https://doi.org/10.1515/intag-2015-0082

Malik, B.; Pirzadah, T.B.; Islam, S. T.; Tahir, I.; Kumar, M.; Rehman, R. in: Agricultural biomass based potential materials. 2015, Springer International Publishing Switzerland K. R. Hakeem et al. (eds.).

Gendek, A.; Aniszewska, M.; Malatak, J.; Velebil, J. Biomass Bioenerg. 2018, 117, 173-179. DOI: https://doi.org/10.1016/j.biombioe.2018.07.025. DOI: https://doi.org/10.1016/j.biombioe.2018.07.025

www.parrinst.com, Bulletin 2811, 1-4, accessed in November 2023.

Gheorghe, D.; Neacsu, A. Rev. Roum. Chim. 2019, 64, 633-639. DOI: https://doi.org/10.33224/rrch%2F2019.64.7.10. DOI: https://doi.org/10.33224/rrch/2019.64.7.10

ASTM D5865, Standard Test Method for Gross Calorific Value of coal and coke, 2013, www.astm.org, accessed in January 2023.

Parr Instrument Company, 6200 Isoperibolic Calorimeter, 2014, http://www.parrinst.com/products/oxygenbomb-calorimeters/6200isoperibolcalorimeter, accesed in February 2023.

Neacsu, A.; Gheorghe, D. Rev. Roum. Chim. 2021, 66, 321-329. DOI: 10.33224/rrch.2021.66.4.02. DOI: https://doi.org/10.29356/jmcs.v66i1.1627

Parr Analytical Methods for Oxygen Bombs No 207M, accessed in January 2023

Onukak, I. E.; Mohammed-Dabo, I.A.; Ameh, A.O.; Okoduwa, I.D.S.I.R.; Fasanya, O.O. Recycling. 2017, 2, 1-19. DOI: https://doi.org/10.3390/recycling2040017. DOI: https://doi.org/10.3390/recycling2040017

Villanueva, M.; Proupin, J.; Rodriguez-Anon, J.A.; Fraga-Grueiro, L.; Salgado, J.; Barros, N. J Therm. Anal. Calorim. 2011, 104, 61–67. DOI: https://doi.org/10.1007/s10973-010-1177-y. DOI: https://doi.org/10.1007/s10973-010-1177-y

Miao, M.; Kong, H.; Deng, B.; Chen, L.; Yang, H.; Lyu, J.; Zhang, M. Fuel Process. Technol. 2020, 208, 106517. DOI: https://doi.org/10.1016/j.fuproc.2020.106517. DOI: https://doi.org/10.1016/j.fuproc.2020.106517

Wang, T.; Yang, Q.; Wang, Y.; Wang, J.; Zhang, Y.; Pan, W.P. Biores. Technol. 2020, 297, 122388. DOI: https://doi.org/10.1016/j.biortech.2019.122388. DOI: https://doi.org/10.1016/j.biortech.2019.122388

Lu, Z.; Chen, X.; Yao, S.; Qin, H.; Zhang, L.; Yao, X.; Yu, Z.; Lu, J. Fuel. 2019, 258, 116150. DOI: https://doi.org/10.1016/j.fuel.2019.116150. DOI: https://doi.org/10.1016/j.fuel.2019.116150

Sadiku, N.A.; Oluyege, A.O.; Sadiku, I.B. Lignocellulose. 2016, 5, 34–49.

Holtmeyer, M.L.; Li, G.; Kumfer, B.M.; Li, S.; Axelbaum, R.L. Energy Fuels. 2013, 27, 7762–7771. DOI: https://doi.org/10.1021/ef4013505. DOI: https://doi.org/10.1021/ef4013505

Ivanova, T.; Muntean, A.; Havrland, B.; Hutla, P. BIO Web of Conferences 10. https://doi.org/10.1051/bioconf/20181002007,Contemporary Research Trends in Agricultural Engineering.2018. DOI: https://doi.org/10.1051/bioconf/20181002006

ASTM D3174-04 Standard test method for ash in the analysis sample of coal and coke from coal. 2003, www.astm.org, accessed January 2023.

ISO 1171:2010 Solid mineral fuels-determination of ash.

Ivanova, T.; Muntean, A.; Titei,V.; Havrland, B.; Kolarikova, M. Agronomy Res. 2015, 13, 311-317.

Vijayanand, C.; Kamaraj, S.; Karthikeyan, S.; Sriramajayam, S. Intl. J. Agric. Sci. 2016, 8, 2124-2127.

Lunguleasa, A.; Dobrev, T.; Fotin, A. Pro Ligno. 2015, 11, 686-691.

