Effect of the thermal annealing on the phase transitions of biogenic CaCO3 nanostructures

  • Candelario Ramón de los Santos Doctorado en Ciencias en Ingeniería UJAT
  • Angélica Silvestre López Rodríguez UNIVERSIDAD JUAREZ AUTÓNOMA DE TABASCO
  • Pio Sifuentes Gallardo UNIVERSIDAD JUAREZ AUTONOMA DE TABASCO
  • Miguel Angel Hernández Rivera UNIVERSIDAD JUAREZ AUTONOMA DE TABASCO
  • German Pérez-Hernández UNIVERSIDAD JUÁREZ AUTÓNOMA DE TABASCO
  • Ma Guadalupe Gárnica Romo UNIVERSIDAD MICHOACANA DE SAN NICOLAS DE HIDALGO
  • José Guadalupe Fabián Rivera Trejo UNIVERSIDAD JUÁREZ AUTÓNOMA DE TABASCO
  • Laura Lorena Diaz Flores UNIVERSIDAD JUAREZ AUTONOMA DE TABASCO
Keywords: Keywords, Calcite, aragonite and portlandite powders, CaCO3 rhombohedral nanoparticle, (Ca(OH)2) hexagonal phase, CaCO3 biogenic compound

Abstract

The issue of the present research lays its foundation on the proposal of the Crassostrea virginica waste oyster shells (WOS) reuse to obtain calcium carbonate powder (CaCO3) and calcium hydroxide (Ca(OH)2) nanostructured, using thermal annealing treatments. The oysters shells were subjected to a previous physical grinding process to decrease their size (smaller sizes 0.074 mm). The parameter studied was the effect of annealing temperature (500, 700 and 900 °C in air atmosphere) on the structural properties and morphology of the powders by FTIR, XRD, SEM and HRTEM. The X-ray diffraction results indicate that the WOS in their natural state and thermally annealed at 500 °C  have two phases of CaCO3 the rhombohedral form for calcite with crystallite size around 24 nm and aragonite traces in orthorhombic phase. At 700 °C, the WOS powder is transformed into calcium hydroxide, also known as portlandite (Ca(OH)2), attributed to the absorption of water released during the thermal decomposition of CaCO3. This crystalline phase does not change when the temperature increases to 900 °C. The SEM and HRTEM analysis of WOS powders reveals that with a thermal annealing treatment it is possible to obtain   nanostructured CaCO3. FTIR analysis demonstrates the biogenic origin of CaCO3, due to amide groups. The nanostructured CaCO3 obtained by grinding and thermal annealing of WOS, can be used as drying agent, or as additive in ceramic and glass.

The issue of the present research lays its foundation on the proposal of the Crassostrea virginica waste oyster shells (WOS) reuse to obtain calcium carbonate powder (CaCO3) and calcium hydroxide (Ca(OH)2) nanostructured, using thermal annealing treatments. The oysters shells were subjected to a previous physical grinding process to decrease their size (smaller sizes 0.074 mm). The parameter studied was the effect of annealing temperature (500, 700 and 900 °C in air atmosphere) on the structural properties and morphology of the powders by FTIR, XRD, SEM and HRTEM. The X-ray diffraction results indicate that the WOS in their natural state and thermally annealed at 500 °C  have two phases of CaCO3 the rhombohedral form for calcite with crystallite size around 24 nm and aragonite traces in orthorhombic phase. At 700 °C, the WOS powder is transformed into calcium hydroxide, also known as portlandite (Ca(OH)2), attributed to the absorption of water released during the thermal decomposition of CaCO3. This crystalline phase does not change when the temperature increases to 900 °C. The SEM and HRTEM analysis of WOS powders reveals that with a thermal annealing treatment it is possible to obtain   nanostructured CaCO3. FTIR analysis demonstrates the biogenic origin of CaCO3, due to amide groups. The nanostructured CaCO3 obtained by grinding and thermal annealing of WOS, can be used as drying agent, or as additive in ceramic and glass.

References

Yu, Y.; Smyth J. R.; Bon, P. American Mineralogist. 2012, 97, 707–712. DOI: http://dx.doi.org/10.2138/am.2012.3923

Yoshioka S.; Kitano Y. Geochemical Journal. 1985, 19, 245 to 249. DOI: https://doi.org/10.2343/geochemj.19.245

Manjusha, H.; Neethumol, V.; Benny, C. A.; Sreenivasan P.V.; Jenish, P.; Asmy, A.K.A, International Journal of Scientific and Research Publications. 2014, 4, 10. ISSN 2250-3153

Checa, A.G.; Esteban-Delgado, F.J.; Rodrıíguez-Navarro, A.B. Journal of Sctructural Biology. 2007, 157, 393–402. DOI:10.1016/j.jsb.2006.09.005

