Studies on the Artocarpus lakoocha Seeds for Drug Delivery
DOI:
https://doi.org/10.29356/jmcs.v68i3.2111Keywords:
Artocarpus lakoocha starch, immediate drug delivery, physical modification, physicochemical properties, suppository, tabletAbstract
Abstract. This study aimed to evaluate the effect of modification on non-conventional native starch derived from the seed of Artocarpus lakoocha or monkey fruit (Native Starch). The current study determined the excipient characteristics of native and modified starches by examining their physicochemical properties, flow properties, and release characteristics. It showed better improvement in the physicochemical and functional properties and was helpful in the formulation of immediate-release formulations when tested with paracetamol as a model drug. The results from the Field Emission Scanning Electron Microscopy (FESEM) Micrograph revealed a disruption of the granular structure. FTIR analysis confirmed the carbohydrate nature of the starch. The X-ray diffraction pattern demonstrated the decrease in crystallinity following thermal modification. Here, we utilized waste seeds of Artocarpus lakoocha to isolate starch, its modifications, and their usage in effective drug delivery formulations, such as tablets and suppositories, compared to the marketed formulations. In summary, this study aims to assess the effects of starch modification and demonstrates the potential advantages of using starch derived from Artocarpus lakoocha seeds. It addresses the need for improved excipients in pharmaceutical formulations, promotes sustainability through waste utilization, and highlights the versatility of these starches in various applications, including drug delivery and functional foods.
Resumen. Este estudio tuvo como objetivo evaluar el efecto de la modificación sobre el almidón nativo no convencional derivado de la semilla de Artocarpus lakoocha o fruto de mono (Native Starch). El presente estudio determinó las características de los excipientes de los almidones nativos y modificados examinando sus propiedades fisicoquímicas y de flujo así como sus características de liberación. Mostró una mejor mejora en las propiedades fisicoquímicas y funcionales y fue útil en la formulación para su liberación inmediata cuando se probó con paracetamol como fármaco modelo. Los resultados de la micrografía de microscopía electrónica de barrido por emisión de campo (FESEM) revelaron una alteración de la estructura granular. El análisis FTIR confirmó la naturaleza glucosídica del almidón. El patrón de difracción de rayos X demostró la disminución de la cristalinidad después de la modificación térmica. También utilizamos semillas de desecho de Artocarpus lakoocha para aislar el almidón, sus modificaciones y su uso en formulaciones efectivas de administración de medicamentos, como tabletas y supositorios, en comparación con las formulaciones comercializadas. En resumen, este estudio tuvo como objetivo evaluar los efectos de la modificación del almidón y demuestra las ventajas potenciales del uso de almidón derivado de semillas de Artocarpus lakoocha. Aborda la necesidad de mejorar los excipientes en las formulaciones farmacéuticas, promueve la sostenibilidad mediante la utilización de residuos y destaca la versatilidad de estos almidones en diversas aplicaciones, incluida la administración de medicamentos y los alimentos funcionales.
Downloads
References
Pai, V.; Akhilraj, T. M. Eco. Env. Cons. 2022, 28, 179-182. DOI: http://doi.org/10.53550/EEC.2022.v28i03s.026. DOI: https://doi.org/10.53550/EEC.2022.v28i03s.026
Gupta, A.K.; Rather, M.A.; Kumar Jha, A.; Shashank, A.; Singhal, S.; Sharma, M.; Pathak, U.; Sharma, D.; Mastinu, A. Plants. 2020, 9, 1329. DOI: https://doi.org/10.3390/plants9101329. DOI: https://doi.org/10.3390/plants9101329
Almeida, E. L.; Marangoni, A. L.; Steel, C. J. Food Technol. 2013, 43, 2101-2108. DOI: https://doi.org/10.1590/S0103-84782013001100028. DOI: https://doi.org/10.1590/S0103-84782013001100028
Le, T. H. T.; Nguyen, H. T.; Nguyen, V. K.; Nguyen, T. L.; Nguyen, T. T. Mater. Sci. Forum. 2020, 991,150-156. DOI: https://doi.org/10.4028/www.scientific.net/MSF.991.150
Nayak, A. K.; Alkahtani, S.; Hasnain, M. S. Polym. Nat. Compos. 2022, 213-240. DOI: https://doi.org/10.1007/978-3-030-70266-3_7
Zhang, Y.; Li, B.; Xu, F.; He, S.; Zhang, Y.; Sun, L.; Zhu, K.; Li, S.; Wu, G.; Tan, L. Trends Food Sci Technol. 2021, 107, 268-283. DOI: https://doi.org/10.1016/j.tifs.2020.10.041. DOI: https://doi.org/10.1016/j.tifs.2020.10.041
Weng, L.; Zhang, Y.; Yang, Y.; Wang, L. Int. J. Mol. Sci. 2014, 15, 6328-6342. DOI: https://doi.org/10.3390/ijms15046328. DOI: https://doi.org/10.3390/ijms15046328
Eswaramoorthy, R.; Hailekiros, H.; Kedir, F.; Endale, M. Adv. Appl. Bioinforma. Chem. 2021, 14, 13. DOI: https://doi.org/10.2147/AABC.S290912. DOI: https://doi.org/10.2147/AABC.S290912
Banyal, S.; Shukla, A.K.; Kumari, A.; Kumar, A.; Khatak, A.; Luthra, A.; Kumar, M. Waste Biomass. Valori. 2022, 1-14. DOI: https://doi.org/10.1007/s12649-022-01945-0.
