Substituent and Solvent Effects on the Electronic and Structural Properties of Silacyclopropylidenoids

Authors

  • Akin Azizoglu Laboratory?of?Computational?Chemistry,?Department?of?Chemistry,?Faculty?of?Arts?and?Sciences,?University?of?Balikesir,? Balikesir,?Turkey

DOI:

https://doi.org/10.29356/jmcs.v59i1.10

Keywords:

Silacyclopropylidene, ab initio, MP2, reactive intermediate

Abstract

The isomeric structures, energies, and properties of the substituted silacyclopropylidenoids, SiC2H3RLiBr (R= –H, –CH3, –SiH3, –CN, –OH, –NH2), were studied by ab initio calculations at the MP2/6-311+G(d,p) level of theory. The calculations indicate that each of SiC2H3RLiBrs for R= –H, –CH3, –SiH3, –CN, –OH, –NH2 has three stationary structures: silacyclopropylidenoid (S), tetrahedral (T1 or T2), and inverted (I). The conductor–like polarizable continuum model (CPCM) using various solvents (dimethyl sulfoxide (ε = 46.7), acetone (ε = 21.0), tetrahydrofuran (ε = 7.5), and diethyl ether (ε = 4.3)) has been applied to compute single point energies for title molecules. In addition, the molecular electrostatic potential maps, natural bond orbitals, and the frontier molecular orbitals of substituted silacyclopropylidenoids were calculated.

Downloads

Download data is not yet available.

References

Tamao, K.; Kawachi, A. Angew. Chem. Int. Ed. Engl. 1995, 34, 818–820. DOI: https://doi.org/10.1002/anie.199508181

Pietschnig, R. J. Chem. Soc. Chem. Commun. 2004, 2004, 546–547. DOI: https://doi.org/10.1039/b315001a

Molev, G.; Zhivotovskii, D. B.; Karni, M.; Tumanskii, B.; Botoshansky, M.; Apeloig, Y. J. Am. Chem. Soc. 2006, 128, 2784–2785. DOI: https://doi.org/10.1021/ja0575880

Cho, H. M.; Lim, Y. M.; Lee, B. W.; Park, S. J.; Lee, M. E. J. Organomet. Chem. 2011, 696, 2665–2668. DOI: https://doi.org/10.1016/j.jorganchem.2011.03.032

Clark, T.; Schleyer, P. v. R. J. Organomet. Chem. 1980, 191, 347–353. DOI: https://doi.org/10.1016/S0022-328X(00)81063-3

Feng, S.; Feng, D.; Deng, C. Chem. Phys. Lett. 1993, 214, 97–102. DOI: https://doi.org/10.1016/0009-2614(93)85461-V

Flock, M.; Marschner, C. Chem. Eur. J. 2005, 11, 4635–4642. DOI: https://doi.org/10.1002/chem.200401353

Qi, Y.; Chen, Z.; Li, P. Comput. Theory Chem. 2012, 969, 61–65. DOI: https://doi.org/10.1016/j.comptc.2011.05.013

Feng, S.; Feng, D.; Li, M.; Bu, Y. Chem. Phys. Lett. 2001, 339, 103–109. DOI: https://doi.org/10.1016/S0009-2614(01)00327-X

Feng, S. Y.; Feng, D. C.; Li, M. J. Int. J. Quant. Chem. 2002, 87, 360–365. DOI: https://doi.org/10.1002/qua.10149

Sigal, N.; Apeloig, Y. J. Organomet. Chem. 2001, 636, 148–156. DOI: https://doi.org/10.1016/S0022-328X(01)00996-2

Escudie, J.; Ranaivonjatovo, H.; Bouslikhane, M.; Harouch, Y. E.; Baiget, L.; Nemes, G.C. Russ. Chem. Bull. Int. Ed. 2004, 53, 1020–1033. DOI: https://doi.org/10.1023/B:RUCB.0000041301.62839.ba

Fedorynski, M. Chem. Rev. 2003, 103, 1099–1132. DOI: https://doi.org/10.1021/cr0100087

Azizoglu, A.; Ozen, R.; Hokelek, T.; Balci, M. J. Org. Chem. 2004, 69, 1202–1206. DOI: https://doi.org/10.1021/jo035450z

