A Facile One-pot Four Component Synthesis of Symmetric 1,4-Dihydropyridine Derivatives using CaFe₂O₂ NPs as Heterogeneous Catalyst under Ultrasound Irradiation and Theoretical Studies as Potential Digestive Enzyme Inhibitors

Authors

DOI:

https://doi.org/10.29356/jmcs.v69i3.2193

Keywords:

Hantzsch reaction, transesterification, 1,4-Dihydropyridine, ultrasound, heterogeneous catalyst, nano-particles, DFT method, molecular docking, ADMET

Abstract

Abstract. A fast and enormously efficient new-flanged symmetric 1,4-dihydropyridine analogs were synthesized by the one-pot four-component condensation reaction of substituted arylaldehyde, tert-butyl β-ketoester, (NH4)2CO3, and benzyl alcohol with p-substitution via transesterification followed by Hantzsch ester synthesis using robust and recyclable CaFe2O4 NPs as heterogeneous catalyst under ultrasonic irradiation. The synthesized compounds were well characterized, and the desired derivatives were studied for the quantum chemical computations using density functional theory (DFT) with Spartan software. On the other hand, the molecular docking experience of all compounds was performed to examine their efficacy against digestive enzymes α-amylase, pepsin, and trypsin and observed that the 1,4-dihydropyridine derivatives could be used as effective digestive enzyme inhibitors.

 

Resumen. Se sintetizaron de forma rápida y altamente eficiente nuevos análogos simétricos de 1,4-dihidropiridina mediante una reacción de condensación en un solo recipiente y en cuatro componentes, utilizando arilaldehídos sustituidos, β-cetoéster tert-butilo, (NH₄)₂CO₃ y alcohol bencílico con sustitución en posición para a través de una transesterificación, seguida de una síntesis tipo éster de Hantzsch, empleando nanopartículas de CaFe₂O₄ robustas y reciclables como catalizador heterogéneo bajo irradiación ultrasónica. Los compuestos sintetizados fueron debidamente caracterizados, y los derivados obtenidos se estudiaron mediante cálculos químicos cuánticos usando la teoría del funcional de la densidad (DFT) con el software Spartan. Por otro lado, se realizó un estudio de acoplamiento molecular (docking) de todos los compuestos para evaluar su eficacia contra enzimas digestivas como α-amilasa, pepsina y tripsina, observándose que los derivados de 1,4-dihidropiridina podrían emplearse como inhibidores eficaces de enzimas digestivas.

Downloads

Download data is not yet available.

Author Biographies

Anjaneyulu Bendi, Presidency University

Department of Chemistry

N. Mujafarkani, Bharathidasan University Tiruchirappalli

PG and Research Department of Chemistry/ Jamal Mohamed College (Autonomous)

G. B. Dharma Rao, Kommuri Pratap Reddy Institute of Technology (Autonomous)

Department of chemistry

References

Saranya, S.; Radhika, S.; Abdulla, C. M. A.; Anilkumar, G. J. Heterocyclic Chem. 2021, 1-11.

Draye, M.; Chatel, G.; Duwald, R. Pharmaceuticals. 2020, 13, 1-35. DOI: https://doi.org/10.3390/ph13020023

Chandan, R.; Mehta, S.; Banerjee, R. Biomater. Sci. Eng. 2020, 6, 4731–4747. DOI: https://doi.org/10.1021/acsbiomaterials.9b01979

Deng, Q.; Mi, J.; Dong, J.; Chen, Y.; Chen, L.; He, J.; Zhou, J. ACS Nano, 2023, 17, 263-274. DOI: https://doi.org/10.1021/acsnano.2c07300

Debnath, K.; Sarkar, A. K.; Jana, N. R.; Jana, N. R. Acc. Mater. Res. 2022, 3, 54-66. DOI: https://doi.org/10.1021/accountsmr.1c00193

Kashkooli, F. M.; Jakhmola, A.; Hornsby, T. K.; Tavakkoli, J.; Kolios, M. C. J. Control. Release. 2023, 355, 552-578. DOI: https://doi.org/10.1016/j.jconrel.2023.02.009

Weissler, A. J. Acoust. Soc. Am. 1953, 25, 651–657. DOI: https://doi.org/10.1121/1.1907158

Rad, T. S.; Ansarian, Z.; Khataee, A.; Vahid, B.; Doustkhah, E. Sep. Purif. Technol. 2021, 256, 117811. DOI: https://doi.org/10.1016/j.seppur.2020.117811

Cella, R.; Stefani, H. A. Tetrahedron. 2009, 65, 2619–2641. DOI: https://doi.org/10.1016/j.tet.2008.12.027

Stefani, H. A.; Cella, R., in: Encyclopedia of Physical Organic Chemistry; John Wiley & Sons, 2017, 1–25.