Martins, A.; Beninca, C.; Bet, C.D.; Bisinella, R.Z.B.; de Oliveira, C.S.; Hornung, P.S.; Schnitzler, E. J. Therm. Anal. Calorim. 2020, 142, 819-828. DOI: https://doi.org/10.1007/s10973-020-09298-3. DOI: https://doi.org/10.1007/s10973-020-09298-3
Nawaz, H.; Waheed, R.; Nawaz, M; Shahwar, D. Chem. Prop. Starch. 2020, 9, 13-35. DOI: https://doi.org/10.5772/intechopen.88870. DOI: https://doi.org/10.5772/intechopen.88870
Singh, A.; Kumar, K. J. Int. J. Biol. Macromol. 2020, 165, 1431-1437. DOI: https://doi.org/10.1016/j.ijbiomac.2020.10.027. DOI: https://doi.org/10.1016/j.ijbiomac.2020.10.027
Charoenthai, N.; Sanga‐ngam, T.; Kasemwong, K.; Sungthongjeen, S.; Puttipipatkhachorn, S. Starch‐Stärke. 2022, 74, 2100263. DOI: https://doi.org/10.1002/star.202100263. DOI: https://doi.org/10.1002/star.202100263
Belniak, P.; Świąder, K.; Szumiło, M.; Hyla, A.; Poleszak, E. Saudi Pharm. J. 2017, 25, 365-369. DOI: https://doi.org/10.1016/j.jsps.2016.09.004. DOI: https://doi.org/10.1016/j.jsps.2016.09.004
Das, D.; Kumar, K. J. Int. J. Biol. Macromol. 2019, 124, 1033-1039. DOI: https://doi.org/10.1016/j.ijbiomac.2018.11.182. DOI: https://doi.org/10.1016/j.ijbiomac.2018.11.182
Mondal, A.; Kumar, K. J. Int. J. Biol. Macromol. 2019, 140, 1091-109. DOI: https://doi.org/10.1016/j.ijbiomac.2019.08.094. DOI: https://doi.org/10.1016/j.ijbiomac.2019.08.094
Varma, C. A. K.; Kumar, K. J. Int. J. Biol. Macromol. 2018, 118, 2156-2162. DOI: https://doi.org/10.1016/j.ijbiomac.2018.07.057. DOI: https://doi.org/10.1016/j.ijbiomac.2018.07.057
Deshkar, D.; Gupta, R. N.; Kumar, K. J. Int. J. Biol. Macromol. 2019, 122, 417-424. DOI: https://doi.org/10.1016/j.ijbiomac.2018.10.079. DOI: https://doi.org/10.1016/j.ijbiomac.2018.10.079
Rengadu, D.; Gerrano, A. S.; Mellem, J. J. Int. J. Biol. Macromol. 2020, 147, 268-275. DOI: https://doi.org/10.1016/j.ijbiomac.2020.01.043. DOI: https://doi.org/10.1016/j.ijbiomac.2020.01.043
Kulkarni, S. D.; Sinha, B. N.; Kumar, K. J. Int. J. Biol. Macromol. 2013, 61, 396-403. DOI: https://doi.org/10.1016/j.ijbiomac.2013.07.027. DOI: https://doi.org/10.1016/j.ijbiomac.2013.07.027
Sobowale, S. S.; Olatidoye, O. P.; Atinuke, I.; Emeka, O. C. Trans. R. Soc. S. Afr. 2022, 77, 89-99. DOI: https://doi.org/10.1080/0035919X.2022.2036265. DOI: https://doi.org/10.1080/0035919X.2022.2036265
Mehfooz, T.; Ali, T. M.; Hasnain, A. J. Food Meas. Charact. 2019, 13, 1058-1069. DOI: https://doi.org/10.1007/s11694-018-00021-3. DOI: https://doi.org/10.1007/s11694-018-00021-3
Molavi, H.; Razavi, S. M. A.; Farhoosh, R. Food Chem. 2018, 245, 385-393. DOI: https://doi.org/10.1016/j.foodchem.2017.10.117. DOI: https://doi.org/10.1016/j.foodchem.2017.10.117
