Forthcoming

The Influence of Additives Upon the Energetic Parameters and Physicochemical Properties of Environmentally Friendly Biomass Pellets

Authors

  • Daniela Gheorghe 0000-0002-3835-7318
  • Ana Neacsu Institute of Physical Chemistry Ilie Murgulescu

DOI:

https://doi.org/10.29356/jmcs.v68i3.2032

Keywords:

Biomass pellets, raw materials, combustion calorimetry, additives dosage

Abstract

Abstract. Solid biomass fuels are economical and practical renewable energy sources. Exploitation of agricultural biomass as a fuel offers considerable advantages in different domains as energy supply as far as the climate is involved. In this study we intended to investigate the feasibility of alternative agricultural residues of grape pomace and corn cob pellets with addition of sawdust, starch, and waste rapeseed oil and to examine how these additives affects the calorific powers and pellets physical properties. Sawdust, starch, and waste rapeseed oil addition was 10 %. Pellets were produced by a manual single pellet press. The calorific powers of the biomass samples were experimentally determined using an oxygen bomb calorimeter (model 6200 adiabatic calorimeter Parr Instruments). The results show that waste rapeseed oil addition significantly increases the calorific powers in grape pomace and corn cob pellets. The highest calorific value was obtained for the grape pomace pellets containing 10 % waste rapeseed oil, 22.14 MJ/kg, compared to grape pomace control pellets, of 21.35 MJ/kg. The calorific values of corn cob control pellets were also increased when adding 10 % waste rapeseed oil, from 17.29 MJ/kg to 19.76 MJ/kg.

The results obtained in this work, related to calorific powers, moisture, ash, volatile, sulphur and nitrogen content, fixed carbon, bulk density, fuel value index, energy density and combustion efficiency, revealed that depending on additives used and their dosage, an acceptable fuel pellet could be produced.

 

Resumen. Los combustibles de biomasa sólida son fuentes de energía renovables económicas y prácticas. Al tomar en consideración el clima, la explotación de la biomasa proveniente de la agricultura como combustible ofrece ventajas considerables como fuente de energía en diferentes ámbitos. En este trabajo estudiamos la factibilidad utilizar residuos agrícolas de pastillas de orujo de uva y elote adicionándole aserrín, almidón y desperdicio de canola para analizar como estos aditivos afectan el potencial calórico y las propiedades físicas de las pastillas. El aserrín, almidón y canola se agregaron al 10%. Las pastillas se obtuvieron en una pastilladora manual. Experimentalmente, las potencias calóricas de las muestras de biomasa se determinaron con una bomba calorimétrica de oxígeno (calorímetro adiabático Parr Instruments modelo 6200). Los resultados muestran que la adición de canola incrementa significativamente la potencia calórica de las pastillas de orujo y elote. El valor calórico más alto se obtuvo con las pastillas de orujo a las que se les adicionó un 10% de canola, y fue de 22.14 MJ/kg, comparado con el control de pastillas de orujo que tiene un valor de 21.35 MJ/kg. Las potencias calóricas de las pastillas de control de elote también se incrementaron al adicionar 10% de canola, pasando de 17.29 MJ/kg a 19.76 MJ/kg.

Downloads

Download data is not yet available.

References

Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. Renew. Sust. Energy Rev. 2011, 15, 2262-2289. DOI: https://doi.org/10.1016/j.rser.2011.02.015.

https://market-entry-romania.blogspot.ro/2017/02/waste-to-energy-potential-in-romania.html, accesed in January 2023.

Radu, L. in: The agricultural crops production of Romania, Ovidius University Annals, Economic Sciences Series, 2018, XVIII.

Smaga, M.; Wielgosiński, G.; Kochański, A.; Korczak, K. Acta Innovations. 2018, 26, 81-92. DOI: 10.32933/ActaInnovations.26.9.

Lehtikangas, P. Biomass Bioenerg. 2001, 20, 301-360. DOI: https://doi.org/10.1016/S0961-9534(00)00092-1.

Grover, V.; Hogland, W. in: Recovering energy from waste-various aspects, Science Publishers, Inc Enfield (NH), USA, Plymouth, UK, 338 pages, ISBN 1-57808-200-5.

Malat’ák, J.; Velebil, J.; Malat’áková, J.; Passian, L.; Bradna, J.; Tamelová, B.; Gendek, A.; Aniszewska, M. Materials. 2022, 15, 7288-7302.

Spinei, M.; Oroian, M. Foods. 2021, 10, 867-872.

Scoma, A.; Rebecchi, S.; Bertin, L.; Fava, F. Crit. Rev. Biotechnol. 2016, 36, 175-189. DOI: https://doi.org/10.3109/07388551.2014.947238.

www.statista.com/statistic/Romania-production -of- grapes/, accesed in February 2023.

Chowdhary, P.; Gupta, A.; Gnansounou, E.; Pandey, A.; Chaturnedi, P. Environ. Pollut. 2021, 278, 116796. DOI: https://doi.org/10.1016/j.envpol.2021.116796.

Golub, M. in: Agricultural mechanization in Asia, Africa and Latin America. 2012, 43, 72-79.

