Entropic Uncertainty Relations and Mutual Information Correlation Sums in Two-level Superposition States of Coupled Oscillators

Authors

  • Saúl J. C. Salazar Universidad Autónoma Metropolitana
  • Humberto Laguna Universidad Autónoma Metropolitana
  • Angel Garcia-Chung Universidad Autónoma Metropolitana/Max Planck Institute for Mathematics in the Sciences/ Tecnológico de Monterrey
  • Robin P. Sagar Universidad Autónoma Metropolitana

DOI:

https://doi.org/10.29356/jmcs.v68i4.2265

Keywords:

Entropic uncertainty relations, mutual information, information theory, momentum space, coupled oscillators

Abstract

The effects of quantum interferences and interaction strength on the entropic uncertainty relations, and on mutual information correlation sums, are examined in two-level superposition states of two coupled oscillators. The presence of quantum interferences results in a movement of the entropy sums toward the uncertainty relation bound, for both attractive and repulsive interaction potentials. On the other hand, these interferences suppress the statistical correlations in the presence of an attractive potential, while the correlations increase for a repulsive one. In general, stronger interactions between particles move the entropy sums away from bound, with the result that the systems possess larger statistical correlations. However, there are superposition and attractive interaction regimes, where the entropy sum of an interacting system can actually lie closer to the bound, in comparison to the corresponding non-interacting one. In these cases, the statistical correlations between particles is lesser for the interacting systems, as compared to the non-interacting ones. These effects are not observed when repulsive potentials are present. Here, the non-interacting systems lower-bound both the entropy sums and correlation measures. These results offer insights into the nature of superposition or quantum interference effects in interacting quantum systems, and the behavior in terms of the entropic uncertainty relations, statistical correlations and interaction strength.

 

Resumen. Se examinan los efectos que las interferencias cuánticas y la magnitud de la interacción tienen sobre las relaciones de incertidumbre entrópicas, así como sobre las sumas correlaciones me didas a través de la información mutua, en estados de superposición de dos niveles de dos osciladores acoplados. La presencia de interferencias cuánticas da como resultado un movimiento de las sumas entrópicas hacia la cota de la relación de incertidumbre, tanto para potenciales de interacción atractivos como repulsivos. Por otra parte, en presencia de un potencial atractivo, estas interferencias suprimen las correlaciones estadísticas, mientras que las correlaciones aumentan en presencia de uno repulsivo. En general, con interacciones más fuertes entre partículas, las sumas de entrópicas se alejan de la cota, dando como resultado mayores correlaciones estadísticas en los sistemas. Sin embargo, existen regímenes de superposición e interacción atractiva, en los cuales la suma entrópica de un sistema interactuante puede estar más cerca de la cota, en comparación con el sistema no interactuante correspondiente. En estos casos, las correlaciones estadísticas entre partículas son menores para los sistemas interactúantes que para los no interactuantes. Estos efectos no se observan en los potenciales repulsivos. En este caso, los sistemas no interactuantes establecen límites inferiores tanto para las sumas entrópicas como para las medidas de correlación. Estos resultados dan información sobre la naturaleza de los efectos de superposición o interferencia cuántica en sistemas cuánticos interactuantes, y su comportamiento en términos de relaciones de incertidumbre entrópica, correlaciones estadísticas y fuerza de interacción.

 

Downloads

Download data is not yet available.

Author Biographies

Saúl J. C. Salazar, Universidad Autónoma Metropolitana

Departamento de Química

Humberto Laguna, Universidad Autónoma Metropolitana

Departamento de Química

Angel Garcia-Chung, Universidad Autónoma Metropolitana/Max Planck Institute for Mathematics in the Sciences/ Tecnológico de Monterrey

Departamento de Química

Escuela de Ingeniería y Ciencias

 

Robin P. Sagar, Universidad Autónoma Metropolitana

Departamento de Química

References

Robertson, H. P. Phys. Rev. 1929, 34, 163. DOI: https://doi.org/10.1103/PhysRev.34.163. DOI: https://doi.org/10.1103/PhysRev.34.163

Zewail, A. H. J. Phys. Chem. A 2000, 104, 5660. DOI: https://doi.org/10.1021/jp001460h. DOI: https://doi.org/10.1021/jp001460h

Beckner, W. Ann. Math. 1975, 102, 159–182. DOI: https://doi.org/10.2307/1970980. DOI: https://doi.org/10.2307/1970980

Bialynicki-Birula, I.; Mycielski, J. Commun.Math. Phys. 1975, 44, 129–132. DOI: https://doi.org/10.1007/BF01608825. DOI: https://doi.org/10.1007/BF01608825

