Reaction Parameters for Controlled Sonosynthesis of Gold Nanoparticles

Autores/as

  • Lourdes I. Cabrera-Lara Chemistry Institute, Universidad Nacional Autónoma de México

DOI:

https://doi.org/10.29356/jmcs.v59i2.25

Palabras clave:

Gold colloidal suspension, nanoparticles, sonosynthesis, sodium tartrate.

Resumen

The synthesis of gold nanoparticles by sonochemical technique has been previously performed with excellent results. The synthesis has been carried out in the presence of citric acid, a strong reducing agent, which allows the nucleation and growth of gold nanoparticles, at the same time that controls particle size. In this work, we report the use of sodium tartrate as a mild reducing agent that allows a better understanding of the effect of the reaction parameters during gold nanoparticle synthesis. A conventional sonication bath (37 kHz) was used for the sonochemical synthesis. This work focuses on the reaction temperature effect and the effect of sodium tartrate concentration. It was confirmed that particle size, and particle morphology is dependent of these two reaction parameters. Equally, colloidal stabilization was related to reaction temperature and sodium tartrate concentration. It was also determined that Ostwald ripening takes place during sonochemical reaction under our conditions, allowing us to understand the mechanism that takes place during synthesis. Gold nanoparticles with main particle size of 17 nm were achieved by this method.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

López-Cartes, C.; Rojas, T. C.; Martínez-Martínez, D.; de la Fuente, J. M.; Penadés, S.; Fernández, A., J. Phys. Chem. B. 2005, 109, 8761-8766. DOI: https://doi.org/10.1021/jp050184+

Chen, W.; Cai, W.; Zhang, L.; Wang, G.; Zhang, L., J. Colloid Interf. Sci. 2001, 238, 291-295. DOI: https://doi.org/10.1006/jcis.2001.7525

Jin, Y.; Wang, P.; Yin, D.; Liu, J.; Qin, L.; Yu, N.; Xie, G.; Li., Colloid Surface A. 2007, 302, 366-370. DOI: https://doi.org/10.1016/j.colsurfa.2007.02.060

Biradar, S. C.; Kulkami, M. G., RSC Adv. 2013, 3, 4261-4270. DOI: https://doi.org/10.1039/c3ra22803g

Rouhana, L. L.; Jaber, J. A.; Schlenoff, J. B., Langmuir. 2007, 23, 12799-12801. DOI: https://doi.org/10.1021/la702151q

Brust, M.; Walker, M.; Bethell, D. Schiffrin, D. J.; Whyman, R., J. Chem. Soc., Chem. Commun. 1994, 7, 801-802. DOI: https://doi.org/10.1039/C39940000801

Ma, Y.; Chechik, V., Langmuir. 2011, 27, 14432-14437. DOI: https://doi.org/10.1021/la202035x

Xie, M., Ding, L.; You, Z.; Gao, D.; Yang, G.; Han, H., J. Mater. Chem. 2012, 22, 14108-14118. DOI: https://doi.org/10.1039/c2jm31228j

Jin, S.; Meng, X.; Jin, S.; Zhu, M., J. Nanosci. Nanotechnol. 2013, 13, 1282-1285. DOI: https://doi.org/10.1166/jnn.2013.5957

Zakaria, H. M.; Shah, A.; Konieczny, M.; Hoffmann, J.; Nijdam, A. J.; Reeves, M. E., Langmuir. 2013, 29, 7661-7673. DOI: https://doi.org/10.1021/la400582v

Song, J.; Kim, D.; Lee, D., Langmuir. 2011, 27, 13854-13860. DOI: https://doi.org/10.1021/la203113r

Aqil, A.; Serwas, H.; Delplancke, J. L.; Jérôme, R.; Jérôme, C.; Canet, L., Ultrason. Sonochem. 2008, 15, 1055-1061. DOI: https://doi.org/10.1016/j.ultsonch.2008.04.004

Ou, K.-L.; Yang, K.-H.; Liu, Y.-C.; Hsu, T.-C.; Chen, Q.-Y., Electrochim. Acta. 2011, 58, 497-502. DOI: https://doi.org/10.1016/j.electacta.2011.09.077

Ou, K.-L.; Yu, C.-C.; Liu, Y.-C.; Yang, K.-H.; Wang, C.-C.; Chen, Q.-Y., Mat. Res. Bull. 2011, 46, 2333-2337. DOI: https://doi.org/10.1016/j.materresbull.2011.08.036

Nagata, Y.; Mizukoshi, Y.; Maeda, Y., Radiat. Res. 1996, 146, 333-338. DOI: https://doi.org/10.2307/3579465

