Studies on the Artocarpus lakoocha Seeds for Drug Delivery

Authors

DOI:

https://doi.org/10.29356/jmcs.v68i3.2111

Keywords:

Artocarpus lakoocha starch, immediate drug delivery, physical modification, physicochemical properties, suppository, tablet

Abstract

Abstract. This study aimed to evaluate the effect of modification on non-conventional native starch derived from the seed of Artocarpus lakoocha or monkey fruit (Native Starch). The current study determined the excipient characteristics of native and modified starches by examining their physicochemical properties, flow properties, and release characteristics. It showed better improvement in the physicochemical and functional properties and was helpful in the formulation of immediate-release formulations when tested with paracetamol as a model drug. The results from the Field Emission Scanning Electron Microscopy (FESEM) Micrograph revealed a disruption of the granular structure. FTIR analysis confirmed the carbohydrate nature of the starch. The X-ray diffraction pattern demonstrated the decrease in crystallinity following thermal modification. Here, we utilized waste seeds of Artocarpus lakoocha to isolate starch, its modifications, and their usage in effective drug delivery formulations, such as tablets and suppositories, compared to the marketed formulations. In summary, this study aims to assess the effects of starch modification and demonstrates the potential advantages of using starch derived from Artocarpus lakoocha seeds. It addresses the need for improved excipients in pharmaceutical formulations, promotes sustainability through waste utilization, and highlights the versatility of these starches in various applications, including drug delivery and functional foods.

 

Resumen. Este estudio tuvo como objetivo evaluar el efecto de la modificación sobre el almidón nativo no convencional derivado de la semilla de Artocarpus lakoocha o fruto de mono (Native Starch). El presente estudio determinó las características de los excipientes de los almidones nativos y modificados examinando sus propiedades fisicoquímicas y de flujo así como sus características de liberación. Mostró una mejor mejora en las propiedades fisicoquímicas y funcionales y fue útil en la formulación para su liberación inmediata cuando se probó con paracetamol como fármaco modelo. Los resultados de la micrografía de microscopía electrónica de barrido por emisión de campo (FESEM) revelaron una alteración de la estructura granular. El análisis FTIR confirmó la naturaleza glucosídica del almidón. El patrón de difracción de rayos X demostró la disminución de la cristalinidad después de la modificación térmica. También utilizamos semillas de desecho de Artocarpus lakoocha para aislar el almidón, sus modificaciones y su uso en formulaciones efectivas de administración de medicamentos, como tabletas y supositorios, en comparación con las formulaciones comercializadas. En resumen, este estudio tuvo como objetivo evaluar los efectos de la modificación del almidón y demuestra las ventajas potenciales del uso de almidón derivado de semillas de Artocarpus lakoocha. Aborda la necesidad de mejorar los excipientes en las formulaciones farmacéuticas, promueve la sostenibilidad mediante la utilización de residuos y destaca la versatilidad de estos almidones en diversas aplicaciones, incluida la administración de medicamentos y los alimentos funcionales.

Downloads

Download data is not yet available.

Author Biographies

Surabhi Chaurasia, Birla Institute of Technology

Department of Pharmaceutical Sciences and Technology

Anima Pandey, Birla Institute of Technology

Department of Pharmaceutical Sciences and Technology

References

Pai, V.; Akhilraj, T. M. Eco. Env. Cons. 2022, 28, 179-182. DOI: http://doi.org/10.53550/EEC.2022.v28i03s.026. DOI: https://doi.org/10.53550/EEC.2022.v28i03s.026

Gupta, A.K.; Rather, M.A.; Kumar Jha, A.; Shashank, A.; Singhal, S.; Sharma, M.; Pathak, U.; Sharma, D.; Mastinu, A. Plants. 2020, 9, 1329. DOI: https://doi.org/10.3390/plants9101329. DOI: https://doi.org/10.3390/plants9101329

Almeida, E. L.; Marangoni, A. L.; Steel, C. J. Food Technol. 2013, 43, 2101-2108. DOI: https://doi.org/10.1590/S0103-84782013001100028. DOI: https://doi.org/10.1590/S0103-84782013001100028

Le, T. H. T.; Nguyen, H. T.; Nguyen, V. K.; Nguyen, T. L.; Nguyen, T. T. Mater. Sci. Forum. 2020, 991,150-156. DOI: https://doi.org/10.4028/www.scientific.net/MSF.991.150

