Why Measure Particle-by-Particle Electrochemistry? A Tutorial and Perspective
DOI:
https://doi.org/10.29356/jmcs.v67i4.2014Keywords:
Single-entity electrochemistry, nano-impact, nanoelectrochemistry, electroactivity, electrocatalysisAbstract
Single-particle electrochemistry has become an important area of research with the potential to determine the rules of electrochemical reactivity at the nanoscale. These techniques involve addressing one entity at the time, as opposed to the conventional electrochemical experiment where a large number of molecules interact with an electrode surface. These experiments have been made feasible through the utilization of ultramicroelectrode (UMEs), i.e., electrodes with at least one dimension, e.g., diameter of 30 μm or less. This paper provides a theoretical and practical introduction to single entity electrochemistry (SEE), with emphasis on collision experiments between suspended NPs and UMEs to introduce concepts and techniques that are used in several SEE experimental modes. We discuss the intrinsically small currents, below 1 nA, that result from the electroactive area of single entities in the nanometer scale. Individual nanoparticles can be detected using the difference in electrochemical reactivity between a substrate and a nanoparticle (NP). These experiments show steady-state behavior of single NPs that result in discrete current changes or steps. Likewise, the NP can have transient interactions with the substrate electrode that result in current blips. We review the effect of diffusion, the main mass transport process that limits NP/electrode interactions. Also, we pointed out the implications of aggregation and tunneling in the experiments. Finally, we provid a perspective on the possible applications of single-element electrochemistry of electrocatalyst.
Resumen. La electroquímica de partículas individuales se ha convertido en un área importante de investigación con el potencial de facilitar la comprensión de las reglas de reactividad electroquímica en la escala de nanómetros. Estas técnicas implican abordar una entidad a la vez, en contraste con el experimento electroquímico convencional en el que un gran número de moléculas interactúa con la superficie de un electrodo. Estos experimentos se han vuelto posibles gracias al uso de ultramicroelectrodos (UME, por sus siglas en inglés), es decir, electrodos con al menos una dimensión, como, por ejemplo, el diámetro de 30 μm o menos. Este artículo proporciona una introducción teórica y práctica a la electroquímica de entidad única (SEE, por sus siglas en inglés), con énfasis en los experimentos de colisión entre nanopartículas (NPs) suspendidas y UME para introducir conceptos y técnicas utilizadas en varios modos experimentales de SEE. Discutimos las corrientes intrínsecamente pequeñas, por debajo de 1 nA, que resultan de la superficie electroactiva de entidades únicas en la escala de nanómetros. Las nanopartículas individuales pueden detectarse mediante la diferencia en reactividad electroquímica entre el sustrato y las nanopartículas. Estos experimentos muestran el comportamiento en estado estacionario de NPs individuales que resulta en cambios discretos de corriente o escalones. De manera similar, la NP puede tener interacciones transitorias con el electrodo de sustrato que dan lugar a picos de corriente. Revisamos el efecto de la difusión, el principal proceso de transporte de masa que limita las interacciones NP/electrodo. Además, señalamos las implicaciones de la agregación y del efecto túnel cuántico en los experimentos. Finalmente, ofrecemos una perspectiva sobre las posibles aplicaciones de la electroquímica de entidad única en electrocatálisis.
Downloads
References
Huang, K.; Shin, K.; Henkelman, G.; Crooks, R. M. ACS Nano. 2021, 1, 17926–17937. DOI: https://doi.org/10.1021/acsnano.1c06281
Baker, L. A. J. Am. Chem. Soc. 2018, 140, 15549–15559. DOI: https://doi.org/10.1021/jacs.8b09747
Faraday Discuss. 2016, 193, 553–555. DOI: https://doi.org/10.1039/C6FD90080A
Neher, E.; Sakmann, B. Nature 1976, 260, 799–802. DOI: https://doi.org/10.1038/260799a0
Fink, C. G.; Prince, J. D. Trans. Am. Electrochem. Soc. 1929, 54, 315.
