The Effect of bcc lattices on the Drug Release Kinetics in Inert Systems by Monte Carlo Simulation
DOI:
https://doi.org/10.29356/jmcs.v69i1.2295Palabras clave:
Drug release kinetics, diffusion, connectivity, Monte Carlo simulation, Weibull function, Higuchi function, bcc latticeResumen
This study examines the release kinetics of hydrophilic drugs from inert and porous matrices structured as body-centered cubic (bcc) lattices, utilizing Monte Carlo simulations for analysis. In this research, we examined a sphere with three distinct radii and a cylinder with three varying height-to-radius ratios. For each sample, we assessed the kinetics of drug release at varying drug concentrations and modeled the release by simulating the random diffusion of drug particles to the device's boundaries. The comparison of release profiles highlighted the influence of size, geometry, and connectivity on the kinetic parameters and essential properties. Enhancing the area-to-volume ratio leads to a diminished rate of drug release. Similarly, an escalation in size, as indicated by the ratio 1:18:55, results in a reduced drug release rate. Additionally, our findings reveal that the quantity of drug retained indefinitely is greater within a body-centered cubic (bcc) lattice matrix compared to a simple cubic (cs) lattice structure. In both geometrical configurations, the trapped drug is independent of the system's scaling in comparison to a cs lattice. Furthermore, our analysis reveals that at larger scales, with a drug concentration above the theoretical percolation threshold, our system remains stable. The outcomes align with the empirical Higuchi equation and the Weibull function. Our findings concur with previously published experimental outcomes, suggesting that bcc connectivity is a reliable parameter for simulating diffusion processes in the drug release from solid pharmaceutical forms. This correlation supports the use of bcc connectivity as a predictive tool in pharmaceutical research, aiding in the understanding of drug release mechanisms.
Resumen. Este trabajo analiza la cinética de liberación de fármacos hidrófilos a partir de matrices inertes y porosas en una red cúbica centrada en el cuerpo (bcc) mediante simulacion de Monte Carlo. Para este estudio, seleccionamos una esfera con tres radios diferentes y un cilindro con tres relaciones altura/radio diferentes. Para cada uno, determinamos la cinética de liberación del fármaco con diferentes cargas y simulamos la liberación a través del movimiento aleatorio de cada partícula del fármaco hacia los límites del dispositivo mediante un proceso de difusión. Se compararon los perfiles de liberación y analizamos el efecto de escalamiento, la geometría y la conectividad sobre los parámetros cinéticos y las propiedades críticas del sistema. Al aumentar la relación área/volumen, disminuye la tasa de liberación del fármaco, mientras que con el aumento del tamaño (1:18:55), la tasa de liberación del fármaco disminuye. Además, identificamos que la cantidad de fármaco atrapado a tiempo infinito es mayor en la matriz constituida por la red bcc que en la red cúbica simple (cs). En ambas geometrías, bajo una red bcc se observó que la cantidad de fármaco atrapado no es sensible al escalamiento del sistema en comparación con una red cs. Además, caracterizamos nuestros sistemas mostrando que en escalas mayores y con una carga de fármaco muy por arriba del umbral de percolación teórico, los datos se ajustan a la ecuación empírica de Higuchi y la función de Weibull. Nuestros datos concuerdan resultados experimentales y teóricos previamente reportados, lo que permite considerar la conectividad bcc como un buen parámetro de simulación de procesos difusivos, como la liberación de fármaco desde formas farmacéuticas sólidas.
