A Simple and Sensitive Inhibitory Kinetic Method for the Carbocisteine Determination

Authors

  • Abhishek Srivastava GLA University
  • Dr Vivek Sharma GLA University
  • Vinay Kumar Singh Dr. Shakuntala Misra National Rehabilitation University
  • Krishna Srivastava Shri Ramswaroop Memorial University, Barabanki

DOI:

https://doi.org/10.29356/jmcs.v66i1.1654

Keywords:

Inhibitory effect, ligand substitution reaction, catalyst inhibitor complex, cxcipients, pharmaceutical preparations, hexacyanoruthenate(II)

Abstract

Abstract. A fast, reproducible, and sensitive method is proposed for the kinetic determination of carbocisteine (CCys). The method depends on the inhibitory property of carbocisteine, which reduces the Hg2+ catalyzed substitution rate of cyanide from [Ru(CN)6]4- with N-R-salt (1-Nitroso-2-naphthol-3,6-disulfonic acid disodium salt) via forming a stable complex with Hg2+. Spectrophotometric measurements were carried out by recording the absorbance at 525 nm (λmax of [Ru(CN)5 Nitroso-R-Salt]3- complex) at a fixed time of 10 and 15 min under the optimized reaction conditions with [N-R-salt] = 4.5 × 10-4 M, I = 0.05 M (KNO3), Temp = 45.0 ± 0.2 o C, pH = 7.0 ± 0.03, [Hg2+] = 8.0 × 10-5 M and [Ru(CN)64-] = 4.25 × 10-5  M. With the proposed method, CCys can be determined quantitatively down to 3.0 × 10-6 M. This methodology can be effectively used for the rapid quantitative estimation of CCys in the pharmaceutical samples with good accuracy and reproducibility. The addition of common excipients in pharmaceuticals even up to 1000 times with [CCys] does not interfere significantly in the estimation of CCys.

 

Resumen. Se propone un método rápido, reproducibley sensible para la determinación cinética de la carbocisteina (CCys). El método depende de la propiedad inhibitoria de la carbocisteina que reduce la tasa de sustitución catalizada por Hg2+ del cianuro de [Ru(CN)6]4- con la sal N-R (sal disódica del ácido 1-Nitroso-2-naftol-3,6-disulfónico) mediante la formación de un complejo estable con Hg2+. Las mediciones espectrofotométricas se llevaron a cabo registrando la absorbancia a 525 nm (λmax del complejo [Ru(CN)5 Sal-Nitroso-R]3-) en un tiempo fijo de 10 y 15 min en las condiciones de reacción optimizadas con [sal-NR] = 4.5 × 10-4 M, I = 0.05 M (KNO3), Temp = 45.0 ± 0.2 o C, pH = 7.0 ± 0.03, [Hg2+] = 8.0 × 10-5 M y [Ru(CN)64-] = 4.25 × 10-5 M. Con el método propuesto, CCys se puede determinar cuantitativamente hasta 3,0 × 10-6 M. Esta metodología se puede utilizar eficazmente para la estimación cuantitativa rápida de CCys en las muestras farmacéuticas con buena precisión y reproducibilidad. La adición de excipientes comunes en productos farmacéuticos incluso hasta 1000 veces con [CCys] no interfiere significativamente en la estimación de CCys.

Downloads

Download data is not yet available.

Author Biographies

Abhishek Srivastava, GLA University

Department of Chemistry.

Dr Vivek Sharma, GLA University

Department of Chemistry.

Vinay Kumar Singh, Dr. Shakuntala Misra National Rehabilitation University

Department of Chemistry.

References

Rogers, D. F. Respir. Care. 2007, 52, 1176-1193. DOI: https://doi.org/10.1109/TAC.2007.901918

Yasuda, H.; Yamaya, M.; Sasaki, T.; Inoue, D.; Nakayama, K.; Tomita, N.; Yoshida, M.; Sasaki, H. J. Am. Geriatr. Soc. 2006, 54, 378–380. DOI: https://doi.org/10.1111/j.1532-5415.2005.00592_9.x. DOI: https://doi.org/10.1111/j.1532-5415.2005.00592_9.x

Hooper, C.; Calvert, J. Int. J. Chron. Obstruct. Pulmon. Dis. 2008, 3, 659-669.