Kamat, P. V. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. 1985, 81, 509. DOI: https://doi.org/10.1039/f19858100509
Koelle, U.; Moser, J.; Graetzel, M. Inorg. Chem. 1985, 24, 2253–2258. DOI: https://doi.org/10.1021/ic00208a026
Dunn, W. W.; Aikawa, Y.; Bard, A. J. J. Am. Chem. Soc. 1981, 103, 3456–3459. DOI: https://doi.org/10.1021/ja00402a033
Heyrovsky, M.; Jirkovsky, J.; Mueller, B. R. Langmuir. 1995, 11, 4293–4299. DOI: https://doi.org/10.1021/la00011a021
Heyrovsky, M.; Jirkovsky, J.; Struplova-Bartackova, M. Langmuir. 1995, 11, 4300–4308. DOI: https://doi.org/10.1021/la00011a022
Heyrovsky, M.; Jirkovsky, J.; Struplova-Bartackova, M. Langmuir. 1995, 11, 4309–4312. DOI: https://doi.org/10.1021/la00011a023
Hellberg, D.; Scholfz F.; Schauer, F.; Weitschies, W. Electrochem. Commun. 2002, 4, 305–309. DOI: https://doi.org/10.1016/S1388-2481(02)00279-5
Fan, F.-R. F.; Bard, A. J. Science (80-. ). 1995, 267, 871–874. DOI: https://doi.org/10.1126/science.267.5199.871
Quinn, B. M.; van’t Hof, P. G.; Lemay, S. G. J. Am. Chem. Soc. 2004, 126, 8360–8361. DOI: https://doi.org/10.1021/ja0478577
Xiao, X.; Bard, A. J. J. Am. Chem. Soc. 2007, 129, 9610–9612. DOI: https://doi.org/10.1021/ja072344w
Kang, S.; Nieuwenhuis, A. F.; Mathwig, K.; Mampallil, D.; Kostiuchenko, Z. A.; Lemay, S. G. Faraday Discuss. 2016, 193, 41–50. DOI: https://doi.org/10.1039/C6FD00075D
Byers, J. C.; Paulose Nadappuram, B.; Perry, D.; McKelvey, K.; Colburn, A. W.; Unwin, P. R. Anal. Chem. 2015, 87, 10450–10456. DOI: https://doi.org/10.1021/acs.analchem.5b02569
Chen, Q.; McKelvey, K.; Edwards, M. A.; White, H. S. J. Phys. Chem. C 2016, 120, 17251–17260. DOI: https://doi.org/10.1021/acs.jpcc.6b05483
Sun, P.; Mirkin, M. V. J. Am. Chem. Soc. 2008, 130, 8241–8250. DOI: https://doi.org/10.1021/ja711088j
White, H. S.; McKelvey, K. Curr. Opin. Electrochem. 2018, 7, 48–53. DOI: https://doi.org/10.1016/j.coelec.2017.10.021
Percival, S. J.; Zhang, B. J. Phys. Chem. C 2016, 120, 20536–20546. DOI: https://doi.org/10.1021/acs.jpcc.5b11330
Guo, Z.; Percival, S. J.; Zhang, B. J. Am. Chem. Soc. 2014, 136, 8879–8882. DOI: https://doi.org/10.1021/ja503656a
Blanchard, P.-Y.; Sun, T.; Yu, Y.; Wei, Z.; Matsui, H.; Mirkin, M. V. Langmuir. 2016, 32, 2500–2508. DOI: https://doi.org/10.1021/acs.langmuir.5b03858
Sun, T.; Yu, Y.; Zacher, B. J.; Mirkin, M. V. Angew. Chemie Int. Ed. 2014, 53, 14120–14123. DOI: https://doi.org/10.1002/anie.201408408
Li, Y.; Cox, J. T.; Zhang, B. J. Am. Chem. Soc. 2010, 132, 3047–3054. DOI: https://doi.org/10.1021/ja909408q
Georgescu, N. S.; Robinson, D. A.; White, H. S. J. Phys. Chem. C 2021, 125, 19724–19732. DOI: https://doi.org/10.1021/acs.jpcc.1c05020
Zhou, M.; Yu, Y.; Hu, K.; Xin, H. L.; Mirkin, M. V. Anal. Chem. 2017, 89, 2880–2885. DOI: https://doi.org/10.1021/acs.analchem.6b04140
Glasscott, M. W.; Pendergast, A. D.; Goines, S.; Bishop, A. R.; Hoang, A. T.; Renault, C.; Dick, J. E. Nat. Commun. 2019, 10, 2650. DOI: https://doi.org/10.1038/s41467-019-10303-z
Pendergast, A. D.; Glasscott, M. W.; Renault, C.; Dick, J. E. Electrochem. Commun. 2019, 98, 1–5.