Descargas
Citas
Langer, R. Science. 1990, 249, 1527–1533. DOI: https://doi.org/10.1126/science.2218494. DOI: https://doi.org/10.1126/science.2218494
Linares, V.; Casas, M.; Huwyler, J.; Caraballo, I. J. Drug. Deliv. Sci. Technol. 2023, 90, 105099. DOI: https://doi.org/10.1016/j.jddst.2023.105099. DOI: https://doi.org/10.1016/j.jddst.2023.105099
Singh, M.; Shirazian, S.; Ranade, V.; Walker, G.; Kumar, A. J. Powder Technol. 2022, 403. DOI: https://doi.org/10.1016/j.powtec.2022.117380. DOI: https://doi.org/10.1016/j.powtec.2022.117380
Adembri, C.; Novelli, A.; Nobili, S. Antibiotics. 2020, 9, 676. DOI: https://doi.org/10.3390/antibiotics9100676. DOI: https://doi.org/10.3390/antibiotics9100676
Li, M.; Liu, R.-R.; Lü, L.; Hu, M.-B.; Xu, S.; Zhang, Y.-C. Phys. Rep. 2021, 907, 1–68. DOI: https://doi.org/https://doi.org/10.1016/j.physrep.2020.12.003. DOI: https://doi.org/10.1016/j.physrep.2020.12.003
Liao, J.; Hou, B.; Huang, H. Carbohydr. Polym. 2022, 283, 119177. DOI: https://doi.org/https://doi.org/10.1016/j.carbpol.2022.119177. DOI: https://doi.org/10.1016/j.carbpol.2022.119177
Quesada-Pérez, M.; Alberto, M.; Ramos, M.; Martin-Molina, A. Macromol. 2022, 55. DOI: https://doi.org/10.1021/acs.macromol.1c02178. DOI: https://doi.org/10.1021/acs.macromol.1c02178
Dan, N. Colloids Surf. B Biointerfaces. 2015, 126, 80–86. DOI: https://doi.org/https://doi.org/10.1016/j.colsurfb.2014.11.042. DOI: https://doi.org/10.1016/j.colsurfb.2014.11.042
Kaoui, B. Eur. Phys. J. E. 2018, 41, 20. DOI: https://doi.org/10.1140/epje/i2018-11626-7. DOI: https://doi.org/10.1140/epje/i2018-11626-7
Martinez, L.; Villalobos, R.; Sánchez, M.; Cruz, J.; Ganem, A.; Melgoza, L. Int. J. Pharm. 2008, 369, 38–46. DOI: https://doi.org/10.1016/j.ijpharm.2008.10.023. DOI: https://doi.org/10.1016/j.ijpharm.2008.10.023
Villalobos, R.; Garcia, E.; Quintanar, D.; Young, P. Curr. Drug Delivery 2016, 13. DOI: https://doi.org/10.2174/1567201813666160512145800. DOI: https://doi.org/10.2174/1567201813666160512145800
Stevens, D. R.; Downen, L. N.; Clarke, L. I. Phys. Rev. B. 2008, 78, 5425. DOI: https://doi.org/10.1103/PhysRevB.78.235425. DOI: https://doi.org/10.1103/PhysRevB.78.235425
Zukowski, P.; Okal, P.; Kierczynski, K.; Rogalski, P.; Bondariev, V.; Pogrebnjak, A. Energies (Basel. 2023, 16, 8024. DOI: https://doi.org/10.3390/en16248024. DOI: https://doi.org/10.3390/en16248024
Villalobos, R.; Viquez, H.; Hernández, B.; Ganem, A.; Melgoza, L. M.; Young, P. M. Pharm Dev. Technol. 2012, 17, 344–352. DOI: https://doi.org/10.1016/j.ijpharm.2007.10.036.