Azizoglu, A.; Balci, M.; Mieusset, J-L.; Brinker, U. H. J. Org. Chem. 2008, 73, 8182–8188. DOI: https://doi.org/10.1021/jo8011144

Kilbas, B.; Azizoglu, A.; Balci, M. J. Org. Chem. 2009, 74, 7075–7083. DOI: https://doi.org/10.1021/jo901398w

Azizoglu, A.; Yildiz, C. B. Organometallics 2010, 29, 6739–6743. DOI: https://doi.org/10.1021/om100868b

Azizoglu, A.; Yildiz, C. B. J. Organomet. Chem. 2012, 715, 19–25. DOI: https://doi.org/10.1016/j.jorganchem.2012.05.007

Yildiz, C. B.; Azizoglu, A. Struct. Chem. 2012, 33, 1777–1784. DOI: https://doi.org/10.1002/pc.22319

Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; John Wiley & Sons: New York, 1986.

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al–Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03. Revision C02 ed.; Gaussian, Inc., Pittsburgh PA, 2003.

Barone, V.; Cossi, M. J. Phys. Chem. A. 1998, 102, 1995–2001. DOI: https://doi.org/10.1021/jp9716997

Cossi, M.; Barone, V. J. Chem. Phys. 2001, 115, 4708–4717 DOI: https://doi.org/10.1063/1.1394921

Barone, V.; Cossi, M.; Rega, N.; Scalmani, G. J. Comput. Chem. 2003, 24, 669–681. DOI: https://doi.org/10.1002/jcc.10189

Dennington, R.; Keith, T.; Millam, J.; Eppinnett, K.; Hovell, W. L.; Gilliland, R. GaussView. Version 3.0; Semichem, Inc., Shawnee Mission, KS, 2003.

Wiberg, K. B. Tetrahedron 1968, 24, 1083–1096. DOI: https://doi.org/10.1016/0040-4020(68)88057-3

Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899–926. DOI: https://doi.org/10.1021/cr00088a005

Reed, A. E.; Schleyer, P. v. R. J. Am. Chem. Soc. 1990, 112, 1434–1445. DOI: https://doi.org/10.1021/ja00160a022

Politzer, P.; Abrahmsen, L.; Sjoberg, P. J. Am. Chem. Soc. 1984, 106, 855–860. DOI: https://doi.org/10.1021/ja00316a005

Jovanovski, G.; Cahil, A.; Grupce, O.; Pejov, L. J. Mol. Struct. 2006, 784, 7–17. DOI: https://doi.org/10.1016/j.molstruc.2005.04.019

Sánchez-Sanz, G.; Trujillo, C.; Alkorta, I.; Elguero, J. Comput. Theory Chem. 2012, 991, 124–133. DOI: https://doi.org/10.1016/j.comptc.2012.04.007

Yildiz, C. B.; Azizoglu, A. Comput. Theory Chem. 2013, 1023, 24–28. DOI: https://doi.org/10.1016/j.comptc.2013.09.009

Kassaee, M. Z.; Naja?, Z.; Shakib, F. A.; Momeni, M. R. J. Organomet. Chem. 2011, 696, 2059–2064. DOI: https://doi.org/10.1016/j.jorganchem.2010.10.065

Fleming, I. Frontier Orbitals and Organic Chemical Reactions; John Wiley & Sons: London, 1976.

Cabrera-Trujillo, J.M.; Robles, J. Phys. Rev. B, 2001, 64, 165408.

Azizoglu, A. Struct. Chem. 2003, 14, 575–580. DOI: https://doi.org/10.1023/B:STUC.0000007568.42166.2a

Ugras, H. I.; Cakir, U.; Azizoglu, A.; K?l?c, T.; Erk, C. J. Incl. Phenom. Macrocycl. Chem. 2006, 55, 159–165. DOI: https://doi.org/10.1007/s10847-005-9032-7

Aparicio, F.; Garza, J.; Galván, M. J. Mex. Chem. Soc. 2012, 56, 338–345.

Mendoza-Huizar, L.M.; Rodríguez, D.E.G.; Rios-Reyes, C.H.; Alatorre-Ordaz, A. J. Mex. Chem. Soc. 2012, 56, 302–310.

Ghiasi, R.; Boshak, A. J. Mex. Chem. Soc. 2013, 57, 8–15.

×

Downloads

Published

2017-10-12

Issue

Section

Regular Articles
x

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.

Loading...