The Potential of Green as well as Roasted Coffee Water Extracts as in-vitro Inhibitors of Beta-Hematin Formation

Authors

  • Mutaz Akkawi Al-Quds University
  • Fuad Al-Rimawi Al-Quds University https://orcid.org/0000-0002-9456-2762
  • Qassem Abu-Remeleh Al-Quds University
  • Latifah Al Shammari University of Hafr Al Batin
  • Amal N. Alanazi University of Hafr Al Batin
  • Salma Saddeek University of Hafr Al Batin
  • Fadel Wedian Yarmouk University
  • Ghassab M. Al-Mazaideh University of Hafr Al Batin
  • Mohammed Helmy Faris Shalayel University of Hafr Al Batin

DOI:

https://doi.org/10.29356/jmcs.v70i1.2474

Keywords:

Coffee, HPLC, antimalarial activity, β-hematin

Abstract

Abstract. This study investigates the antimalarial potential of coffee extracts exploring their relationship with roasting, absorption, effectiveness, and hemozoin production, while also identifying flavonoids and phenolic compounds. Research on the antimalarial properties of coffee extracts is crucial for developing new therapies. Coffee extracts could provide a natural and accessible source and understanding the effects of the roasting process can optimize their efficacy. Water extracts were obtained from both green and roasted coffee beans subjected to varying roasting times.

The effectiveness of the extracts was measured by the absorption of dissolved β- hematin at a wavelength of 405 nm. Chromatographic analysis using high-performance liquid chromatography (HPLC) was employed to separate and detect flavonoids and phenolic compounds within the extracts. Specific compound identification was achieved by comparing retention times and UV spectrum wavelengths of standards and samples. The study found that the absorption of coffee extracts was inversely correlated with their effectiveness, indicating that lower absorption corresponds to higher effectiveness. Green coffee water extracts exhibited limited efficacy, while roasted extracts demonstrated the highest efficacy. Chromatographic analysis identified flavonoids and phenolic compounds. Overall, the study reveals the antimalarial potential of coffee extracts, with extract effectiveness inversely related to absorption and inhibitory effects on hemozoin production. Chrysin as well as Galangin were identified as key constituents, highlighting their potential in antimalarial therapies. Further research is needed to understand their mechanisms of action.

 

Resumen. Este estudio se investigó el potencial antipalúdico de los extractos de café, explorando su relación con el tostado, la absorción, la eficacia y la producción de hemozoína, a la vez que se identificaron flavonoides y compuestos fenólicos. La investigación sobre las propiedades antipalúdicas de los extractos de café es crucial para el desarrollo de nuevas terapias. Los extractos de café podrían proporcionar una fuente natural y accesible, y comprender los efectos del proceso de tostado puede optimizar su eficacia. Se obtuvieron extractos acuosos de granos de café verde y tostado, sometidos a diferentes tiempos de tostado. La eficacia de los extractos se midió mediante la absorción de β-hematina disuelta a una longitud de onda de 405 nm. Se empleó un análisis cromatográfico mediante cromatografía líquida de alta resolución (HPLC) para separar y detectar flavonoides y compuestos fenólicos en los extractos. La identificación de compuestos específicos se logró comparando los tiempos de retención y las longitudes de onda del espectro UV de los estándares y las muestras. Se determinó que la absorción de los extractos de café está inversamente correlacionada con su eficacia, lo que indica que una menor absorción corresponde a una mayor eficacia. Los extractos de agua de café verde mostraron una eficacia limitada, mientras que los extractos tostados demostraron la mayor eficacia. Mediante el análisis cromatográfico se identificaron flavonoides y compuestos fenólicos. En general, el estudio revela el potencial antipalúdico de los extractos de café, cuya eficacia está inversamente relacionada con la absorción y los efectos inhibidores sobre la producción de hemozoína. La crisina y la galangina se identificaron como componentes clave, lo que destaca su potencial en terapias antipalúdicas. Futuras investigaciones deberán enfocarse en la comprensión de sus mecanismos de acción.

 

Downloads

Download data is not yet available.