Hertz, A.; Cerf, N. J. J. Phys. A: Math. Theor. 2019, 52, 173001. DOI: https://doi.org/10.1088/1751-8121/ab03f3. DOI: https://doi.org/10.1088/1751-8121/ab03f3

Yáñez, R. J.; van Assche, W.; Dehesa, J. S. Phys. Rev. A 1994, 50, 3065. DOI: https://doi.org/10.1103/PhysRevA.50.3065. DOI: https://doi.org/10.1103/PhysRevA.50.3065

Gadre, S. R.; Sears, S. B.; Chakravorty, S. J.; Bendale, R. D. Phys. Rev. A 1985, 32, 2602. DOI: https://doi.org/10.1103/PhysRevA.32.2602. DOI: https://doi.org/10.1103/PhysRevA.32.2602

Maasen, S. E.; Panos, C. P. Phys. Lett. A. 1998, 246, 530. DOI: https://doi.org/10.1016/S0375-9601(98)00524-6. DOI: https://doi.org/10.1016/S0375-9601(98)00524-6

Grassi, A.; Lombardo, G. M.; March, N. H.; Pucci, R. Int. J. Quantum Chem. 1998, 69, 721–726. DOI: https://doi.org/10.1002/(SICI)1097-461X(1998)69:6<721::AID-QUA4>3.0.CO;2-X. DOI: https://doi.org/10.1002/(SICI)1097-461X(1998)69:6<721::AID-QUA4>3.3.CO;2-2

Guevara, N. L.; Sagar, R. P.; Esquivel, R. O. Phys. Rev. A 2003, 67, 012507. DOI: https://doi.org/10.1103/PhysRevA.67.012507. DOI: https://doi.org/10.1103/PhysRevA.67.012507

Romera, E.; Dehesa, J. S. J. Chem. Phys. 2004, 120, 8906–8912. DOI: https://doi.org/10.1063/1.1697374. DOI: https://doi.org/10.1063/1.1697374

Shi, Q.; Kais, S. J. Chem. Phys. 2004, 121, 5611–5617. DOI: https://doi.org/10.1063/1.1785773. DOI: https://doi.org/10.1063/1.1785773

Chatzisavvas, K. C.; Moustakidis, C. C.; Panos, C. P. J. Chem. Phys. 2005, 123, 174111. DOI: https://doi.org/10.1063/1.2121610. DOI: https://doi.org/10.1063/1.2121610

Sen, K.; Katriel, J. J. Chem. Phys. 2006, 125, 074117. DOI: https://doi.org/10.1063/1.2263710. DOI: https://doi.org/10.1063/1.2263710

Nagy, Á. Int. J. Quantum Chem. 2014, 115, 1392–1395. DOI: https://doi.org/10.1002/qua.24812. DOI: https://doi.org/10.1002/qua.24812

Lin, C. H.; Ho, Y. K. Chem. Phys. Lett. 2015, 633, 261–264. DOI: https://doi.org/10.1016/j.cplett.2015.05.029. DOI: https://doi.org/10.1016/j.cplett.2015.05.029

Pooja; Kumar, R.; Kumar, G.; Kumar, R.; Kumar, A. Int. J. Quantum Chem. 2016, 116, 1413. DOI: https://doi.org/10.1002/qua.25197. DOI: https://doi.org/10.1002/qua.25197

Coles, P. J.; Berta, M.; Tomamichel, M.; Wehner, S. Rev. Mod. Phys. 2017, 89, 015002. DOI: https://doi.org/10.1103/RevModPhys.89.015002. DOI: https://doi.org/10.1103/RevModPhys.89.015002

Sekh, G. A.; Saha, A.; Talukdar, B. Phys. Lett. A 2018, 382, 315. DOI: https://doi.org/10.1016/j.physleta.2017.12.005. DOI: https://doi.org/10.1016/j.physleta.2017.12.005

Flores-Gallegos, N. Chem. Phys. Lett. 2019, 720, 1–6. DOI: https://doi.org/10.1016/j.cplett.2019.01.049. DOI: https://doi.org/10.1016/j.cplett.2019.01.049

Kumar, R. K.; Chakrabarti, B.; Gammal, A. J. Low Temp. Phys. 2019, 194, 14. DOI: https://doi.org/10.1007/s10909-018-2051-8. DOI: https://doi.org/10.1007/s10909-018-2051-8

