Why Measure Particle-by-Particle Electrochemistry? A Tutorial and Perspective

Authors

DOI:

https://doi.org/10.29356/jmcs.v67i4.2014

Keywords:

Single-entity electrochemistry, nano-impact, nanoelectrochemistry, electroactivity, electrocatalysis

Abstract

Single-particle electrochemistry has become an important area of research with the potential to determine the rules of electrochemical reactivity at the nanoscale. These techniques involve addressing one entity at the time, as opposed to the conventional electrochemical experiment where a large number of molecules interact with an electrode surface. These experiments have been made feasible  through the utilization of ultramicroelectrode (UMEs), i.e., electrodes with at least one dimension, e.g., diameter of 30 μm or less. This paper provides a theoretical and practical introduction to single entity electrochemistry (SEE), with emphasis on collision experiments between suspended NPs and UMEs to introduce concepts and techniques that are used in several SEE experimental modes. We discuss the intrinsically small currents, below 1 nA, that result from the electroactive area of single entities in the nanometer scale. Individual nanoparticles can be detected using the difference in electrochemical reactivity between a substrate and a nanoparticle (NP). These experiments show steady-state behavior of single NPs that result in discrete current changes or steps. Likewise, the NP can have transient interactions with the substrate electrode that result in current blips. We review the effect of diffusion, the main mass transport process that limits NP/electrode interactions. Also, we pointed out the implications of aggregation and tunneling in the experiments. Finally, we provid a perspective on the possible applications of single-element electrochemistry of electrocatalyst.

 

Resumen.  La electroquímica de partículas individuales se ha convertido en un área importante de investigación con el potencial de facilitar la comprensión de las reglas de reactividad electroquímica en la escala de nanómetros. Estas técnicas implican abordar una entidad a la vez, en contraste con el experimento electroquímico convencional en el que un gran número de moléculas interactúa con la superficie de un electrodo. Estos experimentos se han vuelto posibles gracias al uso de ultramicroelectrodos (UME, por sus siglas en inglés), es decir, electrodos con al menos una dimensión, como, por ejemplo, el diámetro de 30 μm o menos. Este artículo proporciona una introducción teórica y práctica a la electroquímica de entidad única (SEE, por sus siglas en inglés), con énfasis en los experimentos de colisión entre nanopartículas (NPs) suspendidas y UME para introducir conceptos y técnicas utilizadas en varios modos experimentales de SEE. Discutimos las corrientes intrínsecamente pequeñas, por debajo de 1 nA, que resultan de la superficie electroactiva de entidades únicas en la escala de nanómetros. Las nanopartículas individuales pueden detectarse mediante la diferencia en reactividad electroquímica entre el sustrato y las nanopartículas. Estos experimentos muestran el comportamiento en estado estacionario de NPs individuales que resulta en cambios discretos de corriente o escalones. De manera similar, la NP puede tener interacciones transitorias con el electrodo de sustrato que dan lugar a picos de corriente. Revisamos el efecto de la difusión, el principal proceso de transporte de masa que limita las interacciones NP/electrodo. Además, señalamos las implicaciones de la agregación y del efecto túnel cuántico en los experimentos. Finalmente, ofrecemos una perspectiva sobre las posibles aplicaciones de la electroquímica de entidad única en electrocatálisis.

Downloads

Download data is not yet available.

Author Biography

Mario A Alpuche Aviles, University of Nevada, Reno

Associate Professor

Department of Chemistry

References

Huang, K.; Shin, K.; Henkelman, G.; Crooks, R. M. ACS Nano. 2021, 1, 17926–17937. DOI: https://doi.org/10.1021/acsnano.1c06281

Baker, L. A. J. Am. Chem. Soc. 2018, 140, 15549–15559. DOI: https://doi.org/10.1021/jacs.8b09747

Faraday Discuss. 2016, 193, 553–555. DOI: https://doi.org/10.1039/C6FD90080A

Neher, E.; Sakmann, B. Nature 1976, 260, 799–802. DOI: https://doi.org/10.1038/260799a0

Fink, C. G.; Prince, J. D. Trans. Am. Electrochem. Soc. 1929, 54, 315.

