Computational Designing of Low Energy Gap Small Molecule Acceptors for Organic Solar Cells
DOI:
https://doi.org/10.29356/jmcs.v61i4.461Keywords:
Small molecule acceptors, low band gap, organic solar cell, DFTAbstract
In this study, effort is done to design a series of narrowband-gap small molecule acceptors for organic solar cells. We have predicated the electronic and optical properties using theoretical methods. Results show that the orbital spatial distribution, HOMO/LUMO energy levels, band gap and optical properties can be systematically changedby modification of terminal acceptor units and conjugated system. Most of the acceptors show low energy gaps reveal thermodynamical more stability. Conjugated system help to tune the electronic properties and decrease the band gap of small molecules. Finally, we have identified potential terminal acceptor groups for proficient organic solar cell materials.Downloads
References
Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913-915. http://dx.doi.org/doi:http://dx.doi.org/10.1063/1.98799 DOI: https://doi.org/10.1063/1.98799
Burroughes, J. H., et al. Nature. 1990, 347, 539-541. http://dx.doi.org/10.1038/347539a0. DOI: https://doi.org/10.1038/347539a0
Sariciftci, N. S., et al. Science. 1992, 258, 1474-1476. http://dx.doi.org/10.1126/science.258.5087.1474 DOI: https://doi.org/10.1126/science.258.5087.1474
Carsten, D.; Vladimir, D. Rep. Prog. Phys. 2010, 73, 096401. http://stacks.iop.org/0034-4885/73/i=9/a=096401. DOI: https://doi.org/10.1088/0034-4885/73/9/096401
Wurfel, U., et al. Nat. Commun. 2015, 6, http://dx.doi.org/10.1038/ncomms7951 DOI: https://doi.org/10.1038/ncomms7951
Fleischli, F. D., et al. J. Mater. Chem. C. 2015, 3, 2065-2071. http://dx.doi.org/10.1039/C4TC02279C. DOI: https://doi.org/10.1039/C4TC02279C
Chen, Y.; Wan, X.; Long, G. Acc. Chem. Res. 2013, 46, 2645-2655. http://dx.doi.org/10.1021/ar400088c. DOI: https://doi.org/10.1021/ar400088c
Roncali, J.; Leriche, P.; Blanchard, P. Adv. Mater. 2014, 26, 3821-3838. http://dx.doi.org/10.1002/adma.201305999. DOI: https://doi.org/10.1002/adma.201305999
Li, Y., et al. Energy Environ. Sci. 2010, 3, 1427-1436. http://dx.doi.org/10.1039/C003946B DOI: https://doi.org/10.1039/c003946b
Ni, W., et al. Chem. Commun. 2015, 51, 4936-4950. http://dx.doi.org/10.1039/C4CC09758K DOI: https://doi.org/10.1039/C4CC09758K
Zhang, F., et al. J. Mater. Chem. 2011, 21, 17590-17600. http://dx.doi.org/10.1007/s00894-012-1719-2. DOI: https://doi.org/10.1039/c1jm12801a
Nielsen, C. B., et al. Acc. Chem. Res. 2015, 48, 2803-2812. http://dx.doi.org/10.1021/acs.accounts.5b00199 DOI: https://doi.org/10.1021/acs.accounts.5b00199
MURALI, M. G., et al. J. Chem. Sci. 2013, 125, 247-257. http://dx.doi.org/10.1007/s12039-013-0377-y. DOI: https://doi.org/10.1007/s12039-013-0377-y
Shin, S. A., et al. Synth. Met. 2013, 172, 54-62. http://dx.doi.org/http://doi.org/10.1016/j.synthmet.2013.04.004. DOI: https://doi.org/10.1016/j.synthmet.2013.04.004
Tamilavan, V., et al. Polymer. 2013, 54, 6125-6132. http://dx.doi.org/http://doi.org/10.1016/j.polymer.2013.09.012. DOI: https://doi.org/10.1016/j.polymer.2013.09.012
