Entropic Uncertainty Relations and Mutual Information Correlation Sums in Two-level Superposition States of Coupled Oscillators
DOI:
https://doi.org/10.29356/jmcs.v68i4.2265Keywords:
Entropic uncertainty relations, mutual information, information theory, momentum space, coupled oscillatorsAbstract
The effects of quantum interferences and interaction strength on the entropic uncertainty relations, and on mutual information correlation sums, are examined in two-level superposition states of two coupled oscillators. The presence of quantum interferences results in a movement of the entropy sums toward the uncertainty relation bound, for both attractive and repulsive interaction potentials. On the other hand, these interferences suppress the statistical correlations in the presence of an attractive potential, while the correlations increase for a repulsive one. In general, stronger interactions between particles move the entropy sums away from bound, with the result that the systems possess larger statistical correlations. However, there are superposition and attractive interaction regimes, where the entropy sum of an interacting system can actually lie closer to the bound, in comparison to the corresponding non-interacting one. In these cases, the statistical correlations between particles is lesser for the interacting systems, as compared to the non-interacting ones. These effects are not observed when repulsive potentials are present. Here, the non-interacting systems lower-bound both the entropy sums and correlation measures. These results offer insights into the nature of superposition or quantum interference effects in interacting quantum systems, and the behavior in terms of the entropic uncertainty relations, statistical correlations and interaction strength.
Resumen. Se examinan los efectos que las interferencias cuánticas y la magnitud de la interacción tienen sobre las relaciones de incertidumbre entrópicas, así como sobre las sumas correlaciones me didas a través de la información mutua, en estados de superposición de dos niveles de dos osciladores acoplados. La presencia de interferencias cuánticas da como resultado un movimiento de las sumas entrópicas hacia la cota de la relación de incertidumbre, tanto para potenciales de interacción atractivos como repulsivos. Por otra parte, en presencia de un potencial atractivo, estas interferencias suprimen las correlaciones estadísticas, mientras que las correlaciones aumentan en presencia de uno repulsivo. En general, con interacciones más fuertes entre partículas, las sumas de entrópicas se alejan de la cota, dando como resultado mayores correlaciones estadísticas en los sistemas. Sin embargo, existen regímenes de superposición e interacción atractiva, en los cuales la suma entrópica de un sistema interactuante puede estar más cerca de la cota, en comparación con el sistema no interactuante correspondiente. En estos casos, las correlaciones estadísticas entre partículas son menores para los sistemas interactúantes que para los no interactuantes. Estos efectos no se observan en los potenciales repulsivos. En este caso, los sistemas no interactuantes establecen límites inferiores tanto para las sumas entrópicas como para las medidas de correlación. Estos resultados dan información sobre la naturaleza de los efectos de superposición o interferencia cuántica en sistemas cuánticos interactuantes, y su comportamiento en términos de relaciones de incertidumbre entrópica, correlaciones estadísticas y fuerza de interacción.
Downloads
References
Robertson, H. P. Phys. Rev. 1929, 34, 163. DOI: https://doi.org/10.1103/PhysRev.34.163. DOI: https://doi.org/10.1103/PhysRev.34.163
Zewail, A. H. J. Phys. Chem. A 2000, 104, 5660. DOI: https://doi.org/10.1021/jp001460h. DOI: https://doi.org/10.1021/jp001460h