Kamat, P. V. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. 1985, 81, 509. DOI: https://doi.org/10.1039/f19858100509

Koelle, U.; Moser, J.; Graetzel, M. Inorg. Chem. 1985, 24, 2253–2258. DOI: https://doi.org/10.1021/ic00208a026

Dunn, W. W.; Aikawa, Y.; Bard, A. J. J. Am. Chem. Soc. 1981, 103, 3456–3459. DOI: https://doi.org/10.1021/ja00402a033

Heyrovsky, M.; Jirkovsky, J.; Mueller, B. R. Langmuir. 1995, 11, 4293–4299. DOI: https://doi.org/10.1021/la00011a021

Heyrovsky, M.; Jirkovsky, J.; Struplova-Bartackova, M. Langmuir. 1995, 11, 4300–4308. DOI: https://doi.org/10.1021/la00011a022

Heyrovsky, M.; Jirkovsky, J.; Struplova-Bartackova, M. Langmuir. 1995, 11, 4309–4312. DOI: https://doi.org/10.1021/la00011a023

Hellberg, D.; Scholfz F.; Schauer, F.; Weitschies, W. Electrochem. Commun. 2002, 4, 305–309. DOI: https://doi.org/10.1016/S1388-2481(02)00279-5

Fan, F.-R. F.; Bard, A. J. Science (80-. ). 1995, 267, 871–874. DOI: https://doi.org/10.1126/science.267.5199.871

Quinn, B. M.; van’t Hof, P. G.; Lemay, S. G. J. Am. Chem. Soc. 2004, 126, 8360–8361. DOI: https://doi.org/10.1021/ja0478577

Xiao, X.; Bard, A. J. J. Am. Chem. Soc. 2007, 129, 9610–9612. DOI: https://doi.org/10.1021/ja072344w

Kang, S.; Nieuwenhuis, A. F.; Mathwig, K.; Mampallil, D.; Kostiuchenko, Z. A.; Lemay, S. G. Faraday Discuss. 2016, 193, 41–50. DOI: https://doi.org/10.1039/C6FD00075D

Byers, J. C.; Paulose Nadappuram, B.; Perry, D.; McKelvey, K.; Colburn, A. W.; Unwin, P. R. Anal. Chem. 2015, 87, 10450–10456. DOI: https://doi.org/10.1021/acs.analchem.5b02569

Chen, Q.; McKelvey, K.; Edwards, M. A.; White, H. S. J. Phys. Chem. C 2016, 120, 17251–17260. DOI: https://doi.org/10.1021/acs.jpcc.6b05483

Sun, P.; Mirkin, M. V. J. Am. Chem. Soc. 2008, 130, 8241–8250. DOI: https://doi.org/10.1021/ja711088j

White, H. S.; McKelvey, K. Curr. Opin. Electrochem. 2018, 7, 48–53. DOI: https://doi.org/10.1016/j.coelec.2017.10.021

Percival, S. J.; Zhang, B. J. Phys. Chem. C 2016, 120, 20536–20546. DOI: https://doi.org/10.1021/acs.jpcc.5b11330

Guo, Z.; Percival, S. J.; Zhang, B. J. Am. Chem. Soc. 2014, 136, 8879–8882. DOI: https://doi.org/10.1021/ja503656a

Blanchard, P.-Y.; Sun, T.; Yu, Y.; Wei, Z.; Matsui, H.; Mirkin, M. V. Langmuir. 2016, 32, 2500–2508. DOI: https://doi.org/10.1021/acs.langmuir.5b03858

Sun, T.; Yu, Y.; Zacher, B. J.; Mirkin, M. V. Angew. Chemie Int. Ed. 2014, 53, 14120–14123. DOI: https://doi.org/10.1002/anie.201408408

Li, Y.; Cox, J. T.; Zhang, B. J. Am. Chem. Soc. 2010, 132, 3047–3054. DOI: https://doi.org/10.1021/ja909408q