Rahman, I. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2012, 1822, 714-728. DOI: https://doi.org/10.1016/j.bbadis.2011.11.004. DOI: https://doi.org/10.1016/j.bbadis.2011.11.004

Macciò, A.; Madeddu, C.; Panzone, F.; Mantovani, G. Expert. Opin. Pharmacother. 2009, 10, 693-703. DOI: https://doi.org/10.1517/14656560902758343. DOI: https://doi.org/10.1517/14656560902758343

Zheng, Z.; Yang, D.; Huang, X.; Xiao, Z. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 2277-2283. DOI: https://doi.org/10.2147/COPD.S140603. DOI: https://doi.org/10.2147/COPD.S140603

Karlheinz, D.; Ian, G.; Axel, K.; Hans?Peter, K.; Wolfgang, L.; Christoph, W. Amino Acids". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. 2007. DOI: https://doi.org/10.1002/14356007.a02_057.pub2. DOI: https://doi.org/10.1002/14356007.a02_057.pub2

Tang, K. Front. Mar. Sci. 2020, 7, 68. DOI: https://doi.org/10.3389/fmars.2020.00068. DOI: https://doi.org/10.3389/fmars.2020.00068

Abadie, C.; Tcherkez, G. Commun. Bio. 2019, 2, 379. DOI: https://doi.org/10.1038/s42003-019-0616-y. DOI: https://doi.org/10.1038/s42003-019-0616-y

Kolluru, G. K.; Shen, X.; Kevil, C. G. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 874-884. DOI: https://doi.org/10.1161/ATVBAHA.120.314084. DOI: https://doi.org/10.1161/ATVBAHA.120.314084

Fukuto, J. M.; Ignarro, L. J.; Nagy, P.; Wink, D. A.; Kevil, C. G.; Feelisch, M.; Cortese-Krott, M. M.; Bianco, C. L.; Kumagai, Y.; Hobbs, A. J. FEBS Lett. 2018, 592, 2140–2152. DOI: https://doi.org/10.1002/1873-3468.13090. DOI: https://doi.org/10.1002/1873-3468.13090

Omondi, R. O.; Stephen, O.; Ojwach, S. O.; Jaganyi, D. Inorg. Chim. Acta. 2020, 512, 119883. DOI: https://doi.org/10.1016/j.ica.2020.119883. DOI: https://doi.org/10.1016/j.ica.2020.119883

Naik, R. M.; Srivastava, A.; Tiwari, A. K.; Yaday, S. B. S.; Verma, A. K. J. Iran. Chem. Soc. 2007, 4, 63–71. DOI: https://doi.org/10.1007/BF03245804. DOI: https://doi.org/10.1007/BF03245804

Iioka, T.; Takahashi. S.; Yoshida, Y.; Matsumura, Y.; Hraoka, S.; Sato, H. J. Comput. Chem. 2019, 40, 279-285. DOI: https://doi.org/10.1002/jcc.25588. DOI: https://doi.org/10.1002/jcc.25588

Naik, R. M.; Srivastava, A.; Verma, A. K.; Yadav, S. B. S.; Singh, R.; Prasad, S. Bioinorg. Reac. Mech. 2007, 6, 185-192. DOI: https://doi.org/10.1515/IRM.2007.6.3.185. DOI: https://doi.org/10.1515/IRM.2007.6.3.185

Srivastava, A.; Sharma, V.; Prajapati, A.; Srivastava, N.; Naik, R. M. Chem. Chem. Technol. 2019, 13, 275-279. DOI: https://doi.org/10.23939/chcht13.03.275. DOI: https://doi.org/10.23939/chcht13.03.275

Prasad, S.; Naik, R. M.; Srivastava, A. Spectrochim. Acta. A. 2008, 70, 958-65. DOI: https://doi.org/10.1016/j.saa.2007.10.011. DOI: https://doi.org/10.1016/j.saa.2007.10.011

Rastogi, R.; Srivastava, A.; Naik, R. M. J. Disp. Sc. Tech. 2020, 41, 1045-1050. DOI: https://doi.org/10.1080/01932691.2019.1614042. DOI: https://doi.org/10.1080/01932691.2019.1614042

Srivastava, A.; Naik, R. M.; Rastogi, R. J. Iran. Chem. Soc. 2020, 17, 2327-2333. DOI: https://doi.org/10.1007/s13738-020-01927-w. DOI: https://doi.org/10.1007/s13738-020-01927-w

