Substituent and Solvent Effects on the Electronic and Structural Properties of Silacyclopropylidenoids
DOI:
https://doi.org/10.29356/jmcs.v59i1.10Keywords:
Silacyclopropylidene, ab initio, MP2, reactive intermediateAbstract
The isomeric structures, energies, and properties of the substituted silacyclopropylidenoids, SiC2H3RLiBr (R= –H, –CH3, –SiH3, –CN, –OH, –NH2), were studied by ab initio calculations at the MP2/6-311+G(d,p) level of theory. The calculations indicate that each of SiC2H3RLiBrs for R= –H, –CH3, –SiH3, –CN, –OH, –NH2 has three stationary structures: silacyclopropylidenoid (S), tetrahedral (T1 or T2), and inverted (I). The conductor–like polarizable continuum model (CPCM) using various solvents (dimethyl sulfoxide (ε = 46.7), acetone (ε = 21.0), tetrahydrofuran (ε = 7.5), and diethyl ether (ε = 4.3)) has been applied to compute single point energies for title molecules. In addition, the molecular electrostatic potential maps, natural bond orbitals, and the frontier molecular orbitals of substituted silacyclopropylidenoids were calculated.Downloads
References
Tamao, K.; Kawachi, A. Angew. Chem. Int. Ed. Engl. 1995, 34, 818–820. DOI: https://doi.org/10.1002/anie.199508181
Pietschnig, R. J. Chem. Soc. Chem. Commun. 2004, 2004, 546–547. DOI: https://doi.org/10.1039/b315001a
Molev, G.; Zhivotovskii, D. B.; Karni, M.; Tumanskii, B.; Botoshansky, M.; Apeloig, Y. J. Am. Chem. Soc. 2006, 128, 2784–2785. DOI: https://doi.org/10.1021/ja0575880
Cho, H. M.; Lim, Y. M.; Lee, B. W.; Park, S. J.; Lee, M. E. J. Organomet. Chem. 2011, 696, 2665–2668. DOI: https://doi.org/10.1016/j.jorganchem.2011.03.032
Clark, T.; Schleyer, P. v. R. J. Organomet. Chem. 1980, 191, 347–353. DOI: https://doi.org/10.1016/S0022-328X(00)81063-3
Feng, S.; Feng, D.; Deng, C. Chem. Phys. Lett. 1993, 214, 97–102. DOI: https://doi.org/10.1016/0009-2614(93)85461-V
Flock, M.; Marschner, C. Chem. Eur. J. 2005, 11, 4635–4642. DOI: https://doi.org/10.1002/chem.200401353
Qi, Y.; Chen, Z.; Li, P. Comput. Theory Chem. 2012, 969, 61–65. DOI: https://doi.org/10.1016/j.comptc.2011.05.013
Feng, S.; Feng, D.; Li, M.; Bu, Y. Chem. Phys. Lett. 2001, 339, 103–109. DOI: https://doi.org/10.1016/S0009-2614(01)00327-X
Feng, S. Y.; Feng, D. C.; Li, M. J. Int. J. Quant. Chem. 2002, 87, 360–365. DOI: https://doi.org/10.1002/qua.10149
Sigal, N.; Apeloig, Y. J. Organomet. Chem. 2001, 636, 148–156. DOI: https://doi.org/10.1016/S0022-328X(01)00996-2
Escudie, J.; Ranaivonjatovo, H.; Bouslikhane, M.; Harouch, Y. E.; Baiget, L.; Nemes, G.C. Russ. Chem. Bull. Int. Ed. 2004, 53, 1020–1033. DOI: https://doi.org/10.1023/B:RUCB.0000041301.62839.ba
Fedorynski, M. Chem. Rev. 2003, 103, 1099–1132. DOI: https://doi.org/10.1021/cr0100087
Azizoglu, A.; Ozen, R.; Hokelek, T.; Balci, M. J. Org. Chem. 2004, 69, 1202–1206. DOI: https://doi.org/10.1021/jo035450z
Azizoglu, A.; Balci, M.; Mieusset, J-L.; Brinker, U. H. J. Org. Chem. 2008, 73, 8182–8188. DOI: https://doi.org/10.1021/jo8011144
Kilbas, B.; Azizoglu, A.; Balci, M. J. Org. Chem. 2009, 74, 7075–7083. DOI: https://doi.org/10.1021/jo901398w
Azizoglu, A.; Yildiz, C. B. Organometallics 2010, 29, 6739–6743. DOI: https://doi.org/10.1021/om100868b
Azizoglu, A.; Yildiz, C. B. J. Organomet. Chem. 2012, 715, 19–25. DOI: https://doi.org/10.1016/j.jorganchem.2012.05.007
Yildiz, C. B.; Azizoglu, A. Struct. Chem. 2012, 33, 1777–1784. DOI: https://doi.org/10.1002/pc.22319
Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; John Wiley & Sons: New York, 1986.