Georgescu, N. S.; Robinson, D. A.; White, H. S. J. Phys. Chem. C 2021, 125, 19724–19732. DOI: https://doi.org/10.1021/acs.jpcc.1c05020

Zhou, M.; Yu, Y.; Hu, K.; Xin, H. L.; Mirkin, M. V. Anal. Chem. 2017, 89, 2880–2885. DOI: https://doi.org/10.1021/acs.analchem.6b04140

Glasscott, M. W.; Pendergast, A. D.; Goines, S.; Bishop, A. R.; Hoang, A. T.; Renault, C.; Dick, J. E. Nat. Commun. 2019, 10, 2650. DOI: https://doi.org/10.1038/s41467-019-10303-z

Pendergast, A. D.; Glasscott, M. W.; Renault, C.; Dick, J. E. Electrochem. Commun. 2019, 98, 1–5.

Kim, J.; Dick, J. E.; Bard, A. J. Acc. Chem. Res. 2016, 49, 2587–2595. DOI: https://doi.org/10.1021/acs.accounts.6b00340

Kim, B.-K.; Boika, A.; Kim, J.; Dick, J. E.; Bard, A. J. J. Am. Chem. Soc. 2014, 136, 4849–4852.

Robinson, D. A.; Kondajji, A. M.; Castañeda, A. D.; Dasari, R.; Crooks, R. M.; Stevenson, K. J. J. Phys. Chem. Lett. 2016, 7, 2512–2517. DOI: https://doi.org/10.1021/acs.jpclett.6b01131

Karunathilake, N.; Gutierrez‐Portocarrero, S.; Subedi, P.; Alpuche‐Aviles, M. A. ChemElectroChem 2020, 7, 2248–2257. DOI: https://doi.org/10.1002/celc.202000031

Fernando, A.; Chhetri, P.; Barakoti, K. K.; Parajuli, S.; Kazemi, R.; Alpuche-Aviles, M. A. J. Electrochem. Soc. 2016, 163, H3025–H3031.

Fernando, A.; Parajuli, S.; Alpuche-Aviles, M. A. J. Am. Chem. Soc. 2013, 135, 10894–10897. DOI: https://doi.org/10.1021/ja4007639

Sokolov, S. V.; Tschulik, K.; Batchelor-McAuley, C.; Jurkschat, K.; Compton, R. G. Anal. Chem. 2015, 87, 10033–10039.

Sokolov, S. V.; Kätelhön, E.; Compton, R. G. J. Phys. Chem. C. 2015, 119, 25093–25099. DOI: https://doi.org/10.1021/acs.jpcc.5b07893

Zhou, Y.-G. G.; Rees, N. V.; Compton, R. G. ChemPhysChem. 2011, 12, 2085–2087.

Zhou, H.; Fan, F.-R. R. F.; Bard, A. J. J. Phys. Chem. Lett. 2010, 1, 2671–2674. DOI: https://doi.org/10.1021/jz100963y

Haddou, B.; Rees, N. V.; Compton, R. G. Phys. Chem. Chem. Phys. 2012, 14, 13612. DOI: https://doi.org/10.1039/c2cp42585h

Kim, J.; Kim, B.-K. K.; Cho, S. K.; Bard, A. J. J. Am. Chem. Soc. 2014, 136, 8173–8176. DOI: https://doi.org/10.1021/ja503314u

Xiao, X.; Fan, F.-R. F.; Zhou, J.; Bard, A. J. J. Am. Chem. Soc. 2008, 130, 16669–16677. DOI: https://doi.org/10.1021/ja8051393

Zhou, Y.-G.; Rees, N. V.; Compton, R. G. ChemPhysChem. 2011, 12, 2085–2087.

