Reaction Parameters for Controlled Sonosynthesis of Gold Nanoparticles
DOI:
https://doi.org/10.29356/jmcs.v59i2.25Keywords:
Gold colloidal suspension, nanoparticles, sonosynthesis, sodium tartrate.Abstract
The synthesis of gold nanoparticles by sonochemical technique has been previously performed with excellent results. The synthesis has been carried out in the presence of citric acid, a strong reducing agent, which allows the nucleation and growth of gold nanoparticles, at the same time that controls particle size. In this work, we report the use of sodium tartrate as a mild reducing agent that allows a better understanding of the effect of the reaction parameters during gold nanoparticle synthesis. A conventional sonication bath (37 kHz) was used for the sonochemical synthesis. This work focuses on the reaction temperature effect and the effect of sodium tartrate concentration. It was confirmed that particle size, and particle morphology is dependent of these two reaction parameters. Equally, colloidal stabilization was related to reaction temperature and sodium tartrate concentration. It was also determined that Ostwald ripening takes place during sonochemical reaction under our conditions, allowing us to understand the mechanism that takes place during synthesis. Gold nanoparticles with main particle size of 17 nm were achieved by this method.Downloads
References
López-Cartes, C.; Rojas, T. C.; Martínez-Martínez, D.; de la Fuente, J. M.; Penadés, S.; Fernández, A., J. Phys. Chem. B. 2005, 109, 8761-8766. DOI: https://doi.org/10.1021/jp050184+
Chen, W.; Cai, W.; Zhang, L.; Wang, G.; Zhang, L., J. Colloid Interf. Sci. 2001, 238, 291-295. DOI: https://doi.org/10.1006/jcis.2001.7525
Jin, Y.; Wang, P.; Yin, D.; Liu, J.; Qin, L.; Yu, N.; Xie, G.; Li., Colloid Surface A. 2007, 302, 366-370. DOI: https://doi.org/10.1016/j.colsurfa.2007.02.060
Biradar, S. C.; Kulkami, M. G., RSC Adv. 2013, 3, 4261-4270. DOI: https://doi.org/10.1039/c3ra22803g
Rouhana, L. L.; Jaber, J. A.; Schlenoff, J. B., Langmuir. 2007, 23, 12799-12801. DOI: https://doi.org/10.1021/la702151q
Brust, M.; Walker, M.; Bethell, D. Schiffrin, D. J.; Whyman, R., J. Chem. Soc., Chem. Commun. 1994, 7, 801-802. DOI: https://doi.org/10.1039/C39940000801
Ma, Y.; Chechik, V., Langmuir. 2011, 27, 14432-14437. DOI: https://doi.org/10.1021/la202035x
Xie, M., Ding, L.; You, Z.; Gao, D.; Yang, G.; Han, H., J. Mater. Chem. 2012, 22, 14108-14118. DOI: https://doi.org/10.1039/c2jm31228j
Jin, S.; Meng, X.; Jin, S.; Zhu, M., J. Nanosci. Nanotechnol. 2013, 13, 1282-1285. DOI: https://doi.org/10.1166/jnn.2013.5957
Zakaria, H. M.; Shah, A.; Konieczny, M.; Hoffmann, J.; Nijdam, A. J.; Reeves, M. E., Langmuir. 2013, 29, 7661-7673. DOI: https://doi.org/10.1021/la400582v
Song, J.; Kim, D.; Lee, D., Langmuir. 2011, 27, 13854-13860. DOI: https://doi.org/10.1021/la203113r
Aqil, A.; Serwas, H.; Delplancke, J. L.; Jérôme, R.; Jérôme, C.; Canet, L., Ultrason. Sonochem. 2008, 15, 1055-1061. DOI: https://doi.org/10.1016/j.ultsonch.2008.04.004
Ou, K.-L.; Yang, K.-H.; Liu, Y.-C.; Hsu, T.-C.; Chen, Q.-Y., Electrochim. Acta. 2011, 58, 497-502. DOI: https://doi.org/10.1016/j.electacta.2011.09.077