Nayak, A. K.; Alkahtani, S.; Hasnain, M. S. Polym. Nat. Compos. 2022, 213-240. DOI: https://doi.org/10.1007/978-3-030-70266-3_7

Zhang, Y.; Li, B.; Xu, F.; He, S.; Zhang, Y.; Sun, L.; Zhu, K.; Li, S.; Wu, G.; Tan, L. Trends Food Sci Technol. 2021, 107, 268-283. DOI: https://doi.org/10.1016/j.tifs.2020.10.041. DOI: https://doi.org/10.1016/j.tifs.2020.10.041

Weng, L.; Zhang, Y.; Yang, Y.; Wang, L. Int. J. Mol. Sci. 2014, 15, 6328-6342. DOI: https://doi.org/10.3390/ijms15046328. DOI: https://doi.org/10.3390/ijms15046328

Eswaramoorthy, R.; Hailekiros, H.; Kedir, F.; Endale, M. Adv. Appl. Bioinforma. Chem. 2021, 14, 13. DOI: https://doi.org/10.2147/AABC.S290912. DOI: https://doi.org/10.2147/AABC.S290912

Banyal, S.; Shukla, A.K.; Kumari, A.; Kumar, A.; Khatak, A.; Luthra, A.; Kumar, M. Waste Biomass. Valori. 2022, 1-14. DOI: https://doi.org/10.1007/s12649-022-01945-0.

Martins, A.; Beninca, C.; Bet, C.D.; Bisinella, R.Z.B.; de Oliveira, C.S.; Hornung, P.S.; Schnitzler, E. J. Therm. Anal. Calorim. 2020, 142, 819-828. DOI: https://doi.org/10.1007/s10973-020-09298-3. DOI: https://doi.org/10.1007/s10973-020-09298-3

Nawaz, H.; Waheed, R.; Nawaz, M; Shahwar, D. Chem. Prop. Starch. 2020, 9, 13-35. DOI: https://doi.org/10.5772/intechopen.88870. DOI: https://doi.org/10.5772/intechopen.88870

Singh, A.; Kumar, K. J. Int. J. Biol. Macromol. 2020, 165, 1431-1437. DOI: https://doi.org/10.1016/j.ijbiomac.2020.10.027. DOI: https://doi.org/10.1016/j.ijbiomac.2020.10.027

Charoenthai, N.; Sanga‐ngam, T.; Kasemwong, K.; Sungthongjeen, S.; Puttipipatkhachorn, S. Starch‐Stärke. 2022, 74, 2100263. DOI: https://doi.org/10.1002/star.202100263. DOI: https://doi.org/10.1002/star.202100263

Belniak, P.; Świąder, K.; Szumiło, M.; Hyla, A.; Poleszak, E. Saudi Pharm. J. 2017, 25, 365-369. DOI: https://doi.org/10.1016/j.jsps.2016.09.004. DOI: https://doi.org/10.1016/j.jsps.2016.09.004

Das, D.; Kumar, K. J. Int. J. Biol. Macromol. 2019, 124, 1033-1039. DOI: https://doi.org/10.1016/j.ijbiomac.2018.11.182. DOI: https://doi.org/10.1016/j.ijbiomac.2018.11.182

Mondal, A.; Kumar, K. J. Int. J. Biol. Macromol. 2019, 140, 1091-109. DOI: https://doi.org/10.1016/j.ijbiomac.2019.08.094. DOI: https://doi.org/10.1016/j.ijbiomac.2019.08.094

Varma, C. A. K.; Kumar, K. J. Int. J. Biol. Macromol. 2018, 118, 2156-2162. DOI: https://doi.org/10.1016/j.ijbiomac.2018.07.057. DOI: https://doi.org/10.1016/j.ijbiomac.2018.07.057

Deshkar, D.; Gupta, R. N.; Kumar, K. J. Int. J. Biol. Macromol. 2019, 122, 417-424. DOI: https://doi.org/10.1016/j.ijbiomac.2018.10.079. DOI: https://doi.org/10.1016/j.ijbiomac.2018.10.079

Rengadu, D.; Gerrano, A. S.; Mellem, J. J. Int. J. Biol. Macromol. 2020, 147, 268-275. DOI: https://doi.org/10.1016/j.ijbiomac.2020.01.043. DOI: https://doi.org/10.1016/j.ijbiomac.2020.01.043