Author Biographies

Mutaz Akkawi, Al-Quds University

Life Sciences Department, College of Science and Technology

Fuad Al-Rimawi, Al-Quds University

Department of Chemistry, Faculty of Science and Technology

Qassem Abu-Remeleh, Al-Quds University

Life Sciences Department, College of Science and Technology

Latifah Al Shammari, University of Hafr Al Batin

Department of Pharmaceutical Chemistry, College of Pharmacy

Amal N. Alanazi, University of Hafr Al Batin

Department of Chemistry, Khafji University College

Salma Saddeek, University of Hafr Al Batin

Department of Chemistry, Faculty of Sciences

Fadel Wedian, Yarmouk University

Department of Chemistry, Faculty of Science

Ghassab M. Al-Mazaideh, University of Hafr Al Batin

Department of Pharmaceutical Chemistry, College of Pharmacy

Mohammed Helmy Faris Shalayel, University of Hafr Al Batin

Department of Pharmaceutical Chemistry

References

1. Olafson, K.N.; Nguyen, T.Q.; Rimer, J.D.; Vekilov, P.G. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 7531-7536. DOI: https://doi.org/10.1073/pnas.1700125114

2. Ma, W.; Balta, V.A.; Pan, W.; Rimer, J.D.; Sullivan, D.J.; Vekilov, P.G. Commun Bio. 2023, 6, 783. DOI: https://doi.org/10.1038/s42003-023-05046-z

3. Damiani, C.; Soler, F.; Le Govic; Y., Totet; A., Bentzinger, G.; Bouchut, A.; Mustière, R.; Agnamey, P.; Dassonville-Klimpt, A.; Sonnet, P. Microorganisms. 2024, 12, 2524. DOI: https://doi.org/10.3390/microorganisms12122524

4. Sandlin, R.D.; Fong, K.Y.; Wicht, K.J.; Carrell, H.M.; Egan, T.J.; Wright, D.W. Inter J Parasit – Drugs & Drug Resist. 2014, 4,316-25. DOI: https://doi.org/10.1016/j.ijpddr.2014.08.002

5. Abiodun, O.A.; Oladepo, O.M. Acta Pharm Sci. 2018, 56, 61. DOI: https://doi.org/10.23893/1307-2080.APS.05618

6. World malaria report 2022. Geneva: World Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO. 2022.

7. Akkawi, M.; Abu-Lafi, S.; Abu-Remeleh, Q.; Lutgen, P. Pharm Pharmacol Inter J. 2021, 9, 11-15. DOI: http://dx.doi.org/10.15406/ppij.2021.09.00319

8. Akkawi, M.; Jaber, S.; Abu-Lafi, S.; Qutob, M.; Abu-Rmeleh, Q.; Lutgen, P. Mal World J. 2014, 5, 1-5.

9. Akkawi, M.; Abbasi, I.; Jaber, S.; Aburemeleh, Q.; Naseredin, A.; Lutgen, P. Brit. J. Pharmacol. Toxicol. 2014, 5, 156-162.

10. Akkawi, M.; Jaber, S.; Abu-Remeleh, Q.; Engeu, O.P.; Lutgen, P. Med. Aromat Plants. 2014, 3, 1000150. DOI: http://dx.doi.org/10.4172/2167-0412.1000150

11. Abu-Lafi, S.; Akkawi, M.; Abu-Remeleh, Q.; Jaber, S.; Qutob, M.; Lutgen, P. Pure. Pharm. Pharmacol. Inter J. 2018, 6, 4-9. DOI: https://doi.org/10.15406/ppij.2018.06.00145

12. Jaber, S.; Abu-Lafi, S.; Lutgen, P.; Qutob, M.; Qassem Abu-Remeleh, Q.; Akkawi, M. J. Pharm. Pharmacol. 2015, 3, 63-72. DOI: http://dx.doi.org/10.17265/2328-2150/2015.02.003

13. Blauer, G.; Akkawi, M. Arch. Biochem. Biophys. 2002, 398, 7-11. DOI: https://doi.org/10.1006/abbi.2001.2638

14. Kumar, S.; Guha, M.; Choubey, V.; Maity, P.; Bandyopadhyay, U. Life Sci. 2007, 6, 80(9):813-28. DOI: https://doi.org/10.1016/j.lfs.2006.11.008

15. Attieh, H.A.; Abu-Lafi, S.; Jaber S.; Abu-Remeleh Q.; Lutgen P.; Akkawi M. J. Med. Plants. Res. 2015, 9,998-1005. DOI: https://doi.org/10.5897/JMPR2015.5931