Ou, K.-L.; Yu, C.-C.; Liu, Y.-C.; Yang, K.-H.; Wang, C.-C.; Chen, Q.-Y., Mat. Res. Bull. 2011, 46, 2333-2337. DOI: https://doi.org/10.1016/j.materresbull.2011.08.036
Nagata, Y.; Mizukoshi, Y.; Maeda, Y., Radiat. Res. 1996, 146, 333-338. DOI: https://doi.org/10.2307/3579465
Qiu, G.; Wang, Q.; Nie, M., Macromol. Mater. Eng. 2006, 291, 68-74. DOI: https://doi.org/10.1002/mame.200500285
Zhu, J.; Lu, Z.; Aruna, S. T.; Aurbach, D.; Gedanken, A., Chem. Mater. 2000, 12, 2557-2566. DOI: https://doi.org/10.1021/cm990683l
Radziuk, D.; Grigoriev, D.; Zhang, W.; Su, D.; Möhwald, H.; Shchukin, D., J. Phys. Chem. C 2010, 114, 1835-1843. DOI: https://doi.org/10.1021/jp910374s
Park, J.-E.; Atobe, M.; Fuchigami, T., Ultrason. Sonochem. 2006, 13, 237-241. DOI: https://doi.org/10.1016/j.ultsonch.2005.04.003
Belova, V.; Borodina, T.; Möhwald, H.; Shchukin, D. G., Ultrason. Sonochem. 2011, 18, 310-317. DOI: https://doi.org/10.1016/j.ultsonch.2010.06.012
Mastai, Y.; Gedanken, A. in: Sonochemistry and other novel methods developed for the synthesis of nanoparticles, in The Chemistry of Nanomaterials: Synthesis, Properties and Applications, Rao, C.N.R.; Müller, A.; Cheetham, A. K., Ed., Wiley-VCH Verlg GmbH & Co, Weiheim, 2005. DOI: https://doi.org/10.1002/352760247X.ch6
Teo, B. M.; Chen, F.; Hatton, T. A.; Grieser, F.; Ashokkumar, M., Langmuir. 2009, 25, 2593-2595. DOI: https://doi.org/10.1021/la804278w
Caruso, R. A.; Ashokkumar, M.; Grieser, F., Langmuir. 2002, 18, 7831-7836. DOI: https://doi.org/10.1021/la020276f
Oxley, J. D.; Mdleleni, M. M.; Suslick, K. S., Catal. Today. 2004, 88, 139-151. DOI: https://doi.org/10.1016/j.cattod.2003.11.010
Prozorov, T.; Rozorov, R.; Suslick, K. S., J. Am. Chem. Soc. 2004, 126, 13890-13891. DOI: https://doi.org/10.1021/ja049493o
Teo, B. M.; Grieser, F.; Ashokknumar, M., Macromol. 2009, 42, 4479-4483. DOI: https://doi.org/10.1021/ma900521z
Okitsu, K.; Ashokkumar, M.; Grieser, F., J. Phys. Chem. B. 2005, 109, 20673-20675. DOI: https://doi.org/10.1021/jp0549374
Wongpisutpaisana, N.; Charoonsuk, P.; Vittayakorn, N.; Pecharapa, W., Energy Procedia. 2011, 9, 404-409. DOI: https://doi.org/10.1016/j.egypro.2011.09.044
Shen, B.; Zhai, W.; Lu, D.; Zheng, W., RSC Adv. 2012, 2, 4713- 4719. DOI: https://doi.org/10.1039/c2ra01098d
Fujimoto, T.; Terauchi, S.; Umehara, H.; Kojima, I.; Henderson, W., Chem. Mater. 2001, 13, 1057-1060. DOI: https://doi.org/10.1021/cm000910f
Yu, J. C.; Wang, X.-X.; Wu, L.; Ho, W.-K.; Zhang, L.-Z.; Zhou, G.-T., Adv. Funct. Mater. 2004, 14, 1178-1183. DOI: https://doi.org/10.1002/adfm.200305145
Geng, J.; Jiang, L.; Zhu, J., Sci. China Chem. 2012, 55, 2292- 2310. DOI: https://doi.org/10.1007/s11426-012-4732-5
Xu, H.; Zeiger, B. W.; Suslick, K. S., Chem. Soc. Rev. 2013, 42, 2555-2567. DOI: https://doi.org/10.1039/C2CS35282F
Okitsu, K.; Yue, A.; Tanabe, S.; Matsumoto, H.; Yobiko, Y.; Yoo, Y., Bull. Chem. Soc. Jpn. 2002, 75, 2289-2296. DOI: https://doi.org/10.1246/bcsj.75.2289
Shchukin, D. G.; Radziuk, D.; Möhwald, H., Annu. Rev. Mater. Res. 2010, 40, 345-362. DOI: https://doi.org/10.1146/annurev-matsci-070909-104540