Deepika, V.; Kumar, K. J.; Anima, P. Int. J. Biol. Macromol. 2013, 55, 193-200. DOI: https://doi.org/10.1016/j.ijbiomac.2012.11.027. DOI: https://doi.org/10.1016/j.ijbiomac.2012.11.027
Guo, Z.; Zeng, S.; Zhang, Y.; Lu, X.; Tian, Y.; Zheng, B. Food Hydrocoll. 2015, 44, 285-291. DOI: https://doi.org/10.1016/j.foodhyd.2014.09.014. DOI: https://doi.org/10.1016/j.foodhyd.2014.09.014
Zhu, F.; Cui, R. Int. J. Biol. Macromol. 2015, 148, 601-607. DOI: https://doi.org/10.1016/j.ijbiomac.2020.01.028. DOI: https://doi.org/10.1016/j.ijbiomac.2020.01.028
Wisudyaningsih, B.; Wijiani, N.; Anggraeni, V. Pharm. Educ. 2023, 23, 207-211. DOI: https://doi.org/10.46542/pe.2023.232.207211. DOI: https://doi.org/10.46542/pe.2023.232.207211
Venkataswamy, M. 2018. DOI: https://doi.org/10.13140/RG.2.2.24488.42248.
Khatri, T. C. World J. Pharm. Res. 2017, 6, 163-175.
Chaurasia, S.; Pandey, A.; June. Medical Sciences Forum. 2022, 12, 5. DOI: https://doi.org/10.3390/eca2022-12712. DOI: https://doi.org/10.3390/eca2022-12712
Chua, S. D.; Kho, E. P.; Lim, S. F.; Hussain, M. H. Adv. Mater. 2021, 1-23. DOI: https://doi.org/10.1080/2374068X.2021.1878702. DOI: https://doi.org/10.1080/2374068X.2021.1878702
Zhang, Y.; Zuo, H.; Xu, F.; Zhu, K.; Tan, L.; Dong, W.; Wu, G. Food Hydrocoll. 2022, 110, 106154. DOI: https://doi.org/10.1016/j.foodhyd.2020.106154. DOI: https://doi.org/10.1016/j.foodhyd.2020.106154
Sujka, M. Ultrason. Sonochem. 2017, 37, 424-429. DOI: https://doi.org/10.1016/j.ultsonch.2017.02.001. DOI: https://doi.org/10.1016/j.ultsonch.2017.02.001
Vishal, Banyal, S.; Shukla, A. K.; Kumari, A.; Kumar, A.; Khatak, A.; Luthra, A.; Sunil; Kumar, M. Waste Biomass Valorization. 2023, 14, 1597-1610. DOI: https://doi.org/10.1007/s12649-022-01945-0. DOI: https://doi.org/10.1007/s12649-022-01945-0
Swami, S.B.; Kalse, S. B. Bioact. Mol. Plant. Foods. 2018, 1-23. DOI: https://doi.org/10.1007/978-3-319-54528-8_87-1
Sulaiman, W. M. A. Food Res. 2019, 3, 546-555. DOI: https://doi.org/10.26656/fr.2017.3(5).095. DOI: https://doi.org/10.26656/fr.2017.3(5).095
Kushwaha, R.; Fatima, N. T.; Singh, M.; Singh, V.; Kaur, S. Puranik, V.; Kumar, R.; Kaur, D. J. Food Process. Preserv. 2021, 45, 15146. DOI: https://ifst.onlinelibrary.wiley.com/doi/10.1111/jfpp.15146. DOI: https://doi.org/10.1111/jfpp.15146
Marta, H.; Tensiska, T. KnE Life Sci. 2017, 689-700. DOI: https://doi.org/10.18502/kls.v2i6.1091. DOI: https://doi.org/10.18502/kls.v2i6.1091
Babu, S.A.; Parimalavalli, R. Ann.Univ. Dunarea de Jos of Galati. Fascicle VI-Food Technol. 2014, 38, 48-63. DOI: https://www.gup.ugal.ro/ugaljournals/index.php/food/article/view/1733.