Hamester, M.R.R.; Balzer, P.S.; Becker, D. Materials Research. 2012, 15, 204-208. DOI: http://dx.doi.org/10.1590/S1516-14392012005000014

Chen Y.; Lian X.; Li Z.; Zheng S., Wang Z., Advanced Powder Technology, 2015, 26, 505-510. DOI: http://dx.doi.org/10.1016/j.apt.2014.12.007

Bastida J., Bolós C., Pardo P., Serrano F. J., Bol. Soc. Esp. Ceram. V. 2004, 43, 80-83. DOI: 10.3989/cyv.2004.v43.i1.621

Yoon, G.L.; Kim, B.T.; Kim, B.O.;Han, S.H. Waste Managment, 2003, 23, 825-34. DOI: 10.1016/S0956-053X(02)00159-9

Yong, S. O.; Sang Eun, O.; Mahtab, A.; Hyun, S.; Kwon Rae, K.; Deok Hyun, M.; Sang Soo, L.; Kyoung Jae, L.; Weon Tai, J.; Jae E, Y. Environ Earth Science. 2010, 61,1301-1308. DOI 10.1007/s12665-010-0674-4

Lee, C.W.; Kwon, H.B.; Jeon, H.P.; Koopman, B. Journal Clean Production. 2009, 17,683–687. DOI : 10.1016/j.jclepro.2008.11.019

Jae-Hoon Huh, Young-Hoon Choi*, Chilakala Ramakrishna, Sun Hee Cheong** and Ji Whan Ahn Jae-Hoon, H., Young-Hoon, C., Chilakala, R., Sun Hee, C., Ji Whan, A. Journal of the Korean Ceramic Society. 2016, 53, 429-434. DOI: http://dx.doi.org/10.4191/kcers.2016.53.4.429.

Khan, MD., Ahn, JW., Nam, G. Journal of Environmental Management. 2018, 223, 947-951. DOI: 10.1016/j.jenvman.2018.07.011

Weiner, S., Mahamid, J., Politi, Y., Ma, Y., Addadi, L. Frontiers of Materials Science in China. 2009, 3, 104. DOI: 10.1007/s11706-009-0036-x.

Cartwright, J.H. E., Checa, A.G., Gale, J.D., Gebauer, D., Sainz‐Díaz, C. I. Angewandte Chemie. 2012, 51, 11960-11970. DOI: https://doi.org/10.1002/anie.201203125.

Kladi A., Klepetsanis P.G., Østvold T., Kontoyiannis C.G., Koutsoukos P.G. Advances in Crystal Growth Inhibition Technologies. 2002, Springer, Boston, MA. DOI: 10.1.1.846.4070&rep=rep1&type=pdf

Chiou I.J., Chen C.H., Li Y.H. Construction and Building Materials. 2014, 64, 480-487. DOI: http://dx.doi.org/10.1016/j.conbuildmat.2014.04.101

Ramon de los Santos, C., Barajas Fernandez, J., Perez Hernandez, G., Hernandez Rivera, M.A., Diaz Flores, L.L. Bol. Soc. Esp. Cerám. Vidr. 2018, https://doi.org/10.1016/j.bsecv.2018.05.003

Yong, S. O., Jung, E. L., Deok, H. M. Environ Geochem Health. 2011, 33,83-91. DOI 10.1007/s10653-010-9329-3

Islam, K.N.; Abu Bakar, Z.B.; Ali, E.; Bin Hussein, M.Z.; Noordin, M.M.; Loqman, M.Y.; Miah, G.; Wahid, H.; Hashim, U. Powder Technology. 2013,235, 70-75. DOI: https://doi.org/10.1016/j.powtec.2012.09.041

Yash, B.; Vishnu, K. P.; Jian, L.Journal of Materials Chemistry. 2016, 2,14270-14288. DOI:10.1039/C4TA02070G

Shan-Yang, L.; Mei-Jane, L.;Wen-Ting, C. Spectroscopy. 2007, 21, 1-30. DOI: http://dx.doi.org/10.1155/2007/278765

Yousefpour, M.; Askari, N.; Abdollah-Pour, H. Biotechnology and Biomaterials. 2011, 1,1-4. DOI:10.4172/2155-952X.1000105

Vagenas, N.V.; Gatsouli, A.;Kontoyannis, C.G. Talanta. 2003, 10, 831-836. DOI: 10.1016/S0039-9140(02)00638-0.

Rodríguez-Navarro, C.; Elert, K.; Sevcik, R. Cryst. Eng. Comm. 2016, 18, 6594-6607. DOI:10.1039/C6CE01202G

Published
2019-03-10