Wang, Q.; Bae, J. H.; Nepomnyashchii, A. B.; Jia, R.; Zhang, S.; Mirkin, M. V. J. Phys. Chem. Lett. 2020, 11, 2972–2976. DOI: https://doi.org/10.1021/acs.jpclett.0c00585

Ma, H.; Ma, W.; Chen, J. F.; Liu, X. Y.; Peng, Y. Y.; Yang, Z. Y.; Tian, H.; Long, Y. T. J. Am. Chem. Soc. 2018, 140, 5272–5279. DOI: https://doi.org/10.1021/jacs.8b01623

Colón-Quintana, G. S.; Clarke, T. B.; Dick, J. E. Nat. Commun. 2023, 14, 705. DOI: https://doi.org/10.1038/s41467-023-35964-9

Glasscott, M. W.; Pendergast, A. D.; Dick, J. E. ACS Appl. Nano Mater. 2018, 1, 5702–5711. DOI: https://doi.org/10.1021/acsanm.8b01308

Pendergast, A. D.; Glasscott, M. W.; Renault, C.; Dick, J. E. Electrochem. Commun. 2019, 98, 1–5. DOI: https://doi.org/10.1016/j.elecom.2018.11.005

Toh, H. S.; Compton, R. G. Chem. Sci. 2015, 6, 5053–5058. DOI: https://doi.org/10.1039/C5SC01635E

Kim, B.-K. K.; Kim, J.; Bard, A. J. J. Am. Chem. Soc. 2015, 137, 2343–2349. DOI: https://doi.org/10.1021/ja512065n

Mathuri, S.; Zhu, Y.; Margoni, M. M.; Li, X. Front. Chem. 2021, 9. DOI: https://doi.org/10.3389/fchem.2021.688320

Patrice, F. T.; Qiu, K.; Ying, Y.-L.; Long, Y.-T. Annu. Rev. Anal. Chem. 2019, 12, 347–370. DOI: https://doi.org/10.1146/annurev-anchem-061318-114902

Ren, H.; Edwards, M. A. Curr. Opin. Electrochem. 2021, 25, 100632. DOI: https://doi.org/10.1016/j.coelec.2020.08.014

Cheng, W.; Compton, R. G. TrAC Trends Anal. Chem. 2014, 58, 79–89. DOI: https://doi.org/10.1016/j.trac.2014.01.008

Anderson, T. J.; Zhang, B. Acc. Chem. Res. 2016, 49, 2625–2631. DOI: https://doi.org/10.1021/acs.accounts.6b00334

Alpuche‐Aviles, M. A., in: Encyclopedia of Electrochemistry, Wiley, 2021, 1–30. DOI: https://doi.org/10.1002/9783527610426.bard030110

Singh, P. S.; Lemay, S. G. Anal. Chem. 2016, 88, 5017–5027. DOI: https://doi.org/10.1021/acs.analchem.6b00683

Sekretareva, A. Sensors and Actuators Reports. 2021, 3, 100037. DOI: https://doi.org/10.1016/j.snr.2021.100037

Gao, R.; Edwards, M. A.; Qiu, Y.; Barman, K.; White, H. S. J. Am. Chem. Soc. 2020, 142, 8890–8896. DOI: https://doi.org/10.1021/jacs.0c02202

Wahab, O. J.; Kang, M.; Unwin, P. R. Curr. Opin. Electrochem. 2020, 22, 120–128. DOI: https://doi.org/10.1016/j.coelec.2020.04.018

Dick, J. E.; Renault, C.; Bard, A. J. J. Am. Chem. Soc. 2015, 137, 8376–8379. DOI: https://doi.org/10.1021/jacs.5b04545

Kim, B.-K.; Boika, A.; Kim, J.; Dick, J. E.; Bard, A. J. J. Am. Chem. Soc. 2014, 136, 4849–4852. DOI: https://doi.org/10.1021/ja500713w

Boika, A.; Thorgaard, S. N.; Bard, A. J. J. Phys. Chem. B 2013, 117, 4371–4380. DOI: https://doi.org/10.1021/jp306934g

Zhou, Y.-G.; Rees, N. V.; Compton, R. G. Angew. Chemie. 2011, 123, 4305–4307. DOI: https://doi.org/10.1002/ange.201100885