Beckner, W. Ann. Math. 1975, 102, 159–182. DOI: https://doi.org/10.2307/1970980. DOI: https://doi.org/10.2307/1970980
Bialynicki-Birula, I.; Mycielski, J. Commun.Math. Phys. 1975, 44, 129–132. DOI: https://doi.org/10.1007/BF01608825. DOI: https://doi.org/10.1007/BF01608825
Hertz, A.; Cerf, N. J. J. Phys. A: Math. Theor. 2019, 52, 173001. DOI: https://doi.org/10.1088/1751-8121/ab03f3. DOI: https://doi.org/10.1088/1751-8121/ab03f3
Yáñez, R. J.; van Assche, W.; Dehesa, J. S. Phys. Rev. A 1994, 50, 3065. DOI: https://doi.org/10.1103/PhysRevA.50.3065. DOI: https://doi.org/10.1103/PhysRevA.50.3065
Gadre, S. R.; Sears, S. B.; Chakravorty, S. J.; Bendale, R. D. Phys. Rev. A 1985, 32, 2602. DOI: https://doi.org/10.1103/PhysRevA.32.2602. DOI: https://doi.org/10.1103/PhysRevA.32.2602
Maasen, S. E.; Panos, C. P. Phys. Lett. A. 1998, 246, 530. DOI: https://doi.org/10.1016/S0375-9601(98)00524-6. DOI: https://doi.org/10.1016/S0375-9601(98)00524-6
Grassi, A.; Lombardo, G. M.; March, N. H.; Pucci, R. Int. J. Quantum Chem. 1998, 69, 721–726. DOI: https://doi.org/10.1002/(SICI)1097-461X(1998)69:6<721::AID-QUA4>3.0.CO;2-X. DOI: https://doi.org/10.1002/(SICI)1097-461X(1998)69:6<721::AID-QUA4>3.3.CO;2-2
Guevara, N. L.; Sagar, R. P.; Esquivel, R. O. Phys. Rev. A 2003, 67, 012507. DOI: https://doi.org/10.1103/PhysRevA.67.012507. DOI: https://doi.org/10.1103/PhysRevA.67.012507
Romera, E.; Dehesa, J. S. J. Chem. Phys. 2004, 120, 8906–8912. DOI: https://doi.org/10.1063/1.1697374. DOI: https://doi.org/10.1063/1.1697374
Shi, Q.; Kais, S. J. Chem. Phys. 2004, 121, 5611–5617. DOI: https://doi.org/10.1063/1.1785773. DOI: https://doi.org/10.1063/1.1785773
Chatzisavvas, K. C.; Moustakidis, C. C.; Panos, C. P. J. Chem. Phys. 2005, 123, 174111. DOI: https://doi.org/10.1063/1.2121610. DOI: https://doi.org/10.1063/1.2121610
Sen, K.; Katriel, J. J. Chem. Phys. 2006, 125, 074117. DOI: https://doi.org/10.1063/1.2263710. DOI: https://doi.org/10.1063/1.2263710
Nagy, Á. Int. J. Quantum Chem. 2014, 115, 1392–1395. DOI: https://doi.org/10.1002/qua.24812. DOI: https://doi.org/10.1002/qua.24812
Lin, C. H.; Ho, Y. K. Chem. Phys. Lett. 2015, 633, 261–264. DOI: https://doi.org/10.1016/j.cplett.2015.05.029. DOI: https://doi.org/10.1016/j.cplett.2015.05.029
Pooja; Kumar, R.; Kumar, G.; Kumar, R.; Kumar, A. Int. J. Quantum Chem. 2016, 116, 1413. DOI: https://doi.org/10.1002/qua.25197. DOI: https://doi.org/10.1002/qua.25197
Coles, P. J.; Berta, M.; Tomamichel, M.; Wehner, S. Rev. Mod. Phys. 2017, 89, 015002. DOI: https://doi.org/10.1103/RevModPhys.89.015002. DOI: https://doi.org/10.1103/RevModPhys.89.015002
Sekh, G. A.; Saha, A.; Talukdar, B. Phys. Lett. A 2018, 382, 315. DOI: https://doi.org/10.1016/j.physleta.2017.12.005. DOI: https://doi.org/10.1016/j.physleta.2017.12.005
Flores-Gallegos, N. Chem. Phys. Lett. 2019, 720, 1–6. DOI: https://doi.org/10.1016/j.cplett.2019.01.049. DOI: https://doi.org/10.1016/j.cplett.2019.01.049
Kumar, R. K.; Chakrabarti, B.; Gammal, A. J. Low Temp. Phys. 2019, 194, 14. DOI: https://doi.org/10.1007/s10909-018-2051-8. DOI: https://doi.org/10.1007/s10909-018-2051-8
Zhao, Q.; Zhao, J. J. Low Temp. Phys. 2019, 194, 302. DOI: https://doi.org/10.1007/s10909-018-2099-5. DOI: https://doi.org/10.1007/s10909-018-2099-5
Panos, C. P.; Moustakidis, C. C. Physica A: Stat. Mech. Appl. 2019, 518, 384. DOI: https://doi.org/10.1016/j.physa.2018.12.018. DOI: https://doi.org/10.1016/j.physa.2018.12.018
Nasser, I.; Zeama, M.; Abdel-Hady A. Int. J. Quan. Chem., 121:e26499, 2021. DOI: https://doi.org/10.1002/qua.26499. DOI: https://doi.org/10.1002/qua.26499
(a)Ho, M.; Smith Jr., V.; Weaver, D.; Gatti, C.; Sagar, R.; Esquivel, R. J. Chem. Phys. 1998, 108, 5469. DOI: https://doi.org/10.1063/1.476316. (b) Ho, M.; Weaver, D.; Smith Jr., V.; Sagar, R.; Esquivel, R.; Yamamoto, S. J. Chem. Phys. 1998, 109, 10620. DOI: https://doi.org/10.1063/1.477761.