Zhao, Q.; Zhao, J. J. Low Temp. Phys. 2019, 194, 302. DOI: https://doi.org/10.1007/s10909-018-2099-5. DOI: https://doi.org/10.1007/s10909-018-2099-5

Panos, C. P.; Moustakidis, C. C. Physica A: Stat. Mech. Appl. 2019, 518, 384. DOI: https://doi.org/10.1016/j.physa.2018.12.018. DOI: https://doi.org/10.1016/j.physa.2018.12.018

Nasser, I.; Zeama, M.; Abdel-Hady A. Int. J. Quan. Chem., 121:e26499, 2021. DOI: https://doi.org/10.1002/qua.26499. DOI: https://doi.org/10.1002/qua.26499

(a)Ho, M.; Smith Jr., V.; Weaver, D.; Gatti, C.; Sagar, R.; Esquivel, R. J. Chem. Phys. 1998, 108, 5469. DOI: https://doi.org/10.1063/1.476316. (b) Ho, M.; Weaver, D.; Smith Jr., V.; Sagar, R.; Esquivel, R.; Yamamoto, S. J. Chem. Phys. 1998, 109, 10620. DOI: https://doi.org/10.1063/1.477761.

Liu, S. J. Chem. Phys. 2007, 126, 191107. DOI: https://doi.org/10.1063/1.2741244. DOI: https://doi.org/10.1063/1.2741244

Ho, M.; Weaver, D.; Smith Jr., V.; Sagar, R.; Esquivel, R. Phys. Rev. A. 1998, 57, 4512. DOI: https://doi.org/10.1103/PhysRevA.57.4512. DOI: https://doi.org/10.1103/PhysRevA.57.4512

Thakkar, A. J. John Wiley & Sons, Ltd, 2003; Chapter 5, pp 303–352. DOI: https://doi.org/10.1002/0471484237.ch5. DOI: https://doi.org/10.1002/0471484237.ch5

Dunkel, J.; Trigger, S. A. Phys. Rev. A 2005, 71, 052102. DOI: https://doi.org/10.1103/Phys-RevA.71.052102. DOI: https://doi.org/10.1103/PhysRevA.71.052102

Garbaczewski, P. Phys. Rev. A 2005, 72, 056101. DOI: https://doi.org/10.1103/PhysRevA.72.056101. DOI: https://doi.org/10.1103/PhysRevA.72.056101

Laguna, H. G.; Sagar, R. P. Int. J. Quant. Inf. 2010, 08, 1089–1100. DOI: https://doi.org/10.1142/S0219749910006484. DOI: https://doi.org/10.1142/S0219749910006484

Salazar, S. J. C.; Laguna, H. G.; Sagar, R. P. Phys. Rev. A 2023, 107, 042417. DOI: https://doi.org/10.1103/PhysRevA.107.042417. DOI: https://doi.org/10.1103/PhysRevA.107.042417

Mukherjee, N.; Roy, A. K. Int. J. Quantum Chem. 2018, 118, e25596. DOI: https://doi.org/10.1002/qua.25596. DOI: https://doi.org/10.1002/qua.25727

Majumdar, S.; Roy, A. Quantum Rep. 2020, 2, 189. DOI: https://doi.org/10.3390/quantum2010012. DOI: https://doi.org/10.3390/quantum2010012

Estañón, C. R.; Aquino, N.; Puertas-Centeno, D.; Dehesa, J. S. Int. J. Quantum Chem. 2020, 120, e26192. DOI: https://doi.org/10.1002/qua.26192. DOI: https://doi.org/10.1002/qua.26192

Salazar, S. J. C.; Laguna, H.; Prasad, V.; Sagar, R. P. Int J Quant Chem 2020, 120, e26188. DOI: https://doi.org/10.1002/qua.26188. DOI: https://doi.org/10.1002/qua.26188

Olendski, O. Entropy 2019, 21, 1060. DOI: https://doi.org/10.3390/e21111060. DOI: https://doi.org/10.3390/e21111060

Sen, K. D. J. Chem. Phys. 2005, 123, 074110. DOI: https://doi.org/10.1063/1.2008212. DOI: https://doi.org/10.1063/1.2008212

Nascimento, W. S.; Prudente, F. V. Chem. Phys. Lett. 2018, 691, 401. DOI: https://doi.org/10.1016/j.cplett.2017.11.048. DOI: https://doi.org/10.1016/j.cplett.2017.11.048

Aquino, N.; Flores-Riveros, A.; Rivas-Silva, J. F. Phys. Lett. A 2013, 377, 2062. DOI: https://doi.org/10.1016/j.physleta.2013.05.048. DOI: https://doi.org/10.1016/j.physleta.2013.05.048