Kim, J.; Dick, J. E.; Bard, A. J. Acc. Chem. Res. 2016, 49, 2587–2595. DOI: https://doi.org/10.1021/acs.accounts.6b00340
Kim, B.-K.; Boika, A.; Kim, J.; Dick, J. E.; Bard, A. J. J. Am. Chem. Soc. 2014, 136, 4849–4852.
Robinson, D. A.; Kondajji, A. M.; Castañeda, A. D.; Dasari, R.; Crooks, R. M.; Stevenson, K. J. J. Phys. Chem. Lett. 2016, 7, 2512–2517. DOI: https://doi.org/10.1021/acs.jpclett.6b01131
Karunathilake, N.; Gutierrez‐Portocarrero, S.; Subedi, P.; Alpuche‐Aviles, M. A. ChemElectroChem 2020, 7, 2248–2257. DOI: https://doi.org/10.1002/celc.202000031
Fernando, A.; Chhetri, P.; Barakoti, K. K.; Parajuli, S.; Kazemi, R.; Alpuche-Aviles, M. A. J. Electrochem. Soc. 2016, 163, H3025–H3031.
Fernando, A.; Parajuli, S.; Alpuche-Aviles, M. A. J. Am. Chem. Soc. 2013, 135, 10894–10897. DOI: https://doi.org/10.1021/ja4007639
Sokolov, S. V.; Tschulik, K.; Batchelor-McAuley, C.; Jurkschat, K.; Compton, R. G. Anal. Chem. 2015, 87, 10033–10039.
Sokolov, S. V.; Kätelhön, E.; Compton, R. G. J. Phys. Chem. C. 2015, 119, 25093–25099. DOI: https://doi.org/10.1021/acs.jpcc.5b07893
Zhou, Y.-G. G.; Rees, N. V.; Compton, R. G. ChemPhysChem. 2011, 12, 2085–2087.
Zhou, H.; Fan, F.-R. R. F.; Bard, A. J. J. Phys. Chem. Lett. 2010, 1, 2671–2674. DOI: https://doi.org/10.1021/jz100963y
Haddou, B.; Rees, N. V.; Compton, R. G. Phys. Chem. Chem. Phys. 2012, 14, 13612. DOI: https://doi.org/10.1039/c2cp42585h
Kim, J.; Kim, B.-K. K.; Cho, S. K.; Bard, A. J. J. Am. Chem. Soc. 2014, 136, 8173–8176. DOI: https://doi.org/10.1021/ja503314u
Xiao, X.; Fan, F.-R. F.; Zhou, J.; Bard, A. J. J. Am. Chem. Soc. 2008, 130, 16669–16677. DOI: https://doi.org/10.1021/ja8051393
Zhou, Y.-G.; Rees, N. V.; Compton, R. G. ChemPhysChem. 2011, 12, 2085–2087.
