Titanium oxide supported on montmorillonite clays for environmental applications

Authors

  • Eduardo Rigoti Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
  • Anderson J Schwanke
  • Karla CF Araujo
  • Carlos Alberto Martínez-Huitle Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
  • Sibele SBC Pergher

DOI:

https://doi.org/10.29356/jmcs.v63i3.708

Keywords:

Methylene Blue, montomillonite, pillared clays, photocatalysis, catalysts, electrochemical oxidation

Abstract

Montmorillonite clays (natural and commercial (KSF and K-10)) were modified by impregnation with TiO2 from TiCl4 solution. The natural and KSF clays were also pillared with Al polyhydroxication and after that, these were impregnated with TiO2. Photocatalysts were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy X-ray (EDX) and Infrared Spectroscopy (IR) in order to understand their catalytic potential properties. Photocatalysts were used in a decomposition reaction of methylene blue (MB) and all catalysts demonstrated photocatalytic activity for degradation of dye (20 to 45%); however, K-10 sample showed the best results (more than 98% of elimination) due to its high superficial area and TiO2 dispersion. The results obtained using photocatalysts were compared with electrochemical oxidation process using Ti/Pt anode, showing that the photocatalysis reaction is more efficient. At present, our results demonstrate the potential of these catalysts for environment applications.

Downloads

Download data is not yet available.

References

References

Clausen, D.N.; Takashima, K. Quim. Nova. 2007, 30, 1896-1899. DOI: https://doi.org/10.1590/S0100-40422007000800019

Byrne, J.A.; Fernandez-Ibañez, P.A.; Dunlop, P.S.M.; Alrousan, D.M.A.; Hamilton, J.W.J. Int. J. Photoenergy. 2011, 2011, 1-12. DOI: https://doi.org/10.1155/2011/798051

Singh, H.K.; Saquib, M.; Haque, M.M.; Muneer, M. Chem. Eng. J. 2008, 136, 77-81. DOI: https://doi.org/10.1016/j.cej.2007.05.009

Nogueira, R.F.P.; Jardim, W.F. J. Chem. Educ. 1993, 70, 863-864. DOI: https://doi.org/10.1021/ed070p863

Faisal, M.; Tariq, M.A.; Muneer, M. Dyes Pigm. 2007, 72, 233-239. DOI: https://doi.org/10.1016/j.dyepig.2005.08.020

Jiaguo, Y.; Mietek, J.; Gongxuan, L. Int. J. Photoenergy. 2012, 2012, 1-5. DOI: https://doi.org/10.1155/2012/206183

Rajeshwar, K.; Osugi, M.E.; Chammanee, W.; Chenthamarakshan, C.R.; Zanoni, M.V.B.; Kajitvichyanukul, P.; Krishnan-Ayer, R. J. Photochem. Photobiol. C. 2008, 9, 171-192. DOI: https://doi.org/10.1016/j.jphotochemrev.2008.09.001

Han, F.; Kambala, V.S.R.; Srinivasan, M.; Rajarathnam, D.; Naidu, R. App. Catal. A. 2009, 359, 25-40. DOI: https://doi.org/10.1016/j.apcata.2009.02.043

Puma, G.L.; Bono, A.; Krishnaiah, D.; Collin, J.G. J. Hazard. Mater. 2008, 157, 209-219. DOI: https://doi.org/10.1016/j.jhazmat.2008.01.040

Saquib, M.; Tariq, M.A.; Haque, M.M.; Muneer, M. 2008, 88, 300-306. DOI: https://doi.org/10.1016/j.jenvman.2007.03.012

Bergamini, R.B.M.; Azevedo, E.B.; de Araújo, L.R.R. Chem. Eng. J. 2009, 149, 215-220. DOI: https://doi.org/10.1016/j.cej.2008.10.019

Cernigoj, U.; Stangar, U.L.; Trebse, P.; Sarakha, M. J. Photochem. Photobiol. A. 2009, 201, 142-150. DOI: https://doi.org/10.1016/j.jphotochem.2008.10.014

Tian, G.; Fu, H.; Jing, L.; Tian, C. J. Hazard. Mater. 2009, 161, 1122-1130. DOI: https://doi.org/10.1016/j.jhazmat.2008.04.065

Mahvi, A.H.; Ghanbarian, M.; Nasseri, S.; Khairi, A. Desalination. 2009, 239, 309-316. DOI: https://doi.org/10.1016/j.desal.2008.04.002

Chong, M.N.; Jin, B.; Zhu, H.Y.; Crow, C.W.K.; Saint, C. Chem. Eng. J., 2009, 150, 49-54. DOI: https://doi.org/10.1016/j.cej.2008.12.002

Liu, R.; Li, S.; Yu, X.; Zhang, G.; Ma, Y.; Yao, J. J. Mater. Chem. 2011, 21, 14917-14924. DOI: https://doi.org/10.1039/c1jm12270c

Zhou, W.; Zhang, P.; Liu, W. Int. J. Photoenergy, 2012, 2012, 1-7. DOI: https://doi.org/10.1155/2012/374861

Chatti, R.; Rayalu, S.S.; Dubey, N.; Labhsetwar, N.; Devotta, S. Sol. Energy Mater. Sol. Cell. 2007, 91, 180-190. DOI: https://doi.org/10.1016/j.solmat.2006.08.009

Zheng, S.; Bai, C.; Gao, R. Int. J. Photoenergy 2012, 2012, 1-4. DOI: https://doi.org/10.1155/2012/594214