Liu, S. J. Chem. Phys. 2007, 126, 191107. DOI: https://doi.org/10.1063/1.2741244. DOI: https://doi.org/10.1063/1.2741244
Ho, M.; Weaver, D.; Smith Jr., V.; Sagar, R.; Esquivel, R. Phys. Rev. A. 1998, 57, 4512. DOI: https://doi.org/10.1103/PhysRevA.57.4512. DOI: https://doi.org/10.1103/PhysRevA.57.4512
Thakkar, A. J. John Wiley & Sons, Ltd, 2003; Chapter 5, pp 303–352. DOI: https://doi.org/10.1002/0471484237.ch5. DOI: https://doi.org/10.1002/0471484237.ch5
Dunkel, J.; Trigger, S. A. Phys. Rev. A 2005, 71, 052102. DOI: https://doi.org/10.1103/Phys-RevA.71.052102. DOI: https://doi.org/10.1103/PhysRevA.71.052102
Garbaczewski, P. Phys. Rev. A 2005, 72, 056101. DOI: https://doi.org/10.1103/PhysRevA.72.056101. DOI: https://doi.org/10.1103/PhysRevA.72.056101
Laguna, H. G.; Sagar, R. P. Int. J. Quant. Inf. 2010, 08, 1089–1100. DOI: https://doi.org/10.1142/S0219749910006484. DOI: https://doi.org/10.1142/S0219749910006484
Salazar, S. J. C.; Laguna, H. G.; Sagar, R. P. Phys. Rev. A 2023, 107, 042417. DOI: https://doi.org/10.1103/PhysRevA.107.042417. DOI: https://doi.org/10.1103/PhysRevA.107.042417
Mukherjee, N.; Roy, A. K. Int. J. Quantum Chem. 2018, 118, e25596. DOI: https://doi.org/10.1002/qua.25596. DOI: https://doi.org/10.1002/qua.25727
Majumdar, S.; Roy, A. Quantum Rep. 2020, 2, 189. DOI: https://doi.org/10.3390/quantum2010012. DOI: https://doi.org/10.3390/quantum2010012
Estañón, C. R.; Aquino, N.; Puertas-Centeno, D.; Dehesa, J. S. Int. J. Quantum Chem. 2020, 120, e26192. DOI: https://doi.org/10.1002/qua.26192. DOI: https://doi.org/10.1002/qua.26192
Salazar, S. J. C.; Laguna, H.; Prasad, V.; Sagar, R. P. Int J Quant Chem 2020, 120, e26188. DOI: https://doi.org/10.1002/qua.26188. DOI: https://doi.org/10.1002/qua.26188
Olendski, O. Entropy 2019, 21, 1060. DOI: https://doi.org/10.3390/e21111060. DOI: https://doi.org/10.3390/e21111060
Sen, K. D. J. Chem. Phys. 2005, 123, 074110. DOI: https://doi.org/10.1063/1.2008212. DOI: https://doi.org/10.1063/1.2008212
Nascimento, W. S.; Prudente, F. V. Chem. Phys. Lett. 2018, 691, 401. DOI: https://doi.org/10.1016/j.cplett.2017.11.048. DOI: https://doi.org/10.1016/j.cplett.2017.11.048
Aquino, N.; Flores-Riveros, A.; Rivas-Silva, J. F. Phys. Lett. A 2013, 377, 2062. DOI: https://doi.org/10.1016/j.physleta.2013.05.048. DOI: https://doi.org/10.1016/j.physleta.2013.05.048
Martínez-Sánchez, M. A.; Vargas, R.; Garza, J. Quantum Reports 2019, 1, 208–218. DOI: https://doi.org/10.3390/quantum1020018. DOI: https://doi.org/10.3390/quantum1020018
Fotue, A. J.; Kenfack, S. C.; Tiotsup, M.; Issofa, N.; Wirngo, A. V.; Djemmo, M. P. T.; Fotsin, H.; Fai, L. C. Mod. Phys. Lett. B 2015, 29, 1550241. DOI: https://doi.org/10.1142/S0217984915502413. DOI: https://doi.org/10.1142/S0217984915502413