Stauffer, D.; Aharony, A. in: Introduction To Percolation Theory: Second Edition, 2nd Ed. Taylor & Francis, 1992. DOI: https://doi.org/10.1201/9781315274386. DOI: https://doi.org/10.1201/9781315274386
Queiroz, A. L.; Faisal, W.; Devine, K.; Garvie-Cook, H.; Vucen, S.; Crean, A. Powder Technol. 2019, 354. DOI: https://doi.org/10.1016/j.powtec.2019.05.027. DOI: https://doi.org/10.1016/j.powtec.2019.05.027
Fernández-Hervás, M. J.; Vela, M. T.; Holgado, M. A.; del Cerro, J.; Rabasco, A. M. Pharm. Acta Helv. 1995, 113, 39–45. DOI: https://doi.org/https://doi.org/10.1016/0378-5173(94)00173-3. DOI: https://doi.org/10.1016/0378-5173(94)00173-3
Khizer, Z.; Nirwan, J.; Conway, B.; Ghori, M. Int. J. Biol. Macromol. 2020, 155, 835-845. DOI: https://doi.org/10.1016/j.ijbiomac.2020.03.227. DOI: https://doi.org/10.1016/j.ijbiomac.2020.03.227
Kimura, G.; Puchkov, M.; Betz, G.; Leuenberger, H. Pharm. Dev. Technol. 2007, 12, 11–19. DOI: https://doi.org/10.1080/10837450601166494. DOI: https://doi.org/10.1080/10837450601166494
Draksler, P.; Mikac, U.; Laggner, P.; Paudel, A.; Janković, B. Acta Pharm. (Warsaw, Pol.)2021, 71, 215–243. DOI: https://doi.org/10.2478/acph-2021-0018. DOI: https://doi.org/10.2478/acph-2021-0018
Bonny, J. D.; Leuenberger, H. Pharm. Acta Helv. 1991, 66, 160–164. DOI: https://doi.org/10.3109/10837450.2010.542162. DOI: https://doi.org/10.3109/10837450.2010.542162
Wenzel, T.; Stillhart, C.; Kleinebudde, P.; Szepes, A. Drug Dev. Ind. Pharm. 2017, 43, 1265–1275. DOI: https://doi.org/10.1080/03639045.2017.1313856. DOI: https://doi.org/10.1080/03639045.2017.1313856
Galdón, E.; Millán-Jiménez, M.; Mora-Castaño, G.; de Ilarduya, A. M.; Caraballo, I. Pharmaceutics. 2021, 13,7. DOI: https://doi.org/10.3390/pharmaceutics13071057. DOI: https://doi.org/10.3390/pharmaceutics13071057
Aguilar-de-Leyva, Á.; Gonçalves-Araujo, T.; Daza, V.; Caraballo, I. Pharm. Dev. Technol. 2014, 19,728-734. DOI: https://doi.org/10.3109/10837450.2013.829091. DOI: https://doi.org/10.3109/10837450.2013.829091
Grund, J.; Körber, M.; Walther, M.; Bodmeier, R. Int. J. Pharm. 2014, 469. DOI: https://doi.org/10.1016/j.ijpharm.2014.04.033. DOI: https://doi.org/10.1016/j.ijpharm.2014.04.033
Wegner, T. I.; Peterson, M. C. in: The Waite Group’s Fractal Creations: Explore the Magic of Fractals on Your PC, 1st ed.; Waite Group Press: Mill Valley, CA, 1991.
Ou, X. Mater. Sci. Technol. 2017, 33, 822–835. DOI: https://doi.org/10.1080/02670836.2016.1204064. DOI: https://doi.org/10.1080/02670836.2016.1204064
Cornette, V.; Ramirez-Pastor, A. J.; Nieto, F. Phys. A (Amsterdam, Neth.) 2003, 327, 71–75. DOI: https://doi.org/https://doi.org/10.1016/S0378-4371(03)00453-9. DOI: https://doi.org/10.1016/S0378-4371(03)00453-9
Kurrer, C.; Schulten, K. Phys. Rev. E 1993, 48, 614–617. DOI: https://doi.org/10.1103/PhysRevE.48.614. DOI: https://doi.org/10.1103/PhysRevE.48.614
Lorenz, C. D.; May, R.; Ziff, R. M. J. Stat. Phys. 2000, 98, 961–970. DOI: https://doi.org/10.1023/A:1018648130343. DOI: https://doi.org/10.1023/A:1018648130343
Villalobos, R.; Ganem, A.; Cordero, S.; Vidales, A. M.; Domínguez, A. Drug Dev. Ind. Pharm. 2005, 31, 535-543. DOI: https://doi.org/10.1080/03639040500215693
Bruce, A. D.; Jackson, A.; Ackland, G.; Wilding, N. Phys. Rev. E. 2000, 61, 906–919. DOI: https://doi.org/10.1103/PhysRevE.61.906. DOI: https://doi.org/10.1103/PhysRevE.61.906
S Szortyka, M. M.; Girardi, M.; Fiore, C. E.; Henriques, V. B.; Barbosa, M. C. in: Polymorphism in Lattice Models. In Advances in Chemical Physics; Stanley, H. E., Ed.; Wiley, 2013; 152, 385–398. DOI: https://doi.org/10.1002/9781118540350.ch15. DOI: https://doi.org/10.1002/9781118540350.ch15
Underwood, T. L.; Ackland, G. J. Phys. Conf. Ser. 2014, 640. DOI: https://doi.org/10.1088/1742-6596/640/1/012030. DOI: https://doi.org/10.1088/1742-6596/640/1/012030
Maghsoodi, M.; Barghi, L. Adv. Pharm. Bull. 2011, 1, 27–33. DOI: https://doi.org/10.5681/apb.2011.004.