Sokolov, S. V.; Tschulik, K.; Batchelor-McAuley, C.; Jurkschat, K.; Compton, R. G. Anal. Chem. 2015, 87, 10033–10039. DOI: https://doi.org/10.1021/acs.analchem.5b02639

Jiao, X.; Lin, C.; Young, N. P.; Batchelor-McAuley, C.; Compton, R. G. J. Phys. Chem. C 2016, 120, 13148–13158. DOI: https://doi.org/10.1021/acs.jpcc.6b04281

Kätelhön, E.; Sepunaru, L.; Karyakin, A. A.; Compton, R. G. ACS Catal. 2016, 6 , 8313–8320. DOI: https://doi.org/10.1021/acscatal.6b02633

Stockmann, T. J.; Angelé, L.; Brasiliense, V.; Combellas, C.; Kanoufi, F. Angew. Chemie Int. Ed. 2017, 56, 13493–13497. DOI: https://doi.org/10.1002/anie.201707589

Lin, C.; Sepunaru, L.; Kätelhön, E.; Compton, R. G. J. Phys. Chem. Lett. 2018, 9, 2814–2817. DOI: https://doi.org/10.1021/acs.jpclett.8b01199

Batchelor-McAuley, C.; Ellison, J.; Tschulik, K.; Hurst, P. L.; Boldt, R.; Compton, R. G. Analyst. 2015, 140, 5048–5054. DOI: https://doi.org/10.1039/C5AN00474H

Zhang, F.; Edwards, M. A.; Hao, R.; White, H. S.; Zhang, B. J. Phys. Chem. C 2017, 121, 23564–23573. DOI: https://doi.org/10.1021/acs.jpcc.7b08492

Park, J. H.; Zhou, H.; Percival, S. J.; Zhang, B.; Fan, F. R. F.; Bard, A. J. Anal. Chem. 2013, 85, 964–970. DOI: https://doi.org/10.1021/ac3025976

Zhou, H.; Park, J. H.; Fan, F. R. F.; Bard, A. J. J. Am. Chem. Soc. 2012, 134, 13212–13215. DOI: https://doi.org/10.1021/ja305573g

Trojánek, A.; Mareček, V.; Samec, Z. Electrochem. Commun. 2018, 86, 113–116. DOI: https://doi.org/10.1016/j.elecom.2017.11.026

Fernando, A.; Chhetri, P.; Barakoti, K. K.; Parajuli, S.; Kazemi, R.; Alpuche-Aviles, M. A. J. Electrochem. Soc. 2016, 163, H3025–H3031. DOI: https://doi.org/10.1149/2.0041604jes

Kwon, S. J.; Zhou, H.; Fan, F.-R. F.; Vorobyev, V.; Zhang, B.; Bard, A. J. Phys. Chem. Chem. Phys. 2011, 13, 5394.

Laborda, E.; Molina, A.; Espín, V. F.; Martínez-Ortiz, F.; García de la Torre, J.; Compton, R. G. Angew. Chemie Int. Ed. 2017, 56, 782–785. DOI: https://doi.org/10.1002/anie.201610185

Ortiz-Ledón, C. A.; Zoski, C. G. Anal. Chem. 2017, 89, 6424–6431. DOI: https://doi.org/10.1021/acs.analchem.7b00188

Park, J. H.; Boika, A.; Park, H. S.; Lee, H. C.; Bard, A. J. J. Phys. Chem. C 2013, 117, 6651–6657. DOI: https://doi.org/10.1021/jp3126494

Bobbert, P. A.; Wind, M. M.; Vlieger, J. Phys. A Stat. Mech. its Appl. 1987, 141, 58–72. DOI: https://doi.org/10.1016/0378-4371(87)90261-5

Zhou, Y.-G.; Rees, N. V.; Compton, R. G. ChemPhysChem. 2011, 12, 2085–2087. DOI: https://doi.org/10.1002/cphc.201100282

Gutierrez-Portocarrero, S.; Sauer, K.; Karunathilake, N.; Subedi, P.; Alpuche-Aviles, M. A. Anal. Chem. 2020, 92, 8704–8714. DOI: https://doi.org/10.1021/acs.analchem.9b05238