Ghosal, A.; Mukherjee, N.; Roy, A. K. Ann. Phys. (Berlin) 2016, 528, 796. DOI: https://doi.org/10.1002/andp.201600121. DOI: https://doi.org/10.1002/andp.201600121
Mukerjee, N.; Roy, A. K. Ann. Phys. 2016, 528, 412–433. DOI: https://doi.org/10.1002/andp.201500301. DOI: https://doi.org/10.1002/andp.201500301
Nagy, Á. in Density Matrix and Density Functional Theory in Atoms, Molecules and the Solid State. Dordrecht, 2003; pp 79–87. DOI: https://doi.org/10.1007/978-94-017-0409-0_7
Higuchi, M.; Higuchi, K. Comp. Theo. Chem. 2013, 1003, 91–96. DOI: https://doi.org/10.1016/j.comptc.2012.09.015. DOI: https://doi.org/10.1016/j.comptc.2012.09.015
Sharma, P.; Bao, J. J.; Truhlar, D. G.; Gagliardi, L. Ann. Rev. Phys. Chem. 2021, 72, 541–564. DOI: https://doi.org/10.1146/annurev-physchem-090419-043839. DOI: https://doi.org/10.1146/annurev-physchem-090419-043839
Guevara, N. L.; Sagar, R. P.; Esquivel, R. O. J. Chem. Phys. 2003, 119, 7030. DOI: https://doi.org/10.1063/1.1605932. DOI: https://doi.org/10.1063/1.1605932
Sagar, R. P.; Laguna, H. G.; Guevara, N. L. Int. J. Quantum Chem. 2011, 111, 3497. DOI: https://doi.org/10.1002/qua.22792. DOI: https://doi.org/10.1002/qua.22792
López-Rosa, S.; Martín, A. L.; Antolín, J.; Angulo, J. C. Int. J. Quantum Chem. 2019, 119, e25861. DOI: https://doi.org/10.1002/qua.25861. DOI: https://doi.org/10.1002/qua.25861
Laguna, H.; Sagar, R. Phys. Rev. A 2011, 84, 012502. DOI: https://doi.org/10.1103/Phys-RevA.84.012502. DOI: https://doi.org/10.1103/PhysRevA.84.012502
Salazar, S.; Laguna, H. G.; Sagar, R. P. Phys. Rev. A 2020, 101, 042105. DOI: https://doi.org/10.1103/PhysRevA.101.042105, and references therein. DOI: https://doi.org/10.1103/PhysRevA.101.042105
Löwdin, P.-O. Phys. Rev. 1955, 97, 1509. DOI: https://doi.org/10.1103/PhysRev.97.1509. DOI: https://doi.org/10.1103/PhysRev.97.1509
Wigner, E.; Seitz, F. Phys. Rev. 1933, 43, 804–810. DOI: https://doi.org/10.1103/PhysRev.43.804. DOI: https://doi.org/10.1103/PhysRev.43.804
Kutzelnigg, W.; Re, G. D.; Berthier, G. Phys. Rev. 1968, 172, 49. DOI: https://doi.org/10.1103/Phys-Rev.172.49. DOI: https://doi.org/10.1103/PhysRev.172.49
Thakkar, A. J.; Smith Jr., V. H. Phys. Rev. A 1981, 23, 473. DOI: https://doi.org/10.1103/Phys-RevA.23.473. DOI: https://doi.org/10.1103/PhysRevA.23.473
Park, D. Quantum Inf. Process. 2020, 19, 129. DOI: https://doi.org/10.1007/s11128-020-02626-4. DOI: https://doi.org/10.1007/s11128-020-02626-4
Faba, J.; Martín, V.; Robledo, L. Phys. Rev. A 2021, 104, 032428. DOI: https://doi.org/10.1103/Phys-RevA.104.032428. DOI: https://doi.org/10.1103/PhysRevA.104.032428
Tam, P. M.; Claassen, M.; Kane, C. L. Phys. Rev. X 2022, 12, 031022. DOI: https://doi.org/10.1103/PhysRevX.12.031022. DOI: https://doi.org/10.1103/PhysRevX.12.031022
Angulo, J. C.; López-Rosa, S. Entropy 2022, 24, 233. DOI: https://doi.org/10.3390/e24020233. DOI: https://doi.org/10.3390/e24020233