16. Inbaneson, S.J.; Sundaram, R.; Suganthi P. Asian Pac. J. Trop. Med. 2012, 5, 103-106. DOI: https://doi.org/10.1016/s1995-7645(12)60004-2

17. Ghasemzadeh Rahbardar, M.; Hosseinzadeh H. Iran J. Basic. Med. Sci. 2020, 23, 1100-1112. DOI: https://doi.org/10.22038/ijbms.2020.45269.10541

18. Shalayel, M.H.F.; Al-Mazaideh G.M.; Alanezi A.A.; Almuqati A.F.; Alotaibi M. Processes. 2023, 11, 1277. DOI: https://doi.org/10.3390/pr11041277

19. Shalayel, M.H.F.; Al-Mazaideh, G.M.; Alanezi, A.A.; Almuqati, A.F.; Alotaibi, M. Pharmaceuticals. 2023, 16, 704. DOI: https://doi.org/10.3390/ph16050704

20. Al-Rawajfeh, A.E.; Alzalabieh, E.; Al Bazedi, G.; Al-Mazaideh, G.M.; Shalayel, M.H.F. Desal. Water Treat. 2023, 290, 46-55. DOI: https://doi.org/10.5004/dwt.2023.29482

21. Abdelbagi, M.E.M.; Al-Mazaideh, G.M.; Ahmed, A.E.; Al-Rimawi, F.; Ayyal Salman, H.; Almutairi, A.; Abuilaiwi, F.A.; Wedian, F. Processes. 2023, 11, 1478. DOI: https://doi.org/10.3390/pr11051478

22. Abdelbagi, M.E.M.; Al-Mazaideh, G.M.; Ahmed, A.E.; Al-Rimawi, F.; Ayyal Salman, H.; Almutairi, A.; Abuilaiwi, F.A.; Wedian, F. Processes. 2023, 11, 1955. DOI: https://doi.org/10.3390/pr11071955

23. Khalid, M.; Amayreh, M.; Sanduka, S.; Salah, Z.; Al-Rimawi, F.; Al-Mazaideh, G.M.; Alanezi, A.A.; Wedian, F.; Alasmari, F.; Shalayel, M.H.F. Heliyon. 2022, 28, e10477. DOI: https://doi.org/10.1016/j.heliyon.2022.e10477. PMID: 36105455; PMCID: PMC9465121.

24. Jamhour, R.M.A.Q.; Al-Nadaf, A.H.; Wedian, F.; Al-Mazaideh, G.M.; Mustafa, M.; Huneif, M.A.; Mahmoud, S.Y.; Farrag, E.S.; Al-Rimawi, F.; Salman, H.A.; Alqudah, A.A.; Alakhras, F. Russ J Phys Chem A. 2022, 96, 1589–97. DOI: https://doi.org/10.1134/S0036024422070251

25. Al-Mazaideh, G.M.; Al-Mustafa, A.H.; Alnasser, S.M.A.; Nassir-Allah, I.; Tarawneh, K.A.; Al-Rimawi, F.; Mohamad Ibrahim, M.N.; Huneif, M.A.; Alshammari, S.O.; Yaqoob, A.A.; Wedian, F.; Shalayel, M.H.F. Heliyon. 2022, 8, e11516. DOI: https://doi.org/10.1016/j.heliyon.2022.e11516

26. Shalayel, M.H.F.; Nour, S.; Al-Mazaideh, G.M.; Mahmoud, S.Y.; Farrag, E.S. Med Sci. 2021, 25, 744-750.

27. Deharo, E.; García, R.N.; Oporto, P.; Gimenez, A.; Sauvain, M.; Jullian, V.; Ginsburg, H. Exp Parasitol. 2002, 100, 252-6. DOI: https://doi.org/10.1016/s0014-4894(02)00027-9

28. Alves, R.C.; Casal S.; Alves M.R.; Oliveira M.B. Food Chem. 2009, 114, 295-299. DOI: https://doi.org/10.1016/j.foodchem.2008.08.093

29. Santos, É.M.d.; Macedo, L.M.d.; Tundisi, L.L.; Ataide, J.A.; Camargo, G.A.; Alves, R.C.; Oliveira, M.B.P.P.; Mazzola, P.G. Trends Food Sci. Technol. 2021, 111, 280-91. DOI: https://doi.org/10.1016/j.tifs.2021.02.064