Wang, Q.; Bae, J. H.; Nepomnyashchii, A. B.; Jia, R.; Zhang, S.; Mirkin, M. V. J. Phys. Chem. Lett. 2020, 11, 2972–2976. DOI: https://doi.org/10.1021/acs.jpclett.0c00585
Ma, H.; Ma, W.; Chen, J. F.; Liu, X. Y.; Peng, Y. Y.; Yang, Z. Y.; Tian, H.; Long, Y. T. J. Am. Chem. Soc. 2018, 140, 5272–5279. DOI: https://doi.org/10.1021/jacs.8b01623
Colón-Quintana, G. S.; Clarke, T. B.; Dick, J. E. Nat. Commun. 2023, 14, 705. DOI: https://doi.org/10.1038/s41467-023-35964-9
Glasscott, M. W.; Pendergast, A. D.; Dick, J. E. ACS Appl. Nano Mater. 2018, 1, 5702–5711. DOI: https://doi.org/10.1021/acsanm.8b01308
Pendergast, A. D.; Glasscott, M. W.; Renault, C.; Dick, J. E. Electrochem. Commun. 2019, 98, 1–5. DOI: https://doi.org/10.1016/j.elecom.2018.11.005
Toh, H. S.; Compton, R. G. Chem. Sci. 2015, 6, 5053–5058. DOI: https://doi.org/10.1039/C5SC01635E
Kim, B.-K. K.; Kim, J.; Bard, A. J. J. Am. Chem. Soc. 2015, 137, 2343–2349. DOI: https://doi.org/10.1021/ja512065n
Mathuri, S.; Zhu, Y.; Margoni, M. M.; Li, X. Front. Chem. 2021, 9. DOI: https://doi.org/10.3389/fchem.2021.688320
Patrice, F. T.; Qiu, K.; Ying, Y.-L.; Long, Y.-T. Annu. Rev. Anal. Chem. 2019, 12, 347–370. DOI: https://doi.org/10.1146/annurev-anchem-061318-114902
Ren, H.; Edwards, M. A. Curr. Opin. Electrochem. 2021, 25, 100632. DOI: https://doi.org/10.1016/j.coelec.2020.08.014
Cheng, W.; Compton, R. G. TrAC Trends Anal. Chem. 2014, 58, 79–89. DOI: https://doi.org/10.1016/j.trac.2014.01.008
Anderson, T. J.; Zhang, B. Acc. Chem. Res. 2016, 49, 2625–2631. DOI: https://doi.org/10.1021/acs.accounts.6b00334
Alpuche‐Aviles, M. A., in: Encyclopedia of Electrochemistry, Wiley, 2021, 1–30. DOI: https://doi.org/10.1002/9783527610426.bard030110
Singh, P. S.; Lemay, S. G. Anal. Chem. 2016, 88, 5017–5027. DOI: https://doi.org/10.1021/acs.analchem.6b00683
Sekretareva, A. Sensors and Actuators Reports. 2021, 3, 100037. DOI: https://doi.org/10.1016/j.snr.2021.100037
Gao, R.; Edwards, M. A.; Qiu, Y.; Barman, K.; White, H. S. J. Am. Chem. Soc. 2020, 142, 8890–8896. DOI: https://doi.org/10.1021/jacs.0c02202
Wahab, O. J.; Kang, M.; Unwin, P. R. Curr. Opin. Electrochem. 2020, 22, 120–128. DOI: https://doi.org/10.1016/j.coelec.2020.04.018
Dick, J. E.; Renault, C.; Bard, A. J. J. Am. Chem. Soc. 2015, 137, 8376–8379. DOI: https://doi.org/10.1021/jacs.5b04545
Kim, B.-K.; Boika, A.; Kim, J.; Dick, J. E.; Bard, A. J. J. Am. Chem. Soc. 2014, 136, 4849–4852. DOI: https://doi.org/10.1021/ja500713w
Boika, A.; Thorgaard, S. N.; Bard, A. J. J. Phys. Chem. B 2013, 117, 4371–4380. DOI: https://doi.org/10.1021/jp306934g
Zhou, Y.-G.; Rees, N. V.; Compton, R. G. Angew. Chemie. 2011, 123, 4305–4307. DOI: https://doi.org/10.1002/ange.201100885