Jana, N. R.; Gearheart, L.; Murphy, C. J., Adv. Mater. 2001, 13, 1389-1393. DOI: https://doi.org/10.1002/1521-4095(200109)13:18<1389::AID-ADMA1389>3.0.CO;2-F
Csapó, E.; Seb?k, D.; Babi?, J. M.; Šupljika, F.; Bohus, G.; Dékány, I.; Kallay, N.; Preo?anin, T., J. Disp. Sci. & Tech. 2013, 815-825. DOI: https://doi.org/10.1080/01932691.2013.817314
Chen, Z. H.; Tang, Y. B.; Liu, C. P.; Leung, Y. H.; Yuan, G.D.; Chen, L. M.; Wang, Y. Q.; Bello, I.; Zapien, J. A.; Zhang, W. J.; Lee, C. S.; Lee, S. T., J. Phys. Chem. C. 2009, 113, 13433-13237. DOI: https://doi.org/10.1021/jp903153w
Lee, J.-H.; Choi, S. U. S.; Jang, S. P.; Lee, S. Y., Nanoscale Res. Lett. 2012, 7:420. DOI: https://doi.org/10.1186/1556-276X-7-420
Okitsu, K.; Yue, A.; Tanabe, S.; Matsumoto, H.; Yobiko, Y., Langmuir. 2001, 17, 7717-7720. DOI: https://doi.org/10.1021/la010414l
Wei, M.-Y.; Famouri, L.; Carroll, L.; Lee, Y.; Fomouri, P., Ultrason. Sonochem. 2013, 20, 610-617. DOI: https://doi.org/10.1016/j.ultsonch.2012.07.028
Palacios-Hernández, T.; Hirata-Flores, G. A.; Contreras-López, O. E.; Mendoza-Sánchez, M. E.; Valeriano-Arreola, I.; González-Vergara, E; Méndez-Rojas, M. A., Inorg. Chimica Acta. 2012, 392, 277-282. DOI: https://doi.org/10.1016/j.ica.2012.03.039
http://www.chemnet.com/India/Products/SODIUM-TARTRATE-DIBASIC-DIHYDRATE/Suppliers-0-0.html, accessed in February, 2014.
Binitha, M. P.; Pradyumnan, P. P., J. Therm. Anal. Calorim. 2013, 114, 665-669. DOI: https://doi.org/10.1007/s10973-013-2998-2
Ji, X.; Song, X.; Li, J.; Bai, Y.; Yang, W.; Peng, X., J. Am. Chem. Soc. 2007, 129, 13939-13948. DOI: https://doi.org/10.1021/ja074447k
Ran, Y., Fu, J.; Rate, A. W.; Gilkes, R.J., Chem. Geol. 2002, 185, 33-49. DOI: https://doi.org/10.1016/S0009-2541(01)00393-X
Wang, S.; Qian, K.; Bi, X. Z.; Huang, W., J. Phys. Chem. C. 2009, 113, 6505-6510. DOI: https://doi.org/10.1021/jp810003w
Ojea-Jiménez, I.; Romero, F. M.; Bastús, N. G.; Puntes, V., J. Phys. Chem. C. 2010, 114, 1800-1804. DOI: https://doi.org/10.1021/jp9091305
Young, J. K.; Lewinski, N. A.; Langsner, R. J.; Kennedy, L. C.; Satyanarayan, A. Nammalvar, V.; Lin, A. Y.; Drezek, R. A., Nanoscale Res. Lett. 2011, 6:428. DOI: https://doi.org/10.1186/1556-276X-6-428
Wojnicki, M.; Rudnik, E.; Luty- B?ocho, M.; Pac?awsky, K.; Fitzner, K., Hydrometallurgy, 2012, 127-128, 43-53. DOI: https://doi.org/10.1016/j.hydromet.2012.06.015
Amendola, V.; Meneghetti, M., J. Phys. Chem. C. 2009, 113, 4277-4285. DOI: https://doi.org/10.1021/jp8082425
Ghosh, S. K.; Pal, T., Chem. Rev. 2007, 107, 4797-4862. DOI: https://doi.org/10.1021/cr0680282
Mulvaney, P., Langmuir. 1996, 12, 788-800. DOI: https://doi.org/10.1021/la9502711
Natter, H.; Hempelmann, R., J. Phys. Chem. 1996, 100, 19525-19532. DOI: https://doi.org/10.1021/jp9617837
Hardcastle, J. L.; Ball, J. C.; Hong, Q.; Marken, F.; Compton, R. G.; Bull, S. D.; Davies, S. G., Ultrason. Sonochem. 2000, 7, 7-14. DOI: https://doi.org/10.1016/S1350-4177(99)00026-7
Barron, J. J.; Ashton, C.; Geary, L., The Effects of Temperature on pH Measurement, in TSP-01. 2011, Reagecon Diagnostics Limited: Shannon Free Zone, 1-7.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