Qiu, G.; Wang, Q.; Nie, M., Macromol. Mater. Eng. 2006, 291, 68-74. DOI: https://doi.org/10.1002/mame.200500285

Zhu, J.; Lu, Z.; Aruna, S. T.; Aurbach, D.; Gedanken, A., Chem. Mater. 2000, 12, 2557-2566. DOI: https://doi.org/10.1021/cm990683l

Radziuk, D.; Grigoriev, D.; Zhang, W.; Su, D.; Möhwald, H.; Shchukin, D., J. Phys. Chem. C 2010, 114, 1835-1843. DOI: https://doi.org/10.1021/jp910374s

Park, J.-E.; Atobe, M.; Fuchigami, T., Ultrason. Sonochem. 2006, 13, 237-241. DOI: https://doi.org/10.1016/j.ultsonch.2005.04.003

Belova, V.; Borodina, T.; Möhwald, H.; Shchukin, D. G., Ultrason. Sonochem. 2011, 18, 310-317. DOI: https://doi.org/10.1016/j.ultsonch.2010.06.012

Mastai, Y.; Gedanken, A. in: Sonochemistry and other novel methods developed for the synthesis of nanoparticles, in The Chemistry of Nanomaterials: Synthesis, Properties and Applications, Rao, C.N.R.; Müller, A.; Cheetham, A. K., Ed., Wiley-VCH Verlg GmbH & Co, Weiheim, 2005. DOI: https://doi.org/10.1002/352760247X.ch6

Teo, B. M.; Chen, F.; Hatton, T. A.; Grieser, F.; Ashokkumar, M., Langmuir. 2009, 25, 2593-2595. DOI: https://doi.org/10.1021/la804278w

Caruso, R. A.; Ashokkumar, M.; Grieser, F., Langmuir. 2002, 18, 7831-7836. DOI: https://doi.org/10.1021/la020276f

Oxley, J. D.; Mdleleni, M. M.; Suslick, K. S., Catal. Today. 2004, 88, 139-151. DOI: https://doi.org/10.1016/j.cattod.2003.11.010

Prozorov, T.; Rozorov, R.; Suslick, K. S., J. Am. Chem. Soc. 2004, 126, 13890-13891. DOI: https://doi.org/10.1021/ja049493o

Teo, B. M.; Grieser, F.; Ashokknumar, M., Macromol. 2009, 42, 4479-4483. DOI: https://doi.org/10.1021/ma900521z

Okitsu, K.; Ashokkumar, M.; Grieser, F., J. Phys. Chem. B. 2005, 109, 20673-20675. DOI: https://doi.org/10.1021/jp0549374

Wongpisutpaisana, N.; Charoonsuk, P.; Vittayakorn, N.; Pecharapa, W., Energy Procedia. 2011, 9, 404-409. DOI: https://doi.org/10.1016/j.egypro.2011.09.044

Shen, B.; Zhai, W.; Lu, D.; Zheng, W., RSC Adv. 2012, 2, 4713- 4719. DOI: https://doi.org/10.1039/c2ra01098d

Fujimoto, T.; Terauchi, S.; Umehara, H.; Kojima, I.; Henderson, W., Chem. Mater. 2001, 13, 1057-1060. DOI: https://doi.org/10.1021/cm000910f

Yu, J. C.; Wang, X.-X.; Wu, L.; Ho, W.-K.; Zhang, L.-Z.; Zhou, G.-T., Adv. Funct. Mater. 2004, 14, 1178-1183. DOI: https://doi.org/10.1002/adfm.200305145

Geng, J.; Jiang, L.; Zhu, J., Sci. China Chem. 2012, 55, 2292- 2310. DOI: https://doi.org/10.1007/s11426-012-4732-5

Xu, H.; Zeiger, B. W.; Suslick, K. S., Chem. Soc. Rev. 2013, 42, 2555-2567. DOI: https://doi.org/10.1039/C2CS35282F

Okitsu, K.; Yue, A.; Tanabe, S.; Matsumoto, H.; Yobiko, Y.; Yoo, Y., Bull. Chem. Soc. Jpn. 2002, 75, 2289-2296. DOI: https://doi.org/10.1246/bcsj.75.2289

Shchukin, D. G.; Radziuk, D.; Möhwald, H., Annu. Rev. Mater. Res. 2010, 40, 345-362. DOI: https://doi.org/10.1146/annurev-matsci-070909-104540

Jana, N. R.; Gearheart, L.; Murphy, C. J., Adv. Mater. 2001, 13, 1389-1393. DOI: https://doi.org/10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F