Kulkarni, S. D.; Sinha, B. N.; Kumar, K. J. Int. J. Biol. Macromol. 2013, 61, 396-403. DOI: https://doi.org/10.1016/j.ijbiomac.2013.07.027. DOI: https://doi.org/10.1016/j.ijbiomac.2013.07.027

Sobowale, S. S.; Olatidoye, O. P.; Atinuke, I.; Emeka, O. C. Trans. R. Soc. S. Afr. 2022, 77, 89-99. DOI: https://doi.org/10.1080/0035919X.2022.2036265. DOI: https://doi.org/10.1080/0035919X.2022.2036265

Mehfooz, T.; Ali, T. M.; Hasnain, A. J. Food Meas. Charact. 2019, 13, 1058-1069. DOI: https://doi.org/10.1007/s11694-018-00021-3. DOI: https://doi.org/10.1007/s11694-018-00021-3

Molavi, H.; Razavi, S. M. A.; Farhoosh, R. Food Chem. 2018, 245, 385-393. DOI: https://doi.org/10.1016/j.foodchem.2017.10.117. DOI: https://doi.org/10.1016/j.foodchem.2017.10.117

Deepika, V.; Kumar, K. J.; Anima, P. Int. J. Biol. Macromol. 2013, 55, 193-200. DOI: https://doi.org/10.1016/j.ijbiomac.2012.11.027. DOI: https://doi.org/10.1016/j.ijbiomac.2012.11.027

Guo, Z.; Zeng, S.; Zhang, Y.; Lu, X.; Tian, Y.; Zheng, B. Food Hydrocoll. 2015, 44, 285-291. DOI: https://doi.org/10.1016/j.foodhyd.2014.09.014. DOI: https://doi.org/10.1016/j.foodhyd.2014.09.014

Zhu, F.; Cui, R. Int. J. Biol. Macromol. 2015, 148, 601-607. DOI: https://doi.org/10.1016/j.ijbiomac.2020.01.028. DOI: https://doi.org/10.1016/j.ijbiomac.2020.01.028

Wisudyaningsih, B.; Wijiani, N.; Anggraeni, V. Pharm. Educ. 2023, 23, 207-211. DOI: https://doi.org/10.46542/pe.2023.232.207211. DOI: https://doi.org/10.46542/pe.2023.232.207211

Venkataswamy, M. 2018. DOI: https://doi.org/10.13140/RG.2.2.24488.42248.

Khatri, T. C. World J. Pharm. Res. 2017, 6, 163-175.

Chaurasia, S.; Pandey, A.; June. Medical Sciences Forum. 2022, 12, 5. DOI: https://doi.org/10.3390/eca2022-12712. DOI: https://doi.org/10.3390/eca2022-12712

Chua, S. D.; Kho, E. P.; Lim, S. F.; Hussain, M. H. Adv. Mater. 2021, 1-23. DOI: https://doi.org/10.1080/2374068X.2021.1878702. DOI: https://doi.org/10.1080/2374068X.2021.1878702

Zhang, Y.; Zuo, H.; Xu, F.; Zhu, K.; Tan, L.; Dong, W.; Wu, G. Food Hydrocoll. 2022, 110, 106154. DOI: https://doi.org/10.1016/j.foodhyd.2020.106154. DOI: https://doi.org/10.1016/j.foodhyd.2020.106154

Sujka, M. Ultrason. Sonochem. 2017, 37, 424-429. DOI: https://doi.org/10.1016/j.ultsonch.2017.02.001. DOI: https://doi.org/10.1016/j.ultsonch.2017.02.001

Vishal, Banyal, S.; Shukla, A. K.; Kumari, A.; Kumar, A.; Khatak, A.; Luthra, A.; Sunil; Kumar, M. Waste Biomass Valorization. 2023, 14, 1597-1610. DOI: https://doi.org/10.1007/s12649-022-01945-0. DOI: https://doi.org/10.1007/s12649-022-01945-0

Swami, S.B.; Kalse, S. B. Bioact. Mol. Plant. Foods. 2018, 1-23. DOI: https://doi.org/10.1007/978-3-319-54528-8_87-1

Sulaiman, W. M. A. Food Res. 2019, 3, 546-555. DOI: https://doi.org/10.26656/fr.2017.3(5).095. DOI: https://doi.org/10.26656/fr.2017.3(5).095