Little, C. A.; Xie, R.; Batchelor-McAuley, C.; Kätelhön, E.; Li, X.; Young, N. P.; Compton, R. G. Phys. Chem. Chem. Phys. 2018, 20, 13537–13546. DOI: https://doi.org/10.1039/C8CP01561A

Oja, S. M.; Robinson, D. A.; Vitti, N. J.; Edwards, M. A.; Liu, Y.; White, H. S.; Zhang, B. J. Am. Chem. Soc. 2017, 139, 708–718. DOI: https://doi.org/10.1021/jacs.6b11143

Kanokkanchana, K.; Saw, E. N.; Tschulik, K. ChemElectroChem. 2018, 5, 3000–3005. DOI: https://doi.org/10.1002/celc.201800738

Fleischmann, M.; Oldfield, J. W. J. Electroanal. Chem. Interfacial Electrochem. 1970, 27, 207–218. DOI: https://doi.org/10.1016/S0022-0728(70)80183-8

Kwon, S. J.; Zhou, H.; Fan, F. R. F.; Vorobyev, V.; Zhang, B.; Bard, A. J. Phys. Chem. Chem. Phys. 2011, 13, 5394–5402. DOI: https://doi.org/10.1039/c0cp02543g

Robinson, D. A.; Liu, Y.; Edwards, M. A.; Vitti, N. J.; Oja, S. M.; Zhang, B.; White, H. S. J. Am. Chem. Soc. 2017, 139, 16923–16931. DOI: https://doi.org/10.1021/jacs.7b09842

Bard, A. J.; Faulkner, L. R.; White, H. S. 3rd ed.; Wiley, 2022.

Wightman, R. M.; Wipf. In: Electroanalytical Chemistry. Marcel Dekker, INC: New York, 1989; 267–353.

Wightman, R. M. Anal. Chem. 1981, 53, 1125A-1134A. DOI: https://doi.org/10.1021/ac00232a004

Saito, Y. Rev. Polarogr. 1968, 15, 177–187. DOI: https://doi.org/10.5189/revpolarography.15.177

Heyrovský, J.; Ilkovič, D. Collect. Czechoslov. Chem. Commun. 1935, 7, 198–214. DOI: https://doi.org/10.1135/cccc19350198

Ilkovič, D. Collect. Czechoslov. Chem. Commun. 1934, 6, 498–513. DOI: https://doi.org/10.1135/cccc19340498

MacGillavry, D.; Rideal, E. K. Recl. des Trav. Chim. des Pays-Bas. 1937, 56, 1013–1021. DOI: https://doi.org/10.1002/recl.19370561011

Ellison, J.; Tschulik, K.; Stuart, E. J. E.; Jurkschat, K.; Omanović, D.; Uhlemann, M.; Crossley, A.; Compton, R. G. ChemistryOpen. 2013, 2, 69–75. DOI: https://doi.org/10.1002/open.201300005

Bartlett, T. R.; Sokolov, S. V.; Compton, R. G. ChemistryOpen. 2015, 4, 600–605. DOI: https://doi.org/10.1002/open.201500061

Tschulik, K.; Haddou, B.; Omanović, D.; Rees, N. V.; Compton, R. G. Nano Res. 2013, 6, 836–841. DOI: https://doi.org/10.1007/s12274-013-0361-3

Kleijn, S. E. F.; Serrano-Bou, B.; Yanson, A. I.; Koper, M. T. M. Langmuir 2013, 29, 2054–2064. DOI: https://doi.org/10.1021/la3040566

Alemán, J. V.; Chadwick, A. V.; He, J.; Hess, M.; Horie, K.; Jones, R. G.; Kratochvíl, P.; Meisel, I.; Mita, I.; Moad, G.; et al. Pure Appl. Chem. 2007, 79, 1801–1829. DOI: https://doi.org/10.1351/pac200779101801

Hunter, R. J. in: Foundations of Colloid Science. Oxford University Press: New York, 1992.

Israelachvili, J. N. in: Intermolecular and Surface Forces. Academic Press: Burlington, MA, 2011.