Schürger, P.; Engel, V. Phys. Chem. Chem. Phys. 2023, 25, 28373. DOI: https://doi.org/10.1039/d3cp03573e. DOI: https://doi.org/10.1039/D3CP03573E
Alonso-López, D.; Cembranos, J. A. R.; Díaz-Guerra, D.; Mínguez-Sánchez, A. Eur. Phys. J. D 2023, 77, 43. DOI: https://doi.org/10.1140/ep jd/s10053-023-00629-1. DOI: https://doi.org/10.1140/epjd/s10053-023-00629-1
Schürger, P.; Engel, V. AIP Advances 2023, 13, 125307. DOI: https://doi.org/10.1063/5.0180004. DOI: https://doi.org/10.1063/5.0180004
Kumar, K.; Prasad, V. Ann. Phys. (Berlin) 2023, 535, 2300166. DOI: https://doi.org/10.1002/andp.202300166. DOI: https://doi.org/10.1002/andp.202300166
Peng, H. T.; Ho, Y. K. Entropy 2015, 17, 1882–1895. DOI: https://doi.org/10.3390/e17041882. DOI: https://doi.org/10.3390/e17041882
Sagar, R. P.; Guevara, N. L. J. Chem. Phys. 2005, 123, 044108. DOI: https://doi.org/10.1063/1.1953327. DOI: https://doi.org/10.1063/1.1953327
Moshinsky, M. Am. J. Phys. 1968, 36, 52–53. DOI: https://doi.org/10.1119/1.1974410. DOI: https://doi.org/10.1119/1.1974410
Holas, A.; Howard, I.; March, N. Phys. Lett. A 2003, 310, 451–456. DOI: https://doi.org/10.1016/S0375-9601(03)00408-0. DOI: https://doi.org/10.1016/S0375-9601(03)00408-0
Ragot, S. J. Chem. Phys. 2006, 125, 014106. DOI: https://doi.org/10.1063/1.2212935. DOI: https://doi.org/10.1063/1.2212935
March, N. H.; Cabo, A.; Claro, F.; Angilella, G. G. N. Phys. Rev. A 2008, 77, 042504. DOI: https://doi.org/10.1103/PhysRevA.77.042504. DOI: https://doi.org/10.1103/PhysRevA.77.042504
Dahl, J. P. Can. J. Chem. 2009, 87, 784–789. DOI: https://doi.org/10.1139/V09-002. DOI: https://doi.org/10.1139/V09-002
Niehaus, T.; March, N. Theor. Chem. Acc. 2010, 125, 427. DOI: https://doi.org/10.1007/s00214-009-0578-0. DOI: https://doi.org/10.1007/s00214-009-0578-0
Benavides-Riveros, C.; Várilly, J. Eur. Phys. J. D 2012, 66, 274. DOI: https://doi.org/10.1140/epjd/e2012-30442-4. DOI: https://doi.org/10.1140/epjd/e2012-30442-4
Ebrahimi-Fard, K.; Gracia-Bondía, J. J. Math. Chem. 2012, 50, 440. DOI: https://doi.org/10.1007/s10910-011-9822-7. DOI: https://doi.org/10.1007/s10910-011-9822-7
Floerchinger, S.; Haas, T.; Müller-Groeling, H. Phys. Rev. A. 2021, 103, 062222. DOI: https://doi.org/10.1103/PhysRevA.103.062222. DOI: https://doi.org/10.1103/PhysRevA.103.062222
Laguna, H.; Sagar, R. J. Phys. A: Math. Theor. 2012, 45, 025307. DOI: https://doi.org/10.1088/1751-8113/45/2/025307. DOI: https://doi.org/10.1088/1751-8113/45/2/025307
Majerník, V.; Opatrny, T. J. Phys. A: Math Gen. 1996, 29, 2187. DOI: https://doi.org/10.1088/0305-4470/29/9/029. DOI: https://doi.org/10.1088/0305-4470/29/9/029


Downloads
Published
Issue
Section
License
Copyright (c) 2024 Saúl J. C. Salazar, Humberto Laguna, Angel Garcia-Chung, Robin P. Sagar

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