Kushwaha, R.; Fatima, N. T.; Singh, M.; Singh, V.; Kaur, S. Puranik, V.; Kumar, R.; Kaur, D. J. Food Process. Preserv. 2021, 45, 15146. DOI: https://ifst.onlinelibrary.wiley.com/doi/10.1111/jfpp.15146. DOI: https://doi.org/10.1111/jfpp.15146

Marta, H.; Tensiska, T. KnE Life Sci. 2017, 689-700. DOI: https://doi.org/10.18502/kls.v2i6.1091. DOI: https://doi.org/10.18502/kls.v2i6.1091

Babu, S.A.; Parimalavalli, R. Ann.Univ. Dunarea de Jos of Galati. Fascicle VI-Food Technol. 2014, 38, 48-63. DOI: https://www.gup.ugal.ro/ugaljournals/index.php/food/article/view/1733.

Iheagwara, M. C. J. Food Process. Technol. 2013, 4. DOI: https://doi.org/10.4172/2157-7110.1000198. DOI: https://doi.org/10.4172/2157-7110.1000198

Zia-ud-Din, Xiong, H.; Fei, P. Crit. Rev. Food Sci. Nutr. 2017, 57, 2691-2705. DOI: https://doi.org/10.1080/10408398.2015.1087379. DOI: https://doi.org/10.1080/10408398.2015.1087379

Mahajan, H.S.; Kelkar, Y. V. J. Drug Deliv. Sci. Technol. 2017, 41, 310-316. DOI: https://doi.org/10.1016/j.jddst.2017.07.023. DOI: https://doi.org/10.1016/j.jddst.2017.07.023

Widodo, R.T.; Hassan, A. Powder Technol. 2015, 269, 15-21. DOI: https://doi.org/10.1016/j.powtec.2014.08.039. DOI: https://doi.org/10.1016/j.powtec.2014.08.039

Wang, Y.; Li, Y.; Liu, Y.; Chen, X.; Wei, X. Int. J. Biol. Macromol. 2015, 77, 76-84. DOI: https://doi.org/10.1016/j.ijbiomac.2015.02.052. DOI: https://doi.org/10.1016/j.ijbiomac.2015.02.052

Zheng, Y.; Liu, R.; Hou, X.; Zhuang, X.; Wu, H.; Yin, D.; Yang, Y. J. Drug Deliv. Sci. Technol. 2023 84, 104452. DOI: https://doi.org/10.1016/j.jddst.2023.104452. DOI: https://doi.org/10.1016/j.jddst.2023.104452

Wang, D.; Sun, S.Q.; Wu, W.Z.; Yang, S.L.; Tan, J.M. Carbohydr. Polym.2014, 105, 127-134. DOI: https://doi.org/10.1016/j.carbpol.2013.12.085. DOI: https://doi.org/10.1016/j.carbpol.2013.12.085

Archana, G.; Sabina, K.; Babuskin, S.; Radhakrishnan, K.; Fayidh, M.A.; Babu, P.A.S.; Sivarajan, M.; Sukumar, M. Carbohydr. Polym. 2013, 98, 89-94. DOI: https://doi.org/10.1016/j.carbpol.2013.04.062. DOI: https://doi.org/10.1016/j.carbpol.2013.04.062

Zhang, C. H.; Yu, Y.; Liang, Y. Z.; Chen, X. Q. Int. J. Biol. Macromol. 2015, 79, 681-686. DOI: https://doi.org/10.1016/j.ijbiomac.2015.05.060. DOI: https://doi.org/10.1016/j.ijbiomac.2015.05.060

Xie, J.H.; Zhang, F.; Wang, Z.J.; Shen, M.Y.; Nie, S.P.; Xie, M.Y. Carbohydr. Polym. 2015, 133, 596-604. DOI: https://doi.org/10.1016/j.carbpol.2015.07.031. DOI: https://doi.org/10.1016/j.carbpol.2015.07.031

Chaurasia, S.; Pandey, A. Russ. J. Bioorg. Chem. 2023, 1-34. DOI: https://doi.org/10.1134/S1068162023030081. DOI: https://doi.org/10.1134/S1068162023030081

×

Downloads

Published

2024-04-23

Issue

Section

Regular Articles
x

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.

Loading...