Morrison, I. D.; Ross, S. in: Colloidal Dispersions: Suspensions, Emulsions, and Foams. Wiley: New York, 2002.

Lu, S.-M.; Peng, Y.-Y.; Ying, Y.-L.; Long, Y.-T. Anal. Chem. 2020, 92, 5621–5644. DOI: https://doi.org/10.1021/acs.analchem.0c00931

Mirkin, M. V.; Sun, T.; Yu, Y.; Zhou, M. Acc. Chem. Res. 2016, 49, 2328–2335. DOI: https://doi.org/10.1021/acs.accounts.6b00294

Lu, S.-M.; Chen, J.-F.; Wang, H.-F.; Hu, P.; Long, Y.-T. J. Phys. Chem. Lett. 2023, 14, 1113–1123. DOI: https://doi.org/10.1021/acs.jpclett.2c03479

Lu, S.-M.; Chen, J.-F.; Peng, Y.-Y.; Ma, W.; Ma, H.; Wang, H.-F.; Hu, P.; Long, Y.-T. J. Am. Chem. Soc. 2021, 143, 12428–12432. DOI: https://doi.org/10.1021/jacs.1c02588

Ma, W.; Ma, H.; Chen, J.-F.; Peng, Y.-Y.; Yang, Z.-Y.; Wang, H.-F.; Ying, Y.-L.; Tian, H.; Long, Y.-T. Chem. Sci. 2017, 8, 1854–1861. DOI: https://doi.org/10.1039/C6SC04582K

Hill, C. M.; Kim, J.; Bard, A. J. J. Am. Chem. Soc. 2015, 137, 11321–11326. DOI: https://doi.org/10.1021/jacs.5b04519

Kätelhön, E.; Compton, R. G. ChemElectroChem. 2015, 2, 64–67. DOI: https://doi.org/10.1002/celc.201402280

Robinson, D. A.; Edwards, M. A.; Ren, H.; White, H. S. ChemElectroChem. 2018, 5, 3059–3067. DOI: https://doi.org/10.1002/celc.201800696

Wang, C.; Pagel, R.; Bahnemann, D. W.; Dohrmann, J. K. J. Phys. Chem. B 2004, 108, 14082–14092. DOI: https://doi.org/10.1021/jp048046s

Wang, C.; Pagel, R.; Dohrmann, J. K.; Bahnemann, D. W. Comptes Rendus Chim. 2006, 9, 761–773. DOI: https://doi.org/10.1016/j.crci.2005.02.053

Simmons, J. G. J. Appl. Phys. 1963, 34, 1793–1803. DOI: https://doi.org/10.1063/1.1702682

Dick, J. E.; Hilterbrand, A. T.; Boika, A.; Upton, J. W.; Bard, A. J. Proc. Natl. Acad. of Sci. U.S.A. 2015, 112, 5303-5308. DOI: 10.1073/pnas.1504294112. DOI: https://doi.org/10.1073/pnas.1504294112

Dick, J. E.; Hilterbrand, A. T.; Strawsine, L. M.; Upton, J. W.; Bard, A. J. Proc. Natl. Acad. of Sci. U.S.A. 113, 6403-6408. DOI: 10.1073/pnas.1605002113. DOI: https://doi.org/10.1073/pnas.1605002113

Glasscott, M. W.; Hill, C. M.; Dick, J. E. J. Phys. Chem. C. 2020, 124, 14380–14389. DOI: https://doi.org/10.1021/acs.jpcc.0c03518

Zhou, M.; Dick, J. E.; Bard, A. J. J. Am. Chem. Soc. 2017, 139, 17677–17682. DOI: https://doi.org/10.1021/jacs.7b10646

Vitti, N. J.; Majumdar, P.; White, H. S. Langmuir. 2023, 39, 1173–1180. DOI: https://doi.org/10.1021/acs.langmuir.2c02946

×

Downloads

Published

2023-10-31

Issue

Section

Special Issue. Tribute to the electrochemical emeritus researchers of SNI
x

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...