Mierzwa-Hersztek, M.; Gondek, K.; Jewiarz, M.; Dziedzic, K. J. Mater. Cycles. 2019, 21, 786-800. DOI: https://doi.org/10.1007/s10163-019-00832-6. DOI: https://doi.org/10.1007/s10163-019-00832-6

Neacsu, A.; Gheorghe, D. J. Mex.Chem.Soc. 2022, 66, 408-420. DOI: https://doi.org/10.29356/jmcs.v66i4.1739. DOI: https://doi.org/10.29356/jmcs.v66i4.1739

Sadaka, S.; Johnson, D.M. Technical Report. 2010, Agriculture and Natural Resources, University of Arkansas System.

Nussbaumer, T.; Good, J. Biomass for Energy and Industry.1998, 10th European Conference and Technology Exhibition, Würzburg (Germany).

Chen, Y.S.; Workman, E.C. Jr. Wood and Fiber Sci. 1990, 22, 378-387.

Minitab Statistical Software https://www.minitab.com/en-us/products/minitab/, accessed in November 2023.

Spîrchez, C.; Lunguleasa, A. Wood Res.2019, 64, 549-556.

Wojcieszak, D.; Przybył, J.; Czajkowski, L.; Majka, J.; Pawłowski, A. Materials. 2022, 15, 2831-2836. DOI: https://doi.org/10.3390/ma15082831

Yunita, L.; Irmaya, A.I. IOP Conf. Ser.: Earth Environ. Sci. 2018, 212, 012079, DOI: https://doi.org/10.1088/1755-1315/212/1/012079. DOI: https://doi.org/10.1088/1755-1315/212/1/012079

Sofyan Munawar, S.; Subiyanto, B. Proc. Environm. Sci. 2014, 20, 336-341. DOI: https://doi.org/10.1016/j.proenv.2014.03.042. DOI: https://doi.org/10.1016/j.proenv.2014.03.042

Akhtar, J.; Imran, M.; Ali, A.M.; Nawaz, Z.; Muhammad, A.; Butt, K.R.; Jillani, M.S.; Naeem, H.A. Energies. 2021, 14, 4218-4231. DOI: https://doi.org/10.3390/en14144218

Chen, W. H.; Lin, B. J.; Lin, Y. Y.; Chu, Y. S.; Show, A.; Ong, H. C.; Chang, J. S.; Ho, S.H.; Culaba, A. B.; Pétrissans, A.; Pétrissans, M. Prog. Energy Combust. Sci. 2021, 82-87. DOI: https://doi.org/10.1016/j.pecs.2020.100887. DOI: https://doi.org/10.1016/j.pecs.2020.100887

Wang, L.; Riva, L.; Skreiberg, O.; Khalil, R.; Bartocci, P.; Yang, Q.; Yang, H.; Wang, X.; Chen, D.; Rudolfsson, M.; Nielsen, H.K. Energy Fuels. 2020,34,15343-15354. DOI: https://doi.org/10.1021/acs.energyfuels.0c02671. DOI: https://doi.org/10.1021/acs.energyfuels.0c02671

Gravalos, I.; Xyradakis, P.; Kateris, D.; Gialamas, T.; Bartzialis, D.; Giannoulis, K. Nat. Resour. 2016, 7, 57-68. DOI: https://doi.org/10.4236/nr.2016.71006. DOI: https://doi.org/10.4236/nr.2016.71006

Tian, X.; Dai, L.; Wang, Y.; Zeng, Z.; Zhang, S.; Jiang, L.; Yang, X.; Yue, L.; Liu, Y.; Ruan, R. Bioresour. Technol. 2020, 297, 122490. DOI: https://doi.org/10.1016/j.biortech.2019.122490. DOI: https://doi.org/10.1016/j.biortech.2019.122490

www.extension.psu.edu/manufacturing-fuel-pellets-from-biomass, accessed in November 2023.

Saracoglu, N.; Gunduz, G. Energy Sources. Part A, 2009, 31, 1708–1718. DOI: https://doi.org/10.1080/15567030802459677. DOI: https://doi.org/10.1080/15567030802459677

Lalak, J.; Martyniak, D.; Kasprzycka, A.; Żurek, G.; Moroń, W.; Chmielewska, M.; Wiącek, D.; Tys, J. Int. Agrophys. 2016, 30, 475-482. DOI: https://doi.org/10.1515/intag-2016-0021. DOI: https://doi.org/10.1515/intag-2016-0021

www.ecostan.com, accessed in November 2023.

Hasan, E.S.; Mashuni, M.J.; Ilmawati, W.; Wati, W.; Sudiana, N. J. Phys.: Conf. Series. 2017, 846, 012022. DOI: https://doi.org/10.1088/1742-6596/846/1/012022

Misljenovic, N.; Bach, Q.V.; Tran, K.Q.; Bringas, C. S.; Skreiberg, O. Energy Fuels. 2014, 28, 2554-2561. DOI: https://doi.org/10.1021/ef4023674. DOI: https://doi.org/10.1021/ef4023674

Shah, K.; Yusop, N. A. K. A.; Rohani, M. Z. M.; Fadil, J. M.; Manaf, N. A.; Hartono, N.A.; Tuyen, B.; Masaki, N.D.; Ahmad, T.; Ramli, A.S. Chem. Eng. Trans. 2021, 89, 127– 132.

