Prediction of Thermodynamic and Structural Properties of Sulfamerazine and Sulfamethazine in Water Using DFT and ab Initio Methods


  • Neda Hazhir Islamic Azad University
  • Farhoush Kiani Islamic Azad University
  • Hasan Tahermansouri Islamic Azad University
  • Saraei Ghorbani-Hasan Azade Islamic Azad University
  • Fardad Koohyar 1, 2. Ton Duc Thang University



Acid-ionization constant, Sulfamethazine, Sulfamerazine, Density functional theory, Nano drug modeling


The acid-ionization constant (pKa) is an important physico-chemical property of molecules. In this research work, the ab initio and density functional theory (DFT) methods, in combination with the polarized continuum model (PCM), were used to calculate the acid-ionization constant of sulfamethazine (SMZ) and sulfamerazine (SMR) solved in water. For these molecules, the calculated pKa value is in relatively good agreement with the experimental one. Also, in these calculations some structural properties such as dihedral angle between the indicated atoms: D, bond lengths between the indicated atoms: d, Bohr radius: a˳, intermolecular hydrogen bond: IHB, and total atomic charge: au have been determined. These data can be used in nano drug modeling of sulfamethazine and sulfamerazine.


Download data is not yet available.

Author Biographies

Neda Hazhir, Islamic Azad University

Department of Chemistry, Faculty of science, Ayatollah Amoli Branch

Farhoush Kiani, Islamic Azad University

Department of Chemistry, Faculty of science, Ayatollah Amoli Branch

Hasan Tahermansouri, Islamic Azad University

Department of Chemistry, Faculty of science, Ayatollah Amoli Branch

Saraei Ghorbani-Hasan Azade, Islamic Azad University

Department of Agriculture of Food Science Engineering, Ayatollah Amoli Branc

Fardad Koohyar, 1, 2. Ton Duc Thang University

  1. Division of Computational Physics, Institute for Computational Science
  2. Faculty of Applied Sciences


Qiang, Q.; Adams, C. Water Res. 2004, 38, 2874

Sternesjo, A.; Mellgren, C.; Bjorck, L. Anal Biochem.1995, 226, 175.

Golzar Hossain, G.M.; Amoroso, A.J.; Banu, A.; Malik, K.M.A. Polyhedron. 2007, 26, 967.

Poirier, L.A.; Doerge, D.R.; Gaylor, D.W.; Miller, M.A.; Roland, S.; Lorentzen, J.; Casciano, D.A.; Kadlubar, F.F.; Schwetz, B.A.; Regul Toxicol Pharmacol. 1999, 30, 217.

Sridhar, S.; Prasad, Y.R.; Dinda, S.C. Int J Pharm Sci Res. 2011, 2, 2562.

Delgado, D.R.; Martinez. F. Fluid Phase Equilibria. 2013, 360, 88.

Forbes, G.B.; Perley, A.; Dehlinger, J.; Louis, S.T. J Pediatr. 1946, 28, 24.

Namazian, M.; Heidary, H.; MolStruct. (Theochem). 2003, 620, 257.

Kiani, F.; Rostami, A.A.; Sharifi, S.; Bahadori, A.; Chaichi, M.J. Chem Eng Data. 2010, 55, 2732.

Babic, S.; Horvat, A.J.M.; Pavlovic, D.M.; Macan, M.K. TrAC, Trends Anal Chem. 2007, 26, 1043.

Rout, S.K.; Madhabkar, D. Int. J. Pharm. Pharm. Sci. 2015, 2, 25.

Jang, Y.H.; Hwang, S.; Chang, S.B.; Ku, J.; Chung, D.S. Phys. Chem. 2009, 113, 13036.

Yu, A.; Liu, Y.; Wang, Y. Chem Phys Lett. 2007, 436, 276.

Kheirjou, S.; Abedin, A.; Fattahi, A.; Mahmoodi Hashemi, M. Comput Theor Chem. 2014, 1027, 191.

Miertus, S.; Tomasi, E. J. Chem. Phys. 1982, 65, 239.

Young, D.C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real-World Problems, John Wiley & Sons, Inc, USA, 2001.

Kiani, F.; Abbaszadeh, M.; Pousti, M.; Koohyar, F. Braz J Pharm Sci. 2015, 51, 213.

Atkins, P.W. Physical Chemistry, 6th ed; Oxford University Press: England, 1998.

Jeffrey, G.A. An Introduction to Hydrogen Bonding, Oxford University Press, Oxford, 1997.






Regular Articles