Martínez-Sánchez, M. A.; Vargas, R.; Garza, J. Quantum Reports 2019, 1, 208–218. DOI: https://doi.org/10.3390/quantum1020018. DOI: https://doi.org/10.3390/quantum1020018

Fotue, A. J.; Kenfack, S. C.; Tiotsup, M.; Issofa, N.; Wirngo, A. V.; Djemmo, M. P. T.; Fotsin, H.; Fai, L. C. Mod. Phys. Lett. B 2015, 29, 1550241. DOI: https://doi.org/10.1142/S0217984915502413. DOI: https://doi.org/10.1142/S0217984915502413

Ghosal, A.; Mukherjee, N.; Roy, A. K. Ann. Phys. (Berlin) 2016, 528, 796. DOI: https://doi.org/10.1002/andp.201600121. DOI: https://doi.org/10.1002/andp.201600121

Mukerjee, N.; Roy, A. K. Ann. Phys. 2016, 528, 412–433. DOI: https://doi.org/10.1002/andp.201500301. DOI: https://doi.org/10.1002/andp.201500301

Nagy, Á. in Density Matrix and Density Functional Theory in Atoms, Molecules and the Solid State. Dordrecht, 2003; pp 79–87. DOI: https://doi.org/10.1007/978-94-017-0409-0_7

Higuchi, M.; Higuchi, K. Comp. Theo. Chem. 2013, 1003, 91–96. DOI: https://doi.org/10.1016/j.comptc.2012.09.015. DOI: https://doi.org/10.1016/j.comptc.2012.09.015

Sharma, P.; Bao, J. J.; Truhlar, D. G.; Gagliardi, L. Ann. Rev. Phys. Chem. 2021, 72, 541–564. DOI: https://doi.org/10.1146/annurev-physchem-090419-043839. DOI: https://doi.org/10.1146/annurev-physchem-090419-043839

Guevara, N. L.; Sagar, R. P.; Esquivel, R. O. J. Chem. Phys. 2003, 119, 7030. DOI: https://doi.org/10.1063/1.1605932. DOI: https://doi.org/10.1063/1.1605932

Sagar, R. P.; Laguna, H. G.; Guevara, N. L. Int. J. Quantum Chem. 2011, 111, 3497. DOI: https://doi.org/10.1002/qua.22792. DOI: https://doi.org/10.1002/qua.22792

López-Rosa, S.; Martín, A. L.; Antolín, J.; Angulo, J. C. Int. J. Quantum Chem. 2019, 119, e25861. DOI: https://doi.org/10.1002/qua.25861. DOI: https://doi.org/10.1002/qua.25861

Laguna, H.; Sagar, R. Phys. Rev. A 2011, 84, 012502. DOI: https://doi.org/10.1103/Phys-RevA.84.012502. DOI: https://doi.org/10.1103/PhysRevA.84.012502

Salazar, S.; Laguna, H. G.; Sagar, R. P. Phys. Rev. A 2020, 101, 042105. DOI: https://doi.org/10.1103/PhysRevA.101.042105, and references therein. DOI: https://doi.org/10.1103/PhysRevA.101.042105

Löwdin, P.-O. Phys. Rev. 1955, 97, 1509. DOI: https://doi.org/10.1103/PhysRev.97.1509. DOI: https://doi.org/10.1103/PhysRev.97.1509

Wigner, E.; Seitz, F. Phys. Rev. 1933, 43, 804–810. DOI: https://doi.org/10.1103/PhysRev.43.804. DOI: https://doi.org/10.1103/PhysRev.43.804

Kutzelnigg, W.; Re, G. D.; Berthier, G. Phys. Rev. 1968, 172, 49. DOI: https://doi.org/10.1103/Phys-Rev.172.49. DOI: https://doi.org/10.1103/PhysRev.172.49

Thakkar, A. J.; Smith Jr., V. H. Phys. Rev. A 1981, 23, 473. DOI: https://doi.org/10.1103/Phys-RevA.23.473. DOI: https://doi.org/10.1103/PhysRevA.23.473

Park, D. Quantum Inf. Process. 2020, 19, 129. DOI: https://doi.org/10.1007/s11128-020-02626-4. DOI: https://doi.org/10.1007/s11128-020-02626-4

Faba, J.; Martín, V.; Robledo, L. Phys. Rev. A 2021, 104, 032428. DOI: https://doi.org/10.1103/Phys-RevA.104.032428. DOI: https://doi.org/10.1103/PhysRevA.104.032428