Wang, T.-L., et al. J Polym. Res. 2013, 20, 213. http://dx.doi.org/10.1007/s10965-013-0213-6. DOI: https://doi.org/10.1007/s10965-013-0213-6
Ozyurt, F., et al. J Solid State Electr. 2008, 14, 279. http://dx.doi.org/10.1007/s10008-008-0750-9. DOI: https://doi.org/10.1007/s10008-008-0750-9
Celebi, S., et al. Electrochim. Acta. 2010, 55, 2373-2376. http://dx.doi.org/http://doi.org/10.1016/j.electacta.2009.12.010. DOI: https://doi.org/10.1016/j.electacta.2009.12.010
Pamuk, M., et al. Polymer. 2010, 51, 62-68. http://dx.doi.org/http://doi.org/10.1016/j.polymer.2009.11.009. DOI: https://doi.org/10.1016/j.polymer.2009.11.009
Tarkuc, S., et al. Eur. Polym. J. 2010, 46, 2199-2205. http://dx.doi.org/http://doi.org/10.1016/j.eurpolymj.2010.08.002. DOI: https://doi.org/10.1016/j.eurpolymj.2010.08.002
Esmer, E. N., et al. Mater. Chem. Phys.2011, 131, 519-524. http://dx.doi.org/http://doi.org/10.1016/j.matchemphys.2011.10.014. DOI: https://doi.org/10.1016/j.matchemphys.2011.10.014
Hellström, S., et al. Org. Electron.2011, 12, 1406-1413. http://dx.doi.org/http://doi.org/10.1016/j.orgel.2011.05.008 DOI: https://doi.org/10.1016/j.orgel.2011.05.008
Sendur, M., et al. J Polym. Sci. Pol. Chem. 2011, 49, 4065-4070. http://dx.doi.org/10.1002/pola.24849. DOI: https://doi.org/10.1002/pola.24849
Ozdemir, S., et al. J. Mater. Chem. 2012, 22, 4687-4694. http://dx.doi.org/10.1039/C2JM16171K. DOI: https://doi.org/10.1039/c2jm16171k
Carbas, B. B., et al. J. Electroanal. Chem. 2012, 677–680, 9-14. http://dx.doi.org/http://doi.org/10.1016/j.jelechem.2012.05.005 DOI: https://doi.org/10.1016/j.jelechem.2012.05.005
Kivrak, A., et al. React. Funct. Polym. 2012, 72, 613-620. http://dx.doi.org/http://doi.org/10.1016/j.reactfunctpolym.2012.06.007. DOI: https://doi.org/10.1016/j.reactfunctpolym.2012.06.007
Cuesta, V., et al. J. Mater. Chem. A. 2017, 5, 1057-1065. http://dx-.doi.org/10.1039/C6TA09408B
Irfan, A., et al. Comptes Rendus Chimie. 2015, 18, 1289-296 http://dx.doi.org/http://dx.doi.org/10.1016/j.crci.2015.05.020. DOI: https://doi.org/10.1016/j.crci.2015.05.020
Chaudhry, A., et al. J Mol. Model. 2014, 20, 1-11. http://dx.doi.org/10.1007/s00894-014-2547-3. DOI: https://doi.org/10.1007/s00894-014-2547-3
Zhang, J., et al. J Mol. Model. 2013, 19, 1597-1604. http://dx.doi.org/10.1007/s00894-012-1719-2. DOI: https://doi.org/10.1007/s00894-012-1719-2
Chaudhry, A. R., et al. J Mol. Model. 2015, 21, 1-16. 10.1007/s00894-015-2743-9
Chaudhry, A. R., et al. J Mol. Model. 2016, 22, 1-13. http://dx.doi.org/10.1007/s00894-016-3121-y DOI: https://doi.org/10.1007/s00894-016-3121-y
Irfan, A., et al. Optik. 2016, 127, 10148-10157. http://dx.doi.org/http://dx.doi.org/10.1016/j.ijleo.2016.08.007 DOI: https://doi.org/10.1016/j.ijleo.2016.08.007
Irfan, A. Optik. 2014, 125, 4825-4830. http://dx.doi.org/http://dx.doi.org/10.1016/j.ijleo.2014.04.050. DOI: https://doi.org/10.1016/j.ijleo.2014.04.050
Sánchez-Carrera, R. S., et al. J. Phys. Chem. B. 2006, 110, 18904-18911. http://dx.doi.org/10.1021/jp057462p. DOI: https://doi.org/10.1021/jp057462p
