Electrochemical Impedance Characterization of LiMnPO4 Electrodes with Different Additions of MWCNTs in an Aqueous Electrolyte

  • Jesus Israel Barraza-Fierro Texas A&M
  • Tse-Ming Chu Texas A&M
  • Homero Castaneda-Lopez Texas A&M
Keywords: electrochemical impedance spectroscopy, coverage model, aqueous rechargeable lithium battery, lithium magnesium phosphate, lithium intercalation, oxygen evolution reaction

Abstract

An electrochemical characterization was performed in electrodes with different weight percentages of LiMnPO4 and multi-walled carbon nanotubes (MWCNTs) in aqueous solution. The redox potential of LiMnPO4 cathode is close to the electrolyte decomposition, which provides an ideal scenario to study multiple reactions on a single electrode surface involving parallel steps and species transformation in both solid and liquid state. Different processes were deconvoluted using cyclic voltammetry and electrochemical impedance spectroscopy. In addition, a surface coverage model was employed to theoretically quantify the limiting step of the electrochemical process. The results show the addition of MWCNTs increased the electrical conductivity of the cathode and improved the intercalation process in LiMnPO4. The optimal concentrations of MWCNTs, which enhanced the electrical properties and decreased the water oxidation effect, were 20 and 40 wt.%.

References

Alias, N.; Mohamad, A. A. J. Power Sources 2015, 274 (Supplement C), 237-251.

Wang, G. J.; Zhao, N. H.; Yang, L. C.; Wu, Y. P.; Wu, H. Q.; Holze, R. Electrochim. Acta 2007, 52 (15), 4911-4915.

Broussely, M.; Planchat, J. P.; Rigobert, G.; Virey, D.; Sarre, G. J. Power Sources 1997, 68 (1), 8-12.

Kim, H.; Hong, J.; Park, K. Y.; Kim, H.; Kim, S. W.; Kang, K. Chem. Rev. 2014, 114 (23), 11788-11827.

Castaneda, H.; Tan, B.; Saunders, J. Electrochim. Acta 2010, 55 (13), 4137-4143.

Köhler, J.; Makihara, H.; Uegaito, H.; Inoue, H.; Toki, M. Electrochim. Acta 2000, 46 (1), 59-65.

Wang, Y.; Yi, J.; Xia, Y. Adv. Energy Mater. 2012, 2 (7), 830-840.

Luo, J. Y.; Cui, W. J.; He, P.; Xia, Y. Y. Nat. Chem. 2010, 2 (9), 760-765.

Wainwright, D. D., R. Mat. Tech. 1996, 11, 9-12.

Wang, Y.-g.; Luo, J.-y.; Wang, C.-x.; Xia, Y.-y. J. Electrochem. Soc. 2006, 153 (8), A1425-A1431.

Yan, J.; Wang, J.; Liu, H.; Bakenov, Z.; Gosselink, D.; Chen, P. J. Power Sources 2012, 216, 222-226.

Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144 (5), 1609-1613.

Yuan, L.-X.; Wang, Z.-H.; Zhang, W.-X.; Hu, X.-L.; Chen, J.-T.; Huang, Y.-H.; Goodenough, J. B. Energy Environ. Sci. 2011, 4 (2), 269-284.

Xu, J.; Dou, S.; Liu, H.; Dai, L. Nano Energy 2013, 2 (4), 439-442.

Doan, T. N. L.; Taniguchi, I. J. Power Sources 2011, 196 (3), 1399-1408.

Aravindan, V.; Gnanaraj, J.; Lee, Y.-S.; Madhavi, S. J. Mater. Chem. A 2013, 1 (11), 3518-3539.

Yonemura, M.; Yamada, A.; Takei, Y.; Sonoyama, N.; Kanno, R. J. Electrochem. Soc. 2004, 151 (9), A1352-A1356.

Barpanda, P.; Djellab, K.; Recham, N.; Armand, M.; Tarascon, J.-M. J. Mater. Chem. 2011, 21 (27), 10143-10152.

Rangappa, D.; Sone, K.; Zhou, Y.; Kudo, T.; Honma, I. J. Mater. Chem. 2011, 21 (39), 15813-15818.

Chiu, T.-M.; Barraza-Fierro, J. I.; Castaneda, H. Electrochim. Acta 2017, 253, 93-103.

Rosas, O.; Saunders, J.; Castaneda, H. Electrochim. Acta 2013, 113, 77-86.