Tam, P. M.; Claassen, M.; Kane, C. L. Phys. Rev. X 2022, 12, 031022. DOI: https://doi.org/10.1103/PhysRevX.12.031022. DOI: https://doi.org/10.1103/PhysRevX.12.031022

Angulo, J. C.; López-Rosa, S. Entropy 2022, 24, 233. DOI: https://doi.org/10.3390/e24020233. DOI: https://doi.org/10.3390/e24020233

Schürger, P.; Engel, V. Phys. Chem. Chem. Phys. 2023, 25, 28373. DOI: https://doi.org/10.1039/d3cp03573e. DOI: https://doi.org/10.1039/D3CP03573E

Alonso-López, D.; Cembranos, J. A. R.; Díaz-Guerra, D.; Mínguez-Sánchez, A. Eur. Phys. J. D 2023, 77, 43. DOI: https://doi.org/10.1140/ep jd/s10053-023-00629-1. DOI: https://doi.org/10.1140/epjd/s10053-023-00629-1

Schürger, P.; Engel, V. AIP Advances 2023, 13, 125307. DOI: https://doi.org/10.1063/5.0180004. DOI: https://doi.org/10.1063/5.0180004

Kumar, K.; Prasad, V. Ann. Phys. (Berlin) 2023, 535, 2300166. DOI: https://doi.org/10.1002/andp.202300166. DOI: https://doi.org/10.1002/andp.202300166

Peng, H. T.; Ho, Y. K. Entropy 2015, 17, 1882–1895. DOI: https://doi.org/10.3390/e17041882. DOI: https://doi.org/10.3390/e17041882

Sagar, R. P.; Guevara, N. L. J. Chem. Phys. 2005, 123, 044108. DOI: https://doi.org/10.1063/1.1953327. DOI: https://doi.org/10.1063/1.1953327

Moshinsky, M. Am. J. Phys. 1968, 36, 52–53. DOI: https://doi.org/10.1119/1.1974410. DOI: https://doi.org/10.1119/1.1974410

Holas, A.; Howard, I.; March, N. Phys. Lett. A 2003, 310, 451–456. DOI: https://doi.org/10.1016/S0375-9601(03)00408-0. DOI: https://doi.org/10.1016/S0375-9601(03)00408-0

Ragot, S. J. Chem. Phys. 2006, 125, 014106. DOI: https://doi.org/10.1063/1.2212935. DOI: https://doi.org/10.1063/1.2212935

March, N. H.; Cabo, A.; Claro, F.; Angilella, G. G. N. Phys. Rev. A 2008, 77, 042504. DOI: https://doi.org/10.1103/PhysRevA.77.042504. DOI: https://doi.org/10.1103/PhysRevA.77.042504

Dahl, J. P. Can. J. Chem. 2009, 87, 784–789. DOI: https://doi.org/10.1139/V09-002. DOI: https://doi.org/10.1139/V09-002

Niehaus, T.; March, N. Theor. Chem. Acc. 2010, 125, 427. DOI: https://doi.org/10.1007/s00214-009-0578-0. DOI: https://doi.org/10.1007/s00214-009-0578-0

Benavides-Riveros, C.; Várilly, J. Eur. Phys. J. D 2012, 66, 274. DOI: https://doi.org/10.1140/epjd/e2012-30442-4. DOI: https://doi.org/10.1140/epjd/e2012-30442-4

Ebrahimi-Fard, K.; Gracia-Bondía, J. J. Math. Chem. 2012, 50, 440. DOI: https://doi.org/10.1007/s10910-011-9822-7. DOI: https://doi.org/10.1007/s10910-011-9822-7

Floerchinger, S.; Haas, T.; Müller-Groeling, H. Phys. Rev. A. 2021, 103, 062222. DOI: https://doi.org/10.1103/PhysRevA.103.062222. DOI: https://doi.org/10.1103/PhysRevA.103.062222

Laguna, H.; Sagar, R. J. Phys. A: Math. Theor. 2012, 45, 025307. DOI: https://doi.org/10.1088/1751-8113/45/2/025307. DOI: https://doi.org/10.1088/1751-8113/45/2/025307

Majerník, V.; Opatrny, T. J. Phys. A: Math Gen. 1996, 29, 2187. DOI: https://doi.org/10.1088/0305-4470/29/9/029. DOI: https://doi.org/10.1088/0305-4470/29/9/029

×

Downloads

Published

2024-09-30
x
Loading...