Gonçalves-Araújo, T.; Rajabi-Siahboomi, A.; Caraballo, I. AAPS PharmSciTech, 2010, 11, 558–562. DOI: https://doi.org/10.1208/s12249-010-9408-x. DOI: https://doi.org/10.1208/s12249-010-9408-x
Mason, L.; Campiñez, M. D.; Pygall, S. R.; Burley, J.; Gupta, P.; Storey, D. E.; Caraballo, I.; Melia, C. Eur. J. Pharm. Bio. 2015, 94, 485–492. DOI: https://doi.org/10.1016/j.ejpb.2015.06.019. DOI: https://doi.org/10.1016/j.ejpb.2015.06.019
Misra, P. in: Physics of Condensed Matter; Academic Press, 2011.
Bunde, A.; Havlin, S.; Nossal, R.; Stanley, H. E.; J. Chem. Phys. 1985, 83, 5909–5913. DOI: https://doi.org/10.1063/1.449622. DOI: https://doi.org/10.1063/1.449622
Sales, J. L.; Uñac, R. O.; Gargiulo, M. V; Bustos, V.; Zgrablich, G. Langmuir. 1996, 12, 95–100. DOI: https://doi.org/10.1021/la940859s. DOI: https://doi.org/10.1021/la940859s
Kosmidis, K.; Argyrakis, P.; Macheras, P. J. Chem. Phys. 2003, 119, 6373–6377. DOI: https://doi.org/10.1063/1.1603731. DOI: https://doi.org/10.1063/1.1603731
Reynolds, T. D.; Mitchell, S. A.; Balwinski, K. M. Drug Dev. Ind. Pharm. 2002, 28, 457–466. DOI: https://doi.org/10.1081/DDC-120003007. DOI: https://doi.org/10.1081/DDC-120003007
Mazur geb. Windolf, H.; Chamberlain, R.; Quodbach, J. Pharm. (London, U. K.) 2021, 13, 1453. DOI: https://doi.org/10.3390/pharmaceutics13091453. DOI: https://doi.org/10.3390/pharmaceutics13091453
P, N. R.; K, P.; T, R. R.; Reddy, B. C. S.; V, S.; M, L. N. Int. J. Pharm. Sci. Nanotechnol. 2010, 3, 872–876. DOI: https://doi.org/10.37285/ijpsn.2010.3.1.11. DOI: https://doi.org/10.37285/ijpsn.2010.3.1.11
Goyanes A.; Martínez, P.R.; Buanz, A.; Basit, A.W.; Gaiford, S. Int. J. Pharm. 2015, 494, 657-66. DOI: https://doi.org/10.1016/j.ijpharm.2015.04.069. DOI: https://doi.org/10.1016/j.ijpharm.2015.04.069
Golovnev, A.; Suss, M. E. J. Chem. Phys. 2018, 149, 144904. DOI: https://doi.org/10.1063/1.5041326. DOI: https://doi.org/10.1063/1.5041326
Grest, G.; Cohen, M. Adv. Chem. Phys. 2007, 48, 455–525. DOI: https://doi.org/10.1002/9780470142684.ch6. DOI: https://doi.org/10.1002/9780470142684.ch6
Cohen, M. H.; Turnbull, D. J. Chem. Phys. 1959, 31, 1164–1169. DOI: https://doi.org/10.1063/1.1730566. DOI: https://doi.org/10.1063/1.1730566
Sykes, M. F.; Essam, J. W. Phys. Rev. 1964, 133, A310–A315. DOI: https://doi.org/10.1103/PhysRev.133.A310. DOI: https://doi.org/10.1103/PhysRev.133.A310