Dhyani, V.; Bhaskar, T. Renew. Energy. 2018, 129, 695–716. DOI: https://doi.org/10.1016/j.renene.2017.04.035. DOI: https://doi.org/10.1016/j.renene.2017.04.035

Annamalai, K.; Sweeten, J.M.; Ramalingam, S.C. Trans. Asae.1987, 30, 1205-1208. DOI: https://doi.org/10.13031/2013.30545

Dumitrascu, R.; Lunguleasa, A.; Spirchez, C. Bioresurces. 2018, 13, 6985-7001. DOI: https://doi.org/10.15376/biores.13.3.6985-7001

Muhamad, A.; Farid Nasir, A.; Ab Saman Makhrani, K. Adv. Sci. Lett. 2017, 23, 4184-4187. DOI: https://doi.org/10.1166/asl.2017.8242. DOI: https://doi.org/10.1166/asl.2017.8242

Holubcik, M.; Nosek, R.; Jnadacka, J. Intl. J. Energ. Optim. Energ. 2012, 1, 20-40. DOI: https://doi.org/10.4018/ijeoe.2012040102. DOI: https://doi.org/10.4018/ijeoe.2012040102

Li, Y.; Liu, H. Biomass Bioenergy. 2000, 19, 177–186. DOI: https://doi.org/10.1016/S0961-9534(00)00026-X. DOI: https://doi.org/10.1016/S0961-9534(00)00026-X

Ajith Kumar, T.T.; Mech, N.; Ramesh, S.T.; Gandhimathi, R. J. Cleaner Prod. 2022, 350, 131312. DOI: https://doi.org/10.1016/j.jclepro.2022.131312. DOI: https://doi.org/10.1016/j.jclepro.2022.131312

Greinert, A.; Mrówczy’nska, M.; Grech, R.; Szefner, W. Energies. 2020, 13, 463-468. DOI: https://doi.org/10.3390/en13020463

Zajac, G.; Szyszlak-Bargłowicz, J.; Gołebiowski, W.; Szczepanik, M. Energies. 2018, 11, 2885-2889. DOI: https://doi.org/10.3390/en11112885

Grover, P.D. Proceedings of the International Workshop on Biomass Briquetting. Bankok, april, 1996, http://www.rwedp.org, accessed in November 2023.

Ebeling, J.M.; Jenkins, B.M. ASAE. 1985, 28, 898-902. DOI: https://doi.org/10.13031/2013.32359

Kuokkanen, M.; Kuokkanen, T.; Pohjonen, V. 2009, Energ. Res. University of Oulu. Proced. of the EnePro Conf. June 3rd, 2009, University of Oulu, Finland. Kalevaprint, Oulu, ISBN 978-951-42-9154-8. 36-40.

Lesego, M.; Mohlala, M.; Bodunrin, O.; Ayotunde, A.; Awosusi, M.; Daramola, O.; Nonhlanhla, P.; Cele, P.; Olubambi, A. Alexandria Eng. J. 2016, 55, 3025-3036. DOI: https://doi.org/10.1016/j.aej.2016.05.014. DOI: https://doi.org/10.1016/j.aej.2016.05.014

Demirbas, A. Energy Convers. Manage. 2001, 42, 183–188. DOI: https://doi.org/10.1016/S0196-8904(00)00050-9. DOI: https://doi.org/10.1016/S0196-8904(00)00050-9

Thabout, M.; Pagketanang, T.; Panyacharoen, K.; Mongkuta, P.; Wongwicha, P. Energy Procedia. 2015, 79, 890-895. DOI: https://doi.org/10.1016/j.egypro.2015.11.583

Khan, A.A.; De Jong, W.; Jansens, P.J.; Spliethoff, H. Fuel Process. Technol. 2009, 90, 21–50. DOI: https://doi.org/10.1016/J.FUPROC.2008.07.012. DOI: https://doi.org/10.1016/j.fuproc.2008.07.012

Maj, G.; Szyszlak-Bargłowicz, J.; Zajac, G.; Słowik, T.; Krzaczek, P.; Piekarski, W. Energies. 2019, 12, 4383-4390. DOI: https://doi.org/10.3390/en12224383

Loo, S.; Koppejan, J. The Handbook of Biomass Combustion and Co-firing, 2008, 134-173. https://www.researchgate.net/publication/237079687, accessed in November 2023.

Stahl, M.; Berghel, J.; Granstrom, K. BioResources. 2016, 11, 3373-3383. DOI: https://doi.org/10.15376/biores.11.2.3373-3383

Abbot, P.G.; Lowore, J. D. For. Ecol. Management. 1999, 11, 111–121. DOI: https://doi.org/10.1016/S0378-1127(98)00516-7

×

Downloads

Published

2024-04-23

Issue

Section

Regular Articles
x

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...