Iheagwara, M. C. J. Food Process. Technol. 2013, 4. DOI: https://doi.org/10.4172/2157-7110.1000198. DOI: https://doi.org/10.4172/2157-7110.1000198
Zia-ud-Din, Xiong, H.; Fei, P. Crit. Rev. Food Sci. Nutr. 2017, 57, 2691-2705. DOI: https://doi.org/10.1080/10408398.2015.1087379. DOI: https://doi.org/10.1080/10408398.2015.1087379
Mahajan, H.S.; Kelkar, Y. V. J. Drug Deliv. Sci. Technol. 2017, 41, 310-316. DOI: https://doi.org/10.1016/j.jddst.2017.07.023. DOI: https://doi.org/10.1016/j.jddst.2017.07.023
Widodo, R.T.; Hassan, A. Powder Technol. 2015, 269, 15-21. DOI: https://doi.org/10.1016/j.powtec.2014.08.039. DOI: https://doi.org/10.1016/j.powtec.2014.08.039
Wang, Y.; Li, Y.; Liu, Y.; Chen, X.; Wei, X. Int. J. Biol. Macromol. 2015, 77, 76-84. DOI: https://doi.org/10.1016/j.ijbiomac.2015.02.052. DOI: https://doi.org/10.1016/j.ijbiomac.2015.02.052
Zheng, Y.; Liu, R.; Hou, X.; Zhuang, X.; Wu, H.; Yin, D.; Yang, Y. J. Drug Deliv. Sci. Technol. 2023 84, 104452. DOI: https://doi.org/10.1016/j.jddst.2023.104452. DOI: https://doi.org/10.1016/j.jddst.2023.104452
Wang, D.; Sun, S.Q.; Wu, W.Z.; Yang, S.L.; Tan, J.M. Carbohydr. Polym.2014, 105, 127-134. DOI: https://doi.org/10.1016/j.carbpol.2013.12.085. DOI: https://doi.org/10.1016/j.carbpol.2013.12.085
Archana, G.; Sabina, K.; Babuskin, S.; Radhakrishnan, K.; Fayidh, M.A.; Babu, P.A.S.; Sivarajan, M.; Sukumar, M. Carbohydr. Polym. 2013, 98, 89-94. DOI: https://doi.org/10.1016/j.carbpol.2013.04.062. DOI: https://doi.org/10.1016/j.carbpol.2013.04.062
Zhang, C. H.; Yu, Y.; Liang, Y. Z.; Chen, X. Q. Int. J. Biol. Macromol. 2015, 79, 681-686. DOI: https://doi.org/10.1016/j.ijbiomac.2015.05.060. DOI: https://doi.org/10.1016/j.ijbiomac.2015.05.060
Xie, J.H.; Zhang, F.; Wang, Z.J.; Shen, M.Y.; Nie, S.P.; Xie, M.Y. Carbohydr. Polym. 2015, 133, 596-604. DOI: https://doi.org/10.1016/j.carbpol.2015.07.031. DOI: https://doi.org/10.1016/j.carbpol.2015.07.031
Chaurasia, S.; Pandey, A. Russ. J. Bioorg. Chem. 2023, 1-34. DOI: https://doi.org/10.1134/S1068162023030081. DOI: https://doi.org/10.1134/S1068162023030081


Downloads
Published
Issue
Section
License
Copyright (c) 2024 Surabhi Chaurasia, Anima Pandey

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