M. D. Levi, G. Salitra, B. Markovsky, H. Teller,a D. Aurbach, Udo Heider,b and Lilia Heider J. Electrochem. Soc. 1999, 146, 1279-1289.

Gauthier, M.; Carney, T. J.; Grimaud, A.; Giordano, L.; Pour, N.; Chang, H.-H.; Fenning, D. P.; Lux, S. F.; Paschos, O.; Bauer, C.; Maglia, F.; Lupart, S.; Lamp, P.; Shao-Horn, Y. J. Phys. Chem. Lett. 2015, 6 (22), 4653-4672.

Jung, Y. S.; Cavanagh, A. S.; Dillon, A. C.; Groner, M. D.; George, S. M.; Lee, S. H. J. Electrochem. Soc. 2010, 157 (1), A75-A81.

Macdonald, D. D. Electrochim. Acta 2006, 51 (8–9), 1376-1388.

Macdonald, D. D. Electrochim. Acta 1990, 35 (10), 1509-1525.

Chen, Z.; Wang, L. Y.; Yin, G.; Lin, F.; Wang, C. IEEE Trans. on Energy Convers. 2013, 28 (4), 860-870.

Song, J.; Bazant, M. Z. Phys. Rev. Lett. 2018, 120 (11).

Bai, L.; Conway, B. E. Electrochim. Acta 1993, 38 (14), 1803-1815.

Epelboin, I.; Keddam, M.; Lestrade, J. C. Faraday Discuss. Chem. Soc. 1973, 56 (0), 264-275.

Hernandez-Maya, R.; Rosas, O.; Saunders, J.; Castaneda, H. J. Electrochem. Soc. 2015, 162 (4), A687-A696.

Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. Nat. Meth. 2012, 9 (7), 671-675.

Hjelm, A.-K.; Lindbergh, G. Electrochim. Acta 2002, 47 (11), 1747-1759.

Levi, M. D.; Salitra, G.; Markovsky, B.; Teller, H.; Aurbach, D.; Heider, U.; Heider, L. J. Electrochem. Soc. 1999, 146 (4), 1279-1289.

Barraza-Fierro, J. I.; Campillo-Illanes, B.; Li, X.; Castaneda, H. Metall. Mater. Trans. A 2014, 45 (9), 3981-3994.

Ahmad, A. L.; Ideris, N.; Ooi, B. S.; Low, S. C.; Ismail, A. J. Appl. Sci. 2014, 14 (12), 1299-1303.

Li, G.; Azuma, H.; Tohda, M. Electrochem. Solid-State Lett. 2002, 5 (6), A135-A137.

Oh, S.-M.; Oh, S.-W.; Yoon, C.-S.; Scrosati, B.; Amine, K.; Sun, Y.-K. Adv. Funct. Mater. 2010, 20 (19), 3260-3265.

Kwon, N.-H.; Drezen, T.; Exnar, I.; Teerlinck, I.; Isono, M.; Graetzel, M. Electrochem. Solid-State Lett. 2006, 9 (6), A277-A280.

Levi, M. D.; Aurbach, D. J. Phys. Chem. B 1997, 101 (23), 4630-4640.

Cheng, M.-Y.; Ye, Y.-S.; Chiu, T.-M.; Pan, C.-J.; Hwang, B.-J. J. Power Sources 2014, 253, 27-34.

Huang, J.; Li, Z.; Zhang, J.; Song, S.; Lou, Z.; Wu, N. J. Electrochem. Soc. 2015, 162 (4), A585-A595.

Manjunatha, H.; Venkatesha, T. V.; Suresh, G. S. J. Solid-State Electrochem. 2012, 16 (5), 1941-1952.

Sinha, N. N.; Ragupathy, P.; Vasan, H. N.; Munichandraiah, N. Int. J. Electrochem. Sci. 2008, 3, 691-710.

Taylor, M. L. Technological aspects of corrosion control in metallic systems. The Pennsylvania State University, 2012.

Rammelt, U.; Reinhard, G. Electrochim. Acta 1990, 35 (6), 1045-1049.

Hasted, J. B.; Ritson, D. M.; Collie, C. H. J. Chem. Phys. 1948, 16 (1), 1-21.

Hu, X.; Cheng, Z.; Li, Y.; Ling, Z. J. Alloys Compd. 2015, 651, 290-293.

MWCNTs effects on LiMnPO4 host
Published
10-17-2019