Sokolov, S. V.; Tschulik, K.; Batchelor-McAuley, C.; Jurkschat, K.; Compton, R. G. Anal. Chem. 2015, 87, 10033–10039. DOI: https://doi.org/10.1021/acs.analchem.5b02639
Jiao, X.; Lin, C.; Young, N. P.; Batchelor-McAuley, C.; Compton, R. G. J. Phys. Chem. C 2016, 120, 13148–13158. DOI: https://doi.org/10.1021/acs.jpcc.6b04281
Kätelhön, E.; Sepunaru, L.; Karyakin, A. A.; Compton, R. G. ACS Catal. 2016, 6 , 8313–8320. DOI: https://doi.org/10.1021/acscatal.6b02633
Stockmann, T. J.; Angelé, L.; Brasiliense, V.; Combellas, C.; Kanoufi, F. Angew. Chemie Int. Ed. 2017, 56, 13493–13497. DOI: https://doi.org/10.1002/anie.201707589
Lin, C.; Sepunaru, L.; Kätelhön, E.; Compton, R. G. J. Phys. Chem. Lett. 2018, 9, 2814–2817. DOI: https://doi.org/10.1021/acs.jpclett.8b01199
Batchelor-McAuley, C.; Ellison, J.; Tschulik, K.; Hurst, P. L.; Boldt, R.; Compton, R. G. Analyst. 2015, 140, 5048–5054. DOI: https://doi.org/10.1039/C5AN00474H
Zhang, F.; Edwards, M. A.; Hao, R.; White, H. S.; Zhang, B. J. Phys. Chem. C 2017, 121, 23564–23573. DOI: https://doi.org/10.1021/acs.jpcc.7b08492
Park, J. H.; Zhou, H.; Percival, S. J.; Zhang, B.; Fan, F. R. F.; Bard, A. J. Anal. Chem. 2013, 85, 964–970. DOI: https://doi.org/10.1021/ac3025976
Zhou, H.; Park, J. H.; Fan, F. R. F.; Bard, A. J. J. Am. Chem. Soc. 2012, 134, 13212–13215. DOI: https://doi.org/10.1021/ja305573g
Trojánek, A.; Mareček, V.; Samec, Z. Electrochem. Commun. 2018, 86, 113–116. DOI: https://doi.org/10.1016/j.elecom.2017.11.026
Fernando, A.; Chhetri, P.; Barakoti, K. K.; Parajuli, S.; Kazemi, R.; Alpuche-Aviles, M. A. J. Electrochem. Soc. 2016, 163, H3025–H3031. DOI: https://doi.org/10.1149/2.0041604jes
Kwon, S. J.; Zhou, H.; Fan, F.-R. F.; Vorobyev, V.; Zhang, B.; Bard, A. J. Phys. Chem. Chem. Phys. 2011, 13, 5394.
Laborda, E.; Molina, A.; Espín, V. F.; Martínez-Ortiz, F.; García de la Torre, J.; Compton, R. G. Angew. Chemie Int. Ed. 2017, 56, 782–785. DOI: https://doi.org/10.1002/anie.201610185
Ortiz-Ledón, C. A.; Zoski, C. G. Anal. Chem. 2017, 89, 6424–6431. DOI: https://doi.org/10.1021/acs.analchem.7b00188
Park, J. H.; Boika, A.; Park, H. S.; Lee, H. C.; Bard, A. J. J. Phys. Chem. C 2013, 117, 6651–6657. DOI: https://doi.org/10.1021/jp3126494
Bobbert, P. A.; Wind, M. M.; Vlieger, J. Phys. A Stat. Mech. its Appl. 1987, 141, 58–72. DOI: https://doi.org/10.1016/0378-4371(87)90261-5
Zhou, Y.-G.; Rees, N. V.; Compton, R. G. ChemPhysChem. 2011, 12, 2085–2087. DOI: https://doi.org/10.1002/cphc.201100282
Gutierrez-Portocarrero, S.; Sauer, K.; Karunathilake, N.; Subedi, P.; Alpuche-Aviles, M. A. Anal. Chem. 2020, 92, 8704–8714. DOI: https://doi.org/10.1021/acs.analchem.9b05238