D S Gaunt; M F Sykes. J. Phys. A. Math. Gen. 1983, 16, 783. DOI: https://doi.org/10.1088/0305-4470/16/4/016. DOI: https://doi.org/10.1088/0305-4470/16/4/016
Adler, J.; Meir, Y.; Aharony, A.; Harris, A. B.; Klein, L. J. Stat. Phys. 1990, 58, 511–538. DOI: https://doi.org/10.1007/BF01112760. DOI: https://doi.org/10.1007/BF01112760
Lorenz, C. D.; Ziff, R. M. Phys. Rev. E. 1998, 57, 230–236. DOI: https://doi.org/10.1103/PhysRevE.57.230. DOI: https://doi.org/10.1103/PhysRevE.57.230
Zhang, J.; Cui, S. Axioms. 2023, 12, 481. DOI: https://doi.org/10.3390/axioms12050481. DOI: https://doi.org/10.3390/axioms12050481
Leuenberger, H.; Bonny, J. D.; Kolb, M. Int. J. Pharm. 1995, 115, 217–224. DOI: https://doi.org/10.1016/0378-5173(94)00266-8. DOI: https://doi.org/10.1016/0378-5173(94)00266-8
Wei, Z.; Yu, J.; Lu, Y.; Han, J.; Wang, C.; Liu, X. Mater. Des. 2021, 198, 109287. DOI: https://doi.org/https://doi.org/10.1016/j.matdes.2020.109287. DOI: https://doi.org/10.1016/j.matdes.2020.109287
Van der Marck, S. Int. J. Mod. Phys. C. 1998, 9, 4,529-240. DOI: https://doi.org/10.1142/S0129183198000431. DOI: https://doi.org/10.1142/S0129183198000431
Lundow, P.; Markstrom, K.; Rosengren, A. Philos. Mag. 2009, 89, 2009–2042. DOI: https://doi.org/10.1080/14786430802680512. DOI: https://doi.org/10.1080/14786430802680512
Vazquez, G. J. Rev. Mex. Fis. 1990, 36, 572–578.
Jorgensen, W. L.; Duffy, E. M. Bioorg. Med. Chem. Lett. 2000, 10, 1155–1158. DOI: https://doi.org/https://doi.org/10.1016/S0960-894X(00)00172-4. DOI: https://doi.org/10.1016/S0960-894X(00)00172-4
Makarov, V. A.; Andrews, B. K.; Smith, P. E.; Pettitt, B. M. Biophys. J. 2000, 79, 2966–2974. DOI: https://doi.org/https://doi.org/10.1016/S0006-3495(00)76533-7. DOI: https://doi.org/10.1016/S0006-3495(00)76533-7
Yin, X.; Li, H.; Guo, Z.; Wu, L.; Chen, F.; Matas, M.; Shao, Q.; Xiao, T.; York, P.; He, Y.; Zhang, J. AAPSJ, 2013, 15. DOI: https://doi.org/10.1208/s12248-013-9498-y. DOI: https://doi.org/10.1208/s12248-013-9498-y


Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Saul Jiménez Jiménez, Salomón Cordero-Sánchez, Rafael Villalobos García, J. Gerardo Mejía Hernández, Juan Villegas-Cortez

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