Huang, Y.; Lin, T.; Hou, L.; Ye, F.; Zhao, S. Microchem. J. 2019, 144, 190–194. DOI: https://doi.org/10.1016/j.microc.2018.09.003. DOI: https://doi.org/10.1016/j.microc.2018.09.003

Dedov, A. G.; Marchenko, D. Y.; Zrelova, L. V. et al. Pet. Chem. 2018, 58, 714–720. DOI: https://doi.org/10.1134/S0965544118080030. DOI: https://doi.org/10.1134/S0965544118080030

Kostara, A.; Tsogas, G. Z.; Vlessidis, A. G.; Giokas, D. L. ACS. Omega. 2018, 3, 16831-16838. DOI: https://doi.org/10.1021/acsomega.8b02804. DOI: https://doi.org/10.1021/acsomega.8b02804

Raab, A.; Feldmann, J. Anal. Chim. Acta. 2019, 1079, 20-29. DOI: https://doi.org/10.1016/j.aca.2019.05.064. DOI: https://doi.org/10.1016/j.aca.2019.05.064

Chao, Q.; Sheng, H.; Cheng, X.; Ren, T. Ana. Sci. 2005, 21, 721-724. DOI: https://doi.org/10.2116/ANALSCI.21.721. DOI: https://doi.org/10.2116/analsci.21.721

Nelson, J. J. Assoc. Anal. Chem. 1981, 64, 1174-1178. DOI: https://doi.org/10.1093/jaoac/64.5.1174 DOI: https://doi.org/10.1093/jaoac/64.5.1174

Feng, G.; Sun, S.; Wang, M.; Zhao, Q.; Liu, L.; Hashi, Y.; Jia, R. J. Water. Supply. Res. T. 2018, 67, 498–505. DOI: https://doi.org/10.2166/aqua.2018.011. DOI: https://doi.org/10.2166/aqua.2018.011

Dzieko, U.; Kubczak, N.; Przybylska, K. P.; Patalski, P.; Balcerek, M. Molecules. 2020, 25, 1232. DOI: https://doi.org/10.3390/molecules25051232. DOI: https://doi.org/10.3390/molecules25051232

Cao, L.; Wei, T.; Shi, Y.; Tan, X.; Meng, J. J. Liq. Chrom. Relat. Tech. 2018, 41, 58-65. DOI: https://dio.org/10.1080/10826076.2017.1348953. DOI: https://doi.org/10.1080/10826076.2017.1348953

Perez-Ruiz, T.; Martinez- Lozano, C.; Tomas, V.; Sidrach-de-cardona, C. J. Pharm. Biomed. Anal. 1996, 15, 33-38. DOI: https://doi.org/10.1016/0731-7085(96)01821-3. DOI: https://doi.org/10.1016/0731-7085(96)01821-3

Nugrahani, I,; Abotbina, I. M.; Apsari, C. N.; Kartavinata, T. G.; Sukranso.; Oktaviary, R. Biointerface. Res. Appl. Chem. 2019, 10, 4780-4785. DOI: https://doi.org/10.33263/BRIAC101.780785. DOI: https://doi.org/10.33263/BRIAC101.780785

Shoba, S.; Bankole, O. M.; Ogunlaja, A. S. Anal. Methods. 2020, 12, 1094-1106. DOI: https://doi.org/10.1039/C9AY02382H. DOI: https://doi.org/10.1039/C9AY02382H

Zhand, S.; Jiang, J. Q. Biointerface. Res. Appl. Chem. 2019, 9, 4433-4438. DOI: https://doi.org/10.33263/BRIAC95.433438. DOI: https://doi.org/10.33263/BRIAC95.433438

Ni, L.; Geng, X.; Li, S.; Ning, H.; Guan, Y. Talanta. 2020, 207, 120283. DOI: ttps://doi.org/10.1016/j.talanta.2019.120283 DOI: https://doi.org/10.1016/j.talanta.2019.120283

Srivastava, A. Biointerface. Res. Appl. Chem. 2020, 10, 7152-7161. DOI: https://doi.org/10.33263/BRIAC106.71527161. DOI: https://doi.org/10.33263/BRIAC106.71527161

Agarwal, A.; Prasad, S.; Naik, R.M. Microchem. J. 2016, 128, 181-186. DOI: https://doi.org/10.1016/j.microc.2016.04.005. DOI: https://doi.org/10.1016/j.microc.2016.04.005

