Computational Designing of Low Energy Gap Small Molecule Acceptors for Organic Solar Cells

Authors

  • Ahmad Irfan King Khalid University
  • Asif Mahmood University of Sargodha

DOI:

https://doi.org/10.29356/jmcs.v61i4.461

Keywords:

Small molecule acceptors, low band gap, organic solar cell, DFT

Abstract

In this study, effort is done to design a series of narrowband-gap small molecule acceptors for organic solar cells. We have predicated the electronic and optical properties using theoretical methods. Results show that the orbital spatial distribution, HOMO/LUMO energy levels, band gap and optical properties can be systematically changedby modification of terminal acceptor units and conjugated system. Most of the acceptors show low energy gaps reveal thermodynamical more stability. Conjugated system help to tune the electronic properties and decrease the band gap of small molecules. Finally, we have identified potential terminal acceptor groups for proficient organic solar cell materials.

Downloads

Download data is not yet available.

Author Biographies

Ahmad Irfan, King Khalid University

  1. Department of Chemistry, Faculty of Science
  2. Research Center for Advanced Materials Science (RCAMS)

Asif Mahmood, University of Sargodha

Department of Chemistry

References

Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913-915. http://dx.doi.org/doi:http://dx.doi.org/10.1063/1.98799 DOI: https://doi.org/10.1063/1.98799

Burroughes, J. H., et al. Nature. 1990, 347, 539-541. http://dx.doi.org/10.1038/347539a0. DOI: https://doi.org/10.1038/347539a0

Sariciftci, N. S., et al. Science. 1992, 258, 1474-1476. http://dx.doi.org/10.1126/science.258.5087.1474 DOI: https://doi.org/10.1126/science.258.5087.1474

Carsten, D.; Vladimir, D. Rep. Prog. Phys. 2010, 73, 096401. http://stacks.iop.org/0034-4885/73/i=9/a=096401. DOI: https://doi.org/10.1088/0034-4885/73/9/096401

Wurfel, U., et al. Nat. Commun. 2015, 6, http://dx.doi.org/10.1038/ncomms7951 DOI: https://doi.org/10.1038/ncomms7951

Fleischli, F. D., et al. J. Mater. Chem. C. 2015, 3, 2065-2071. http://dx.doi.org/10.1039/C4TC02279C. DOI: https://doi.org/10.1039/C4TC02279C

Chen, Y.; Wan, X.; Long, G. Acc. Chem. Res. 2013, 46, 2645-2655. http://dx.doi.org/10.1021/ar400088c. DOI: https://doi.org/10.1021/ar400088c

Roncali, J.; Leriche, P.; Blanchard, P. Adv. Mater. 2014, 26, 3821-3838. http://dx.doi.org/10.1002/adma.201305999. DOI: https://doi.org/10.1002/adma.201305999

Li, Y., et al. Energy Environ. Sci. 2010, 3, 1427-1436. http://dx.doi.org/10.1039/C003946B DOI: https://doi.org/10.1039/c003946b

Ni, W., et al. Chem. Commun. 2015, 51, 4936-4950. http://dx.doi.org/10.1039/C4CC09758K DOI: https://doi.org/10.1039/C4CC09758K

Zhang, F., et al. J. Mater. Chem. 2011, 21, 17590-17600. http://dx.doi.org/10.1007/s00894-012-1719-2. DOI: https://doi.org/10.1039/c1jm12801a

Nielsen, C. B., et al. Acc. Chem. Res. 2015, 48, 2803-2812. http://dx.doi.org/10.1021/acs.accounts.5b00199 DOI: https://doi.org/10.1021/acs.accounts.5b00199

MURALI, M. G., et al. J. Chem. Sci. 2013, 125, 247-257. http://dx.doi.org/10.1007/s12039-013-0377-y. DOI: https://doi.org/10.1007/s12039-013-0377-y

Shin, S. A., et al. Synth. Met. 2013, 172, 54-62. http://dx.doi.org/http://doi.org/10.1016/j.synthmet.2013.04.004. DOI: https://doi.org/10.1016/j.synthmet.2013.04.004

Tamilavan, V., et al. Polymer. 2013, 54, 6125-6132. http://dx.doi.org/http://doi.org/10.1016/j.polymer.2013.09.012. DOI: https://doi.org/10.1016/j.polymer.2013.09.012

Wang, T.-L., et al. J Polym. Res. 2013, 20, 213. http://dx.doi.org/10.1007/s10965-013-0213-6. DOI: https://doi.org/10.1007/s10965-013-0213-6