30. Nassar, M.O.; El-Sayed, H.M.; Kobisi, A.A.E.N. J. Pharm. Res. Inter. 2019, 31, 1-8. DOI: https://doi.org/10.9734/jpri/2019/v31i130290

31. Rawangkan, A.; Siriphap, A.; Yosboonruang, A.; Kiddee, A.; Pook-In, G.; Saokaew, S.; Sutheinkul, O.; Duangjai, A. Front Nutrit. 2022, 9, 865684. DOI: https://doi.org/10.3389/fnut.2022.865684

32. Alamri, E., Rozan, M.; Bayomy, H. Saudi J. Biol Sci. 2022, 29, 3133-3139. DOI: https://doi.org/10.1016/j.sjbs.2022.03.025

33. Franca, A.S.; Mendonça, J.C.F.; Oliveira, S.D. LWT - Food Sci Tech. 2005, 38, 709-715. DOI: https://doi.org/10.1016/j.lwt.2004.08.014

34. Sualeh, A.; Tolessa, K.; Mohammed, A. Heliyon. 2020, 6, e05812. DOI: https://doi.org/10.1016/j.heliyon.2020.e05812

35. Wang, H.Y.; Qian, H.; Yao, W.R. Food Chemt. 2011, 128, 573-584. DOI: https://doi.org/10.1016/j.foodchem.2011.03.075

36. Bergamaschi, M.; Simoncini, N.; Spezzano, V.M.; Ferri, M.; Tassoni, A. Foods. 2023, 12, 1264. DOI: https://doi.org/10.3390/foods12061264

37. Ribeiro, E.; Rocha, T.S.; Prudencio, S.H. Food Chem. 2021, 348, 129061. 20210111. DOI: https://doi.org/10.1016/j.foodchem.2021.129061

38. Coronado, L.M.; Nadovich, C.T.; Spadafora, C. Biochim. Biophys. Acta. 2014, 1840, 2032-41. DOI: https://doi.org/10.1016/j.bbagen.2014.02.009

39. Spiegel, M. J. Org. Chem. 2024, 89, 8676-90. DOI: https://doi.org/10.1021/acs.joc.4c00611

40. Tuli, H.S.; Sak, K.; Adhikary, S.; Kaur, G.; Aggarwal, D.; Kaur, J.; Kumar, M.; Parashar, N.C.; Parashar, G.; Sharma, U.; Jain, A. Exp. Biol. Med. (Maywood). 2022, 247, 345-359. doi: https://doi.org/10.1177/15353702211062510

41. Jan, R., & Mead, J. R. FEMS Microbiol. Lett. 2006, 259, 153–157. DOI: https://doi.org/10.1111/j.1574-6968.2006.00263.x

42. Ittadwar, P.A.; Puranik, P.K. Inter. J. Pharm. Sci. Drug. Res. 2021, 13, 457–469. DOI: https://doi.org/10.25004/IJPSDR.2021.130502

43. Lin, K.; Fu, D.; Wang, Z.; Zhang, X.; Zhu C. Korean J. Pain. 2024, 37, 151-163. DOI: https://doi.org/10.3344/kjp.23363

44. Mead, J.; McNair, N. FEMS Microbiol. Lett. 2006, 259, 153–157. DOI: https://doi.org/10.1111/j.1574-6968.2006.00263.x

45. Gong, M.; Xia, X.; Chen, D.; Ren, Y.; Liu, Y.; Xiang, H.; Li, X.; Zhi, Y.; Mo, Y. Front. Vet. Sci. 2023, 10, 1278997. DOI: https://doi.org/10.3389/fvets.2023.1278997

46. Jung, S.; Kim, M.H.; Park, J.H.; Jeong, Y.; Ko, K.S. J. Med. Food. 2017, 20, 626-635. DOI: https://doi.org/10.1089/jmf.2017.3935

47. Castaldo, L.; Toriello, M.; Sessa, R.; Izzo, L.; Lombardi, S.; Narváez, A.; Ritieni A.; Grosso, M. Nutrients. 2021, 13, 4368. DOI: https://doi.org/10.3390/nu13124368

×

Downloads

Published

2026-01-01

Issue

Section

Regular Articles
x

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Loading...