Srivastava, A. Biointerface. Res. Appl. Chem. 2021, 11, 10654-10663. DOI: https://doi.org/10.33263/BRIAC113.1065410663 . DOI: https://doi.org/10.33263/BRIAC113.1065410663

Bastos, C. M.; Gordon, K. A.; Ocain, T. D. Bioorg. Med. Chem. Lett. 1998, 8, 147-150. DOI: https://dio.org/10.1016/s0960-894x(97)10205-0. DOI: https://doi.org/10.1016/S0960-894X(97)10205-0

Kenny, R. G.; Marmion, C. J. Chem. Rev. 2019, 119, 1058-1137. DOI: https://doiorg/10.1021/acs.chemrev.8b00271. DOI: https://doi.org/10.1021/acs.chemrev.8b00271

Gomes-Junior, F. A.; Silva, R. S.; Lima, R. G.; Vannier-Santos, M.A. FEMS Microbio. Lett. 2017, 364. DOI: https://doi.org/10.1093/femsle/fnx073. DOI: https://doi.org/10.1093/femsle/fnx073

Yu, B.; Rees, T.W.; Liang, J.; Jin, C.; Chen, Y.; Ji, L.; Chao, H. Dalton. Trans. 2019, 48, 3914-21. DOI: https://doi.org/10.1039/C9DT00454H. DOI: https://doi.org/10.1039/C9DT00454H

Athar, F.; Husain, K.; Abid, M.; Azam, A. Chem. Biodiversity. 2005, 2, 1320-1330. DOI: htpps://dio.org/10.1002/cbdv.200590104. DOI: https://doi.org/10.1002/cbdv.200590104

Lin, K.; Zhao, Z.Z.; Bo, H.B.; Hao, X.J.; Wang, J.Q. Pharmacol. 2018, 9, 1323. DOI: https://doi.org/10.3389/fphar.2018.01323. DOI: https://doi.org/10.3389/fphar.2018.01323

Coverdale, J. P. C.; Carron, T. L. M.; Canelon, I. R. Inorganics. 2019, 7, 31. DOI: https://doi.org/10.3390/inorganics7030031. DOI: https://doi.org/10.3390/inorganics7030031

Gua, L.; Lia, X.; Ran, Q.; Kang, C.; Lee, C.; Shen, J. Cancer. Med. 2016, 5, 2850-2860. DOI: https://doi.org/10.2147/IJN.S131304. DOI: https://doi.org/10.1002/cam4.826

Naik, R. M.; Tewari, R. K.; Singh, P. K.; Tiwari, A. K.; Prasad, S. Trans. Met. Chem. 2005, 30, 968–977. DOI: https://doi.org/10.1007/s11243-005-6266-6. DOI: https://doi.org/10.1007/s11243-005-6266-6

Baran, T. Trans. Met. Chem. 2000, 25, 41-44. https://dx.doi.org/10.1023/A:1007092416218 DOI: https://doi.org/10.1023/A:1007092416218

Naik, R.M.; Singh, P.K.; Rastogi, R.; Singh, R.; Agarwal, A. Annali. Di. Chimica. 2007, 97, 1169-1179. DOI: https://doi.org/10.1002/adic.200790103. DOI: https://doi.org/10.1002/adic.200790103

Naik, R. M.; Agarwal, A.; Verma, A. K.; Yadav, S. B. S.; Kumar, B. Int. J. Chem. Kinet. 2009, 41, 215-226. DOI: https://doi.org/10.1002/kin.20391. DOI: https://doi.org/10.1002/kin.20391

Govil, P. K.; Banerj1, S. K. Ind. J. Chem. A. 1979, 17, 624-626. DOI: http://nopr.niscair.res.in/handle/123456789/51687.

Ivanov, V. M.; Manedova, A. M.; Figurovskaya, V. N.; Ershova, N. I.; Barbalat, Y. A.; Mai, C. T. T. J. Anal. Chem. 2006, 61, 571. DOI: https://doi.org/10.1134/S1061934806060104. DOI: https://doi.org/10.1134/S1061934806060104

Srivastava, A. Biointerface. Res. Appl. Chem. 2021, 11, 11404-11417. DOI: https://doi.org/ 10.33263/BRIAC114.1140411417. DOI: https://doi.org/10.33263/BRIAC114.1140411417

British Pharmacopoeia, Her Majesty’s Stationary Office, London, 1995.

×

Downloads

Published

2021-12-27

Issue

Section

Regular Articles
x

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...