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al–Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03. Revision C02 ed.; Gaussian, Inc., Pittsburgh PA, 2003.
Barone, V.; Cossi, M. J. Phys. Chem. A. 1998, 102, 1995–2001. DOI: https://doi.org/10.1021/jp9716997
Cossi, M.; Barone, V. J. Chem. Phys. 2001, 115, 4708–4717 DOI: https://doi.org/10.1063/1.1394921
Barone, V.; Cossi, M.; Rega, N.; Scalmani, G. J. Comput. Chem. 2003, 24, 669–681. DOI: https://doi.org/10.1002/jcc.10189
Dennington, R.; Keith, T.; Millam, J.; Eppinnett, K.; Hovell, W. L.; Gilliland, R. GaussView. Version 3.0; Semichem, Inc., Shawnee Mission, KS, 2003.
Wiberg, K. B. Tetrahedron 1968, 24, 1083–1096. DOI: https://doi.org/10.1016/0040-4020(68)88057-3
Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899–926. DOI: https://doi.org/10.1021/cr00088a005
Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1990, 112, 1434–1445. DOI: https://doi.org/10.1021/ja00160a022
Politzer, P.; Abrahmsen, L.; Sjoberg, P. J. Am. Chem. Soc. 1984, 106, 855–860. DOI: https://doi.org/10.1021/ja00316a005
Jovanovski, G.; Cahil, A.; Grupce, O.; Pejov, L. J. Mol. Struct. 2006, 784, 7–17. DOI: https://doi.org/10.1016/j.molstruc.2005.04.019
Sánchez-Sanz, G.; Trujillo, C.; Alkorta, I.; Elguero, J. Comput. Theory Chem. 2012, 991, 124–133. DOI: https://doi.org/10.1016/j.comptc.2012.04.007
Yildiz, C. B.; Azizoglu, A. Comput. Theory Chem. 2013, 1023, 24–28. DOI: https://doi.org/10.1016/j.comptc.2013.09.009
Kassaee, M. Z.; Naja?, Z.; Shakib, F. A.; Momeni, M. R. J. Organomet. Chem. 2011, 696, 2059–2064. DOI: https://doi.org/10.1016/j.jorganchem.2010.10.065
Fleming, I. Frontier Orbitals and Organic Chemical Reactions; John Wiley & Sons: London, 1976.
Cabrera-Trujillo, J.M.; Robles, J. Phys. Rev. B, 2001, 64, 165408.
Azizoglu, A. Struct. Chem. 2003, 14, 575–580. DOI: https://doi.org/10.1023/B:STUC.0000007568.42166.2a
Ugras, H. I.; Cakir, U.; Azizoglu, A.; K?l?c, T.; Erk, C. J. Incl. Phenom. Macrocycl. Chem. 2006, 55, 159–165. DOI: https://doi.org/10.1007/s10847-005-9032-7
Aparicio, F.; Garza, J.; Galván, M. J. Mex. Chem. Soc. 2012, 56, 338–345.
Mendoza-Huizar, L.M.; Rodríguez, D.E.G.; Rios-Reyes, C.H.; Alatorre-Ordaz, A. J. Mex. Chem. Soc. 2012, 56, 302–310.
Ghiasi, R.; Boshak, A. J. Mex. Chem. Soc. 2013, 57, 8–15.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