Chong, M.N.; Vimonses, V.; Lei, S.; Jin, B.; Chow, C.; Saint, C. Microporous Mesoporous Mater. 2009, 117, 233-242. DOI: https://doi.org/10.1016/j.micromeso.2008.06.039

Kibanova, D.; Trejo, M.; Destaillants, H.; Cervini-Silva, J. Appl. Clay Sci. 2009, 42, 563-568. DOI: https://doi.org/10.1016/j.clay.2008.03.009

Yang, X.; Zhu, H.; Liu, J.; Gao, X.; Martens, W.N.; Frost, R.L.; Shen, Y.; Yuan, Z. Microporous Mesopouros Mater. 2008, 112, 32-44. DOI: https://doi.org/10.1016/j.micromeso.2007.09.017

Zhu, H.Y.; Li, J.Y.; Zhao, J.C.; Churchman, G.J. Appl. Clay Sci. 2005, 28, 79-88. DOI: https://doi.org/10.1016/j.clay.2004.05.001

Rezala, H.; Khalaf, H.; Valverde, J.L.; Romero, A.; Molinari, A.; Maldotti, A. Appl. Catal. A. 2009, 352, 234-242. DOI: https://doi.org/10.1016/j.apcata.2008.10.011

Damardji, B.; Khalaf, H.; Duclaux, L.; David, B. Appl. Clay Sci. 2009, 45, 98-104. DOI: https://doi.org/10.1016/j.clay.2009.04.002

Zhang, G.; Ding, X.; He, F.; Yu, X.; Zhou, J.; Hu, Y; Xie, J. J. Phys. Chem. Solids. 2008, 69, 1102-1106. DOI: https://doi.org/10.1016/j.jpcs.2007.10.090

Dvininov, E.; Popovici, E.; Pode, R.; Cocheci, L.; Barvinschi, P.; Nica, V. J. Hazard. Mater. 2009, 167, 1050-1056. DOI: https://doi.org/10.1016/j.jhazmat.2009.01.105

Liu, J.; Dong, M.; Zuo, S.; Yu, Y. Appl. Clay Sci. 2009, 43, 156-159. DOI: https://doi.org/10.1016/j.clay.2008.07.016

Corma, A.; Fornes, V.; Pergher, S.B.; Maesen, Th.L.M.; Buglass, J.G. Nature, 1998, 396, 353-356. DOI: https://doi.org/10.1038/24592

Cseri, T.; Békássy, S.; Figueras, F.; Cseke, E.; Menorval, L.; Dutartre, R. Appl. Catal. A. 1995, 132, 141-155. DOI: https://doi.org/10.1016/0926-860X(95)00158-1

Rossa, V.; Spazzini, S.T.; Schwanke, A.J.; Penha, F.G.; Pergher, S.B.C. 30ª Reunião Anual da Sociedade Brasileira de Química. 2007, 21-22. DOI: https://doi.org/10.1590/S0100-40422007000400001

Tichit, D.; Fajula, F.; Figueiras, F.; Ducourant, B.; Mascherpa, G.; Gueguen C.; Bousquet, J. Clays Clay Miner. 1998, 36, 369-375. DOI: https://doi.org/10.1346/CCMN.1988.0360413

Cervantes, T.N.M.; Zaia, D.A.M.; Santana, H. Quim. Nova. 2009, 32, 2423-2428. DOI: https://doi.org/10.1590/S0100-40422009000900035

Warang, T.; Patel, N.; Santini, A.; Bazzanella, N.; Kale, A.; Miotello, A. Appl. Catal. A, 2012, 423–424, 21-27. DOI: https://doi.org/10.1016/j.apcata.2012.02.037

Petkowicz, D.I.; Brambilla, R.; Radtke, C.; Silva da Silva, C.D.; da Rocha, Z.N., Pergher, S.B.C.; dos Santos, J.H.Z. Appl. Catal. A, 2009, 357, 125-134. DOI: https://doi.org/10.1016/j.apcata.2008.12.040

Sapawe, N.; Jalil, A.A.; Triwahyono, S.; Sah, R.N.R.A.; Jusoh, N.W.C.; Hairom, N.H.H.; Efendi. J. Appl. Catal. A. 2013, 456, 144-158. DOI: https://doi.org/10.1016/j.apcata.2013.02.025

Matos, J.; García A.; Park, S.-E. Appl. Catal. A. 2011, 393, 359-366. DOI: https://doi.org/10.1016/j.apcata.2010.12.020

Brillas, E.; Martínez-Huitle, C.A. Appl. Catal. B Environ. 2015, 166-167, 603-643. DOI: https://doi.org/10.1016/j.apcatb.2014.11.016

Forgacs, E.; Cserhati, T.; Oros, G., Environ. Int. 2004, 30, 953-971. DOI: https://doi.org/10.1016/j.envint.2004.02.001

CONAMA, Environmental Brazilian Laws: Resolução Conselho Nacional de Meio Ambiente. Diário Oficial da União, 2005, 18, 58–63.

Oliveira, G. R.; Fernandes, N. S.; de Melo, J. V.; da Silva, D. R.; Urgeghe, C.; Martínez-Huitle, C.A. Chem. Eng. J. 2011, 168, 208-214. DOI: https://doi.org/10.1016/j.cej.2010.12.070

×

Published

2019-10-17
x

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...