Irfan, A.; Al-Sehemi, A. G. J. Saudi. Chem. Soc. 2015, 19, 318-321. http://dx.doi.org/http://dx.doi.org/10.1016/j.jscs.2012.03.005. DOI: https://doi.org/10.1016/j.jscs.2012.03.005
Zhu, R., et al. Comput. Theor. Chem. 2016, 1078, 16-22. http://dx-.doi.org/http://dx.doi.org/10.1016/j.comptc.2015.12.017. DOI: https://doi.org/10.1016/j.comptc.2015.12.017
Cvejn, D., et al. Dyes and Pigments. 2016, 124, 101-109. http://
dx.doi.org/http://dx.doi.org/10.1016/j.dyepig.2015.09.012. DOI: https://doi.org/10.1016/j.dyepig.2015.09.012
Irfan, A., et al. Optik. 2016, http://dx.doi.org/10.1016/j.ijleo.2016.12.023
Preat, J.; Jacquemin, D.; Perpète, E. A. Environ. Sci. Technol. 2010, 44, 5666-5671. http://dx.doi.org/10.1021/es100920j. DOI: https://doi.org/10.1021/es100920j
Preat, J., et al. J. Phys. Chem. C. 2009, 113, 16821-16833. http://dx.doi.org/10.1021/jp904946a. DOI: https://doi.org/10.1021/jp904946a
Huong, V. T. T., et al. J. Phys. Chem. C. 2013, 117, 10175-10184. http://dx.doi.org/10.1021/jp401191a. DOI: https://doi.org/10.1021/jp401191a
Irfan, A., et al. Optik. 2017, 132, 101-110. http://dx.doi.org/http://dx.doi.org/10.1016/j.ijleo.2016.12.023. DOI: https://doi.org/10.1016/j.ijleo.2016.12.023
Irfan, A., et al. Optik. 2017, 138, 349-358. http://dx.doi.org/10.1016/j.ijleo.2016.12.023. DOI: https://doi.org/10.1016/j.ijleo.2017.03.070
Irfan, A., et al. J. Saudi. Chem. Soc. 2016, 20, 336-342. http://dx.doi.org/http://dx.doi.org/10.1016/j.jscs.2014.09.009. DOI: https://doi.org/10.1016/j.jscs.2014.09.009
Irfan, A., et al. J King Saud Univ. Sci. 2016, http://dx.doi.org/10.1016/j.jksus.2016.10.004, http://dx.doi.org/10.1016/j.jksus.2016.10.004 DOI: https://doi.org/10.1016/j.jksus.2016.10.004
Aragó, J., et al. J Chem .Theory Comput. 2011, 7, 2068-2077. http://pubs.acs.org/doi/abs/10.1021/ct200203k DOI: https://doi.org/10.1021/ct200203k
Satapathy, S.; Prasad, E. ACS Appl. Mater. Inter. 2016, 8, 26176-26189. http://dx.doi.org/10.1021/acsami.6b09175. DOI: https://doi.org/10.1021/acsami.6b09175
Kityk, A. V. Spectrochim. Acta A. 2014, 128, 370-376. http://dx.doi.org/http://dx.doi.org/10.1016/j.saa.2014.02.109. DOI: https://doi.org/10.1016/j.saa.2014.02.109
Cossi, M., et al. J. Chem. Phys. 2002, 117, 43-54. http://dx.doi.org/doi:http://dx.doi.org/10.1063/1.1480445. DOI: https://doi.org/10.1063/1.1480445
Rutledge, L. R.; McAfee, S. M.; Welch, G. C. J. Phys. Chem. A. 2014, 118, 7939-7951. http://dx.doi.org/10.1021/jp505867y. DOI: https://doi.org/10.1021/jp505867y
Cnops, K., et al. Nature Commun. 2014, 5, 3406. http://dx.doi.org/10.1038/ncomms4406 DOI: https://doi.org/10.1038/ncomms4406
Qin, Y., et al. Adv. Mater. 2016, 10.1002/adma.201601803, n/an/a. http://dx.doi.org/10.1002/adma.201601803. DOI: https://doi.org/10.1002/adma.201601803
Feng, J., et al. J. Phys. Chem. C. 2013, 117, 3772-3778. http://dx.doi.org/10.1021/jp310504n DOI: https://doi.org/10.1021/jp310504n
Nalwa, H. S. Handbook of Advanced Electronic and Photonic Materials and Devices. San Diego, CA: Academic, 2001.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