Csapó, E.; Seb?k, D.; Babi?, J. M.; Šupljika, F.; Bohus, G.; Dékány, I.; Kallay, N.; Preo?anin, T., J. Disp. Sci. & Tech. 2013, 815-825. DOI: https://doi.org/10.1080/01932691.2013.817314

Chen, Z. H.; Tang, Y. B.; Liu, C. P.; Leung, Y. H.; Yuan, G.D.; Chen, L. M.; Wang, Y. Q.; Bello, I.; Zapien, J. A.; Zhang, W. J.; Lee, C. S.; Lee, S. T., J. Phys. Chem. C. 2009, 113, 13433-13237. DOI: https://doi.org/10.1021/jp903153w

Lee, J.-H.; Choi, S. U. S.; Jang, S. P.; Lee, S. Y., Nanoscale Res. Lett. 2012, 7:420. DOI: https://doi.org/10.1186/1556-276X-7-420

Okitsu, K.; Yue, A.; Tanabe, S.; Matsumoto, H.; Yobiko, Y., Langmuir. 2001, 17, 7717-7720. DOI: https://doi.org/10.1021/la010414l

Wei, M.-Y.; Famouri, L.; Carroll, L.; Lee, Y.; Fomouri, P., Ultrason. Sonochem. 2013, 20, 610-617. DOI: https://doi.org/10.1016/j.ultsonch.2012.07.028

Palacios-Hernández, T.; Hirata-Flores, G. A.; Contreras-López, O. E.; Mendoza-Sánchez, M. E.; Valeriano-Arreola, I.; González-Vergara, E; Méndez-Rojas, M. A., Inorg. Chimica Acta. 2012, 392, 277-282. DOI: https://doi.org/10.1016/j.ica.2012.03.039

http://www.chemnet.com/India/Products/SODIUM-TARTRATE-DIBASIC-DIHYDRATE/Suppliers-0-0.html, accessed in February, 2014.

Binitha, M. P.; Pradyumnan, P. P., J. Therm. Anal. Calorim. 2013, 114, 665-669. DOI: https://doi.org/10.1007/s10973-013-2998-2

Ji, X.; Song, X.; Li, J.; Bai, Y.; Yang, W.; Peng, X., J. Am. Chem. Soc. 2007, 129, 13939-13948. DOI: https://doi.org/10.1021/ja074447k

Ran, Y., Fu, J.; Rate, A. W.; Gilkes, R.J., Chem. Geol. 2002, 185, 33-49. DOI: https://doi.org/10.1016/S0009-2541(01)00393-X

Wang, S.; Qian, K.; Bi, X. Z.; Huang, W., J. Phys. Chem. C. 2009, 113, 6505-6510. DOI: https://doi.org/10.1021/jp810003w

Ojea-Jiménez, I.; Romero, F. M.; Bastús, N. G.; Puntes, V., J. Phys. Chem. C. 2010, 114, 1800-1804. DOI: https://doi.org/10.1021/jp9091305

Young, J. K.; Lewinski, N. A.; Langsner, R. J.; Kennedy, L. C.; Satyanarayan, A. Nammalvar, V.; Lin, A. Y.; Drezek, R. A., Nanoscale Res. Lett. 2011, 6:428. DOI: https://doi.org/10.1186/1556-276X-6-428

Wojnicki, M.; Rudnik, E.; Luty- B?ocho, M.; Pac?awsky, K.; Fitzner, K., Hydrometallurgy, 2012, 127-128, 43-53. DOI: https://doi.org/10.1016/j.hydromet.2012.06.015

Amendola, V.; Meneghetti, M., J. Phys. Chem. C. 2009, 113, 4277-4285. DOI: https://doi.org/10.1021/jp8082425

Ghosh, S. K.; Pal, T., Chem. Rev. 2007, 107, 4797-4862. DOI: https://doi.org/10.1021/cr0680282

Mulvaney, P., Langmuir. 1996, 12, 788-800. DOI: https://doi.org/10.1021/la9502711

Natter, H.; Hempelmann, R., J. Phys. Chem. 1996, 100, 19525-19532. DOI: https://doi.org/10.1021/jp9617837

Hardcastle, J. L.; Ball, J. C.; Hong, Q.; Marken, F.; Compton, R. G.; Bull, S. D.; Davies, S. G., Ultrason. Sonochem. 2000, 7, 7-14. DOI: https://doi.org/10.1016/S1350-4177(99)00026-7

Barron, J. J.; Ashton, C.; Geary, L., The Effects of Temperature on pH Measurement, in TSP-01. 2011, Reagecon Diagnostics Limited: Shannon Free Zone, 1-7.

×

Descargas

Publicado

2017-10-12

Número

Sección

Artículos
x

Artículos similares

1 2 3 4 5 6 7 8 9 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.

Loading...