Saini, K. K.; Rani, R.; Muskan; Khanna, N.; Mehta, B.; Kumar, R. Curr. Org. Chem. 2023, 27, 119-129. DOI: https://doi.org/10.2174/1385272827666230403112419

Hantzsch, A. Chem. Ber. 1881, 14, 1637-1638. DOI: https://doi.org/10.1002/cber.18810140214

Sohal, H. S. Mater. Today: Proc. 2022, 48, 1163-1170. DOI: https://doi.org/10.1016/j.matpr.2021.08.209

Dharma Rao, G. B.; Nagakalyan, S.; Prasad, G. K. RSC Adv. 2017, 7, 3611-3616. DOI: https://doi.org/10.1039/C6RA26664A

Jadeja, K. F.; Joshi, H. S. Anal. Chem. Lett. 2022, 12, 371-379. DOI: https://doi.org/10.1080/22297928.2022.2036233

Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kin, F.; Yan, H. Q. Adv. Mater. 2003, 15, 353. DOI: https://doi.org/10.1002/adma.200390087

Chan, S. S.; Low, S. S.; Chew, K. W.; Ling, T. C.; Rinklebe, J.; Juan, J. C.; Ng, E. P.; Show, P. L. Environ. Res. 2022, 212, 113140. DOI: https://doi.org/10.1016/j.envres.2022.113140

Chandel, M.; Ghosh, B. K.; Moitra, D.; Patra, M. K.; Vadera, S. R.; Ghosh, N. N. J. Nanosci. Nanotechnol. 2018, 18, 2481-2492. DOI: https://doi.org/10.1166/jnn.2018.14345

Chavan, P.; Bangale, S.; Pansare, D.; Shelke, R.; Jadhav, S.; Tupare, S.; Kamble, D.; Rai, M. J. Heterocyclic Chem. 2020, 1-8.

Shearer, C.; Desaunay, O.; Zorc, S.; Richaud, A. D.; Samanta, S. S.; Jeedimalla, N.; Roche, S. P. Tetrahedron. 2019, 75, 130606. DOI: https://doi.org/10.1016/j.tet.2019.130606

Anjaneyulu, B.; Dharma Rao, G. B.; Sharma, N.; Singh, M. P. Results Chem. 2021, 3, 100202. DOI: https://doi.org/10.1016/j.rechem.2021.100202

Anjaneyulu, B.; Dharma Rao, G. B.; Bajaj, T. Results Chem. 2021, 100093. DOI: https://doi.org/10.1016/j.rechem.2020.100093

Anjaneyulu, B.; Dharma Rao, G. B.; Nancy; Nagakalyan, S. J. Saudi Chem. Soc. 2021, 25, 101394. DOI: https://doi.org/10.1016/j.jscs.2021.101394

Anjaneyulu, B.; Dharma Rao, G. B.; Sharma, N.; Tomar, R.; Singh, L. ChemistrySelect. 2022, 7, e202103910, 1-10.

Anjaneyulu, B.; Dharma, G. B. Lett. Org. Chem. 2023, 20, 568-578.

Anjaneyulu, B.; Arti, S.; Dharma Rao, G. B.; Raza, M. J.; Sharma, N. J. Chem. 2021, 1-12.

Dharma Rao, G. B. J. Heterocyclic Chem. 2018, 55, 2556-2562. DOI: https://doi.org/10.1002/jhet.3309

Dharma Rao, G. B.; Kaushik, M. P. Tetrahedron Lett. 2011, 52, 5104-5106. DOI: https://doi.org/10.1016/j.tetlet.2011.07.108

Witzeman, J. S.; Nottingham, W. D. J. Org. Chem. 1991, 56, 1713. DOI: https://doi.org/10.1021/jo00005a013

Spartan’14, 2014, Wavefunction Inc., Irvine.

Fleming, I., in: Frontier Orbitals and Organic Chemical Reactions, Wiley, London, 1976.

Okulik, N.; Jubert, A. H. J. Mol. Struct. 2004, 682, 55–62. DOI: https://doi.org/10.1016/j.theochem.2004.04.069

Agu, P. C.; Afiukwa, C.A.; Orji, O.U.; Ezeh, E. M.; Ofoke, I. H.; Ogbu, C. O.; Ugwuja, E. I.; Aja, P. M. Sci. Rep. 2023, 13, 13398. DOI: https://doi.org/10.1038/s41598-023-40160-2

Meng, X. Y.; Zhang, H. X.; Mezei, M.; Cui, M. Curr. Comput.-Aided Drug Des. 2011, 7, 146-157. DOI: https://doi.org/10.2174/157340911795677602

Ramasubbu, N.; Paloth, V.; Luo, Y.; Brayer, G. D.; Levine, M. J. Acta Cryst. 1996, D52, 435-446. DOI: https://doi.org/10.1107/S0907444995014119

Kesavulu, M. M.; Ramasubramanian, S.; Suguna, K. Biochem. Biophys. Res. Commun. 2005, 331, 1510-1514. DOI: https://doi.org/10.1016/j.bbrc.2005.03.247

Song, H. K.; Suh, S. W. J. Mol. Biol. 1998, 275, 347-363. DOI: https://doi.org/10.1006/jmbi.1997.1469

Trott, O.; Olson, A. J. J. Comput. Chem. 2010, 31, 455-461. DOI: https://doi.org/10.1002/jcc.21334

Daina, A.; Michielin, O.; Zoete, V. Sci. Rep. 2017, 7, 42717. DOI: https://doi.org/10.1038/srep42717

Molinspiration. (n.d.). Molinspiration: Computational chemistry tools for drug discovery.

×

Downloads

Published

2025-06-11

Issue

Section

Regular Articles
x

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...