Little, C. A.; Xie, R.; Batchelor-McAuley, C.; Kätelhön, E.; Li, X.; Young, N. P.; Compton, R. G. Phys. Chem. Chem. Phys. 2018, 20, 13537–13546. DOI: https://doi.org/10.1039/C8CP01561A
Oja, S. M.; Robinson, D. A.; Vitti, N. J.; Edwards, M. A.; Liu, Y.; White, H. S.; Zhang, B. J. Am. Chem. Soc. 2017, 139, 708–718. DOI: https://doi.org/10.1021/jacs.6b11143
Kanokkanchana, K.; Saw, E. N.; Tschulik, K. ChemElectroChem. 2018, 5, 3000–3005. DOI: https://doi.org/10.1002/celc.201800738
Fleischmann, M.; Oldfield, J. W. J. Electroanal. Chem. Interfacial Electrochem. 1970, 27, 207–218. DOI: https://doi.org/10.1016/S0022-0728(70)80183-8
Kwon, S. J.; Zhou, H.; Fan, F. R. F.; Vorobyev, V.; Zhang, B.; Bard, A. J. Phys. Chem. Chem. Phys. 2011, 13, 5394–5402. DOI: https://doi.org/10.1039/c0cp02543g
Robinson, D. A.; Liu, Y.; Edwards, M. A.; Vitti, N. J.; Oja, S. M.; Zhang, B.; White, H. S. J. Am. Chem. Soc. 2017, 139, 16923–16931. DOI: https://doi.org/10.1021/jacs.7b09842
Bard, A. J.; Faulkner, L. R.; White, H. S. 3rd ed.; Wiley, 2022.
Wightman, R. M.; Wipf. In: Electroanalytical Chemistry. Marcel Dekker, INC: New York, 1989; 267–353.
Wightman, R. M. Anal. Chem. 1981, 53, 1125A-1134A. DOI: https://doi.org/10.1021/ac00232a004
Saito, Y. Rev. Polarogr. 1968, 15, 177–187. DOI: https://doi.org/10.5189/revpolarography.15.177
Heyrovský, J.; Ilkovič, D. Collect. Czechoslov. Chem. Commun. 1935, 7, 198–214. DOI: https://doi.org/10.1135/cccc19350198
Ilkovič, D. Collect. Czechoslov. Chem. Commun. 1934, 6, 498–513. DOI: https://doi.org/10.1135/cccc19340498
MacGillavry, D.; Rideal, E. K. Recl. des Trav. Chim. des Pays-Bas. 1937, 56, 1013–1021. DOI: https://doi.org/10.1002/recl.19370561011
Ellison, J.; Tschulik, K.; Stuart, E. J. E.; Jurkschat, K.; Omanović, D.; Uhlemann, M.; Crossley, A.; Compton, R. G. ChemistryOpen. 2013, 2, 69–75. DOI: https://doi.org/10.1002/open.201300005
Bartlett, T. R.; Sokolov, S. V.; Compton, R. G. ChemistryOpen. 2015, 4, 600–605. DOI: https://doi.org/10.1002/open.201500061
Tschulik, K.; Haddou, B.; Omanović, D.; Rees, N. V.; Compton, R. G. Nano Res. 2013, 6, 836–841. DOI: https://doi.org/10.1007/s12274-013-0361-3
Kleijn, S. E. F.; Serrano-Bou, B.; Yanson, A. I.; Koper, M. T. M. Langmuir 2013, 29, 2054–2064. DOI: https://doi.org/10.1021/la3040566
Alemán, J. V.; Chadwick, A. V.; He, J.; Hess, M.; Horie, K.; Jones, R. G.; Kratochvíl, P.; Meisel, I.; Mita, I.; Moad, G.; et al. Pure Appl. Chem. 2007, 79, 1801–1829. DOI: https://doi.org/10.1351/pac200779101801
Hunter, R. J. in: Foundations of Colloid Science. Oxford University Press: New York, 1992.
Israelachvili, J. N. in: Intermolecular and Surface Forces. Academic Press: Burlington, MA, 2011.