Ozyurt, F., et al. J Solid State Electr. 2008, 14, 279. http://dx.doi.org/10.1007/s10008-008-0750-9. DOI: https://doi.org/10.1007/s10008-008-0750-9

Celebi, S., et al. Electrochim. Acta. 2010, 55, 2373-2376. http://dx.doi.org/http://doi.org/10.1016/j.electacta.2009.12.010. DOI: https://doi.org/10.1016/j.electacta.2009.12.010

Pamuk, M., et al. Polymer. 2010, 51, 62-68. http://dx.doi.org/http://doi.org/10.1016/j.polymer.2009.11.009. DOI: https://doi.org/10.1016/j.polymer.2009.11.009

Tarkuc, S., et al. Eur. Polym. J. 2010, 46, 2199-2205. http://dx.doi.org/http://doi.org/10.1016/j.eurpolymj.2010.08.002. DOI: https://doi.org/10.1016/j.eurpolymj.2010.08.002

Esmer, E. N., et al. Mater. Chem. Phys.2011, 131, 519-524. http://dx.doi.org/http://doi.org/10.1016/j.matchemphys.2011.10.014. DOI: https://doi.org/10.1016/j.matchemphys.2011.10.014

Hellström, S., et al. Org. Electron.2011, 12, 1406-1413. http://dx.doi.org/http://doi.org/10.1016/j.orgel.2011.05.008 DOI: https://doi.org/10.1016/j.orgel.2011.05.008

Sendur, M., et al. J Polym. Sci. Pol. Chem. 2011, 49, 4065-4070. http://dx.doi.org/10.1002/pola.24849. DOI: https://doi.org/10.1002/pola.24849

Ozdemir, S., et al. J. Mater. Chem. 2012, 22, 4687-4694. http://dx.doi.org/10.1039/C2JM16171K. DOI: https://doi.org/10.1039/c2jm16171k

Carbas, B. B., et al. J. Electroanal. Chem. 2012, 677–680, 9-14. http://dx.doi.org/http://doi.org/10.1016/j.jelechem.2012.05.005 DOI: https://doi.org/10.1016/j.jelechem.2012.05.005

Kivrak, A., et al. React. Funct. Polym. 2012, 72, 613-620. http://dx.doi.org/http://doi.org/10.1016/j.reactfunctpolym.2012.06.007. DOI: https://doi.org/10.1016/j.reactfunctpolym.2012.06.007

Cuesta, V., et al. J. Mater. Chem. A. 2017, 5, 1057-1065. http://dx-.doi.org/10.1039/C6TA09408B

Irfan, A., et al. Comptes Rendus Chimie. 2015, 18, 1289-296 http://dx.doi.org/http://dx.doi.org/10.1016/j.crci.2015.05.020. DOI: https://doi.org/10.1016/j.crci.2015.05.020

Chaudhry, A., et al. J Mol. Model. 2014, 20, 1-11. http://dx.doi.org/10.1007/s00894-014-2547-3. DOI: https://doi.org/10.1007/s00894-014-2547-3

Zhang, J., et al. J Mol. Model. 2013, 19, 1597-1604. http://dx.doi.org/10.1007/s00894-012-1719-2. DOI: https://doi.org/10.1007/s00894-012-1719-2

Chaudhry, A. R., et al. J Mol. Model. 2015, 21, 1-16. 10.1007/s00894-015-2743-9

Chaudhry, A. R., et al. J Mol. Model. 2016, 22, 1-13. http://dx.doi.org/10.1007/s00894-016-3121-y DOI: https://doi.org/10.1007/s00894-016-3121-y

Irfan, A., et al. Optik. 2016, 127, 10148-10157. http://dx.doi.org/http://dx.doi.org/10.1016/j.ijleo.2016.08.007 DOI: https://doi.org/10.1016/j.ijleo.2016.08.007

Irfan, A. Optik. 2014, 125, 4825-4830. http://dx.doi.org/http://dx.doi.org/10.1016/j.ijleo.2014.04.050. DOI: https://doi.org/10.1016/j.ijleo.2014.04.050

Sánchez-Carrera, R. S., et al. J. Phys. Chem. B. 2006, 110, 18904-18911. http://dx.doi.org/10.1021/jp057462p. DOI: https://doi.org/10.1021/jp057462p