Morrison, I. D.; Ross, S. in: Colloidal Dispersions: Suspensions, Emulsions, and Foams. Wiley: New York, 2002.
Lu, S.-M.; Peng, Y.-Y.; Ying, Y.-L.; Long, Y.-T. Anal. Chem. 2020, 92, 5621–5644. DOI: https://doi.org/10.1021/acs.analchem.0c00931
Mirkin, M. V.; Sun, T.; Yu, Y.; Zhou, M. Acc. Chem. Res. 2016, 49, 2328–2335. DOI: https://doi.org/10.1021/acs.accounts.6b00294
Lu, S.-M.; Chen, J.-F.; Wang, H.-F.; Hu, P.; Long, Y.-T. J. Phys. Chem. Lett. 2023, 14, 1113–1123. DOI: https://doi.org/10.1021/acs.jpclett.2c03479
Lu, S.-M.; Chen, J.-F.; Peng, Y.-Y.; Ma, W.; Ma, H.; Wang, H.-F.; Hu, P.; Long, Y.-T. J. Am. Chem. Soc. 2021, 143, 12428–12432. DOI: https://doi.org/10.1021/jacs.1c02588
Ma, W.; Ma, H.; Chen, J.-F.; Peng, Y.-Y.; Yang, Z.-Y.; Wang, H.-F.; Ying, Y.-L.; Tian, H.; Long, Y.-T. Chem. Sci. 2017, 8, 1854–1861. DOI: https://doi.org/10.1039/C6SC04582K
Hill, C. M.; Kim, J.; Bard, A. J. J. Am. Chem. Soc. 2015, 137, 11321–11326. DOI: https://doi.org/10.1021/jacs.5b04519
Kätelhön, E.; Compton, R. G. ChemElectroChem. 2015, 2, 64–67. DOI: https://doi.org/10.1002/celc.201402280
Robinson, D. A.; Edwards, M. A.; Ren, H.; White, H. S. ChemElectroChem. 2018, 5, 3059–3067. DOI: https://doi.org/10.1002/celc.201800696
Wang, C.; Pagel, R.; Bahnemann, D. W.; Dohrmann, J. K. J. Phys. Chem. B 2004, 108, 14082–14092. DOI: https://doi.org/10.1021/jp048046s
Wang, C.; Pagel, R.; Dohrmann, J. K.; Bahnemann, D. W. Comptes Rendus Chim. 2006, 9, 761–773. DOI: https://doi.org/10.1016/j.crci.2005.02.053
Simmons, J. G. J. Appl. Phys. 1963, 34, 1793–1803. DOI: https://doi.org/10.1063/1.1702682
Dick, J. E.; Hilterbrand, A. T.; Boika, A.; Upton, J. W.; Bard, A. J. Proc. Natl. Acad. of Sci. U.S.A. 2015, 112, 5303-5308. DOI: 10.1073/pnas.1504294112. DOI: https://doi.org/10.1073/pnas.1504294112
Dick, J. E.; Hilterbrand, A. T.; Strawsine, L. M.; Upton, J. W.; Bard, A. J. Proc. Natl. Acad. of Sci. U.S.A. 113, 6403-6408. DOI: 10.1073/pnas.1605002113. DOI: https://doi.org/10.1073/pnas.1605002113
Glasscott, M. W.; Hill, C. M.; Dick, J. E. J. Phys. Chem. C. 2020, 124, 14380–14389. DOI: https://doi.org/10.1021/acs.jpcc.0c03518
Zhou, M.; Dick, J. E.; Bard, A. J. J. Am. Chem. Soc. 2017, 139, 17677–17682. DOI: https://doi.org/10.1021/jacs.7b10646
Vitti, N. J.; Majumdar, P.; White, H. S. Langmuir. 2023, 39, 1173–1180. DOI: https://doi.org/10.1021/acs.langmuir.2c02946


Downloads
Published
Issue
Section
License
Copyright (c) 2023 Mario A Alpuche Aviles, Salvador Gutierrez-Portocarrero

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