Irfan, A.; Al-Sehemi, A. G. J. Saudi. Chem. Soc. 2015, 19, 318-321. http://dx.doi.org/http://dx.doi.org/10.1016/j.jscs.2012.03.005. DOI: https://doi.org/10.1016/j.jscs.2012.03.005

Zhu, R., et al. Comput. Theor. Chem. 2016, 1078, 16-22. http://dx-.doi.org/http://dx.doi.org/10.1016/j.comptc.2015.12.017. DOI: https://doi.org/10.1016/j.comptc.2015.12.017

Cvejn, D., et al. Dyes and Pigments. 2016, 124, 101-109. http://

dx.doi.org/http://dx.doi.org/10.1016/j.dyepig.2015.09.012. DOI: https://doi.org/10.1016/j.dyepig.2015.09.012

Irfan, A., et al. Optik. 2016, http://dx.doi.org/10.1016/j.ijleo.2016.12.023

Preat, J.; Jacquemin, D.; Perpète, E. A. Environ. Sci. Technol. 2010, 44, 5666-5671. http://dx.doi.org/10.1021/es100920j. DOI: https://doi.org/10.1021/es100920j

Preat, J., et al. J. Phys. Chem. C. 2009, 113, 16821-16833. http://dx.doi.org/10.1021/jp904946a. DOI: https://doi.org/10.1021/jp904946a

Huong, V. T. T., et al. J. Phys. Chem. C. 2013, 117, 10175-10184. http://dx.doi.org/10.1021/jp401191a. DOI: https://doi.org/10.1021/jp401191a

Irfan, A., et al. Optik. 2017, 132, 101-110. http://dx.doi.org/http://dx.doi.org/10.1016/j.ijleo.2016.12.023. DOI: https://doi.org/10.1016/j.ijleo.2016.12.023

Irfan, A., et al. Optik. 2017, 138, 349-358. http://dx.doi.org/10.1016/j.ijleo.2016.12.023. DOI: https://doi.org/10.1016/j.ijleo.2017.03.070

Irfan, A., et al. J. Saudi. Chem. Soc. 2016, 20, 336-342. http://dx.doi.org/http://dx.doi.org/10.1016/j.jscs.2014.09.009. DOI: https://doi.org/10.1016/j.jscs.2014.09.009

Irfan, A., et al. J King Saud Univ. Sci. 2016, http://dx.doi.org/10.1016/j.jksus.2016.10.004, http://dx.doi.org/10.1016/j.jksus.2016.10.004 DOI: https://doi.org/10.1016/j.jksus.2016.10.004

Aragó, J., et al. J Chem .Theory Comput. 2011, 7, 2068-2077. http://pubs.acs.org/doi/abs/10.1021/ct200203k DOI: https://doi.org/10.1021/ct200203k

Satapathy, S.; Prasad, E. ACS Appl. Mater. Inter. 2016, 8, 26176-26189. http://dx.doi.org/10.1021/acsami.6b09175. DOI: https://doi.org/10.1021/acsami.6b09175

Kityk, A. V. Spectrochim. Acta A. 2014, 128, 370-376. http://dx.doi.org/http://dx.doi.org/10.1016/j.saa.2014.02.109. DOI: https://doi.org/10.1016/j.saa.2014.02.109

Cossi, M., et al. J. Chem. Phys. 2002, 117, 43-54. http://dx.doi.org/doi:http://dx.doi.org/10.1063/1.1480445. DOI: https://doi.org/10.1063/1.1480445

Rutledge, L. R.; McAfee, S. M.; Welch, G. C. J. Phys. Chem. A. 2014, 118, 7939-7951. http://dx.doi.org/10.1021/jp505867y. DOI: https://doi.org/10.1021/jp505867y

Cnops, K., et al. Nature Commun. 2014, 5, 3406. http://dx.doi.org/10.1038/ncomms4406 DOI: https://doi.org/10.1038/ncomms4406

Qin, Y., et al. Adv. Mater. 2016, 10.1002/adma.201601803, n/an/a. http://dx.doi.org/10.1002/adma.201601803. DOI: https://doi.org/10.1002/adma.201601803

Feng, J., et al. J. Phys. Chem. C. 2013, 117, 3772-3778. http://dx.doi.org/10.1021/jp310504n DOI: https://doi.org/10.1021/jp310504n

Nalwa, H. S. Handbook of Advanced Electronic and Photonic Materials and Devices. San Diego, CA: Academic, 2001.

×

Published

2018-01-30

Issue

Section

Regular Articles
x

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...