Kim, S.; Dale, B.E. Biomass Bioenerg. 2004, 26, 361-375. DOI: https://doi.org/10.1016/j.biombioe.2003.08.002.

Burg, P.; Masan, V.; Ludin, D. Eng. for Rural Development. 2017, 1333-1338.

Jindaporn, J.; Charoenporn, L. Energ. Procedia. 2017, 138, 1147-1152. DOI: https://doi.org/10.1016/j.egypro.2017.10.223.

Tarasov, D.; Shahi, C.; Leitch, M. ISRN Forestry, 2013, 1-6, Hindawi Publishing Corporation, Article ID 876939.

Gageanu, I.; Cujbescu, D.; Persu, C.; Voicu, G. Eng. Rural Dev. 2018, 17, 1632–1638.

Obernberger, I.; Thek, G. Biomass Bioenergy. 2004, 27, 653−669. DOI: https://doi.org/10.1016/j.biombioe.2003.07.006.

Nielsen, N. P. K. Ph.D. Thesis, University of Copenhagen, Copenhagen, Denmark, 2009.

Stahl, M.; Berghel, J.; Frodeson, S.; Granström, K.; Renström, R. Energy Fuels. 2012, 26, 1937−1945.

Demir, V. G.; Yaman, P.; Efe, M.O.; Yuksel, H., ICOEST, International Conference on Environmental Science and Technology, 28 september-2 october 2016.

Falemara, B.C.; Joshua, V.I.; Aina, O.O.; Nuhu, R.D. Recycling. 2018, 3, 37-42. DOI: https://doi.org/10.3390/recycling3030037.

Yuliah, Y.; Kartawidjaja, M.; Suryaningsih, S.; Ulfi, K. International Conference on Biomass: Technology, Application, and Sustainable Development IOP Publishing IOP Conf. Series: Earth and Environmental Science. 2017, 65, 1-8.

Rasid, R. A.; Elamparithy, G.; Ismail, M.; Harun, N. J. Chem. Eng. Ind. Biotech. 2021, 07, 1 – 6.

Obidzinski, S.; Piekut, J.; Dec, D. Renew. Energy. 2016, 87, 289–297. DOI: https://doi.org/10.1016/j.renene.2015.10.025.

Obidzinski, S.; Doł˙zynska, M.; Kowczyk-Sadowy, M.; Jadwisienczak, K.; Sobczak, P. Energies. 2019, 12, 4687-4691. DOI: https://doi.org/10.3390/en12244687.

Gageanu, I.; Persu, C.; Cujbescu, D.; Gheorghe, G.; Voicu, G. Eng. Rural Dev. 2019, 18, 362–367.

Mannu, A.; Garroni, S.; Porras, J.I.; Mele, A. Recycling. Processes. 2020, 8, 366-370. DOI: https://doi.org/10.3390/pr8030366.

Demirbas, A. Energy Convers. Manage. 2009, 50, 923-927. DOI: https://doi.org/10.1016/j.enconman.2008.12.023.

Misljenovic, N.; Mosbye, J.; Schüller, R.B.; Lekang, O. I.; Bringas, C. S. Ann. Trans. Nordic Rheology Soc. 2014, 22, 211-218.

Misljenovic, N.; Mosbye, J.; Schuller, R.B.; Lekang, O.I.; Salas-Bringas, C. Fuel Process. Technol. 2015,134, 214-222. DOI: https://doi.org/10.1016/j.fuproc.2015.01.037.

Emadi, B.; Iroba, K.L.; Tabil, L.G. Appl. Energ. 2018, 198, 312-319. DOI: https://doi.org/10.1016/j.apenergy.2016.12.027.

Saletnik, A.; Saletnik, B.; Puchalski, C. Energies. 2021, 14, 6486-6492.

Chen, G.; Liu, C.; Ma, W.; Zhang, X.; Li, Y.; Yan, B.; Zhou, W. Biores. Technol. 2014, 166, 500-507.

Wattana, W.; Phetklung, S.; Jakaew, W.; Chumuthai, S.; Sriam, P.; Chanurai, N. in: International Conference on Alternative Energy in Developing Countries and Emerging Economies 2017, AEDCEE, Bangkok, Thailand.

Wang, Y.; Sun, Y.; Wu, K. BioRes. 2019, 14, 537-553.

Samson, R.; Duxbury, P. in: Assessment of pelletized biofuels, 2000, Resource efficient agricultural production Canada. DOI: http://dx.doi.org/10.13140/RG.2.2.20841.70248.

ASTM D3173-03 Standard test method for moisture in the analysis sample of coal and coke. 2008.

Chen, Q.; Swithenbank, J.; Sharifi, V.N. in: Review of biomass and solid recovered fuel (SRF) pelletisation technologies, 2008, EPSRC Supergen bioenergy theme 4 (heat and power), SUWIC, Sheffield University.

Sokhansanj, S.; Cushman, J.; Wright, L. CIGR Electronic Journal. 2003, 5, 1-21.

Burg, P.; Ludín, D.; Rutkowski, K.; Krakowiak-Bal, A.; Trávníček, P.; Zemánek, P.; Turan, J.; Višacki, V. Int. Agrophys. 2016, 30, 261-265. DOI: https://doi.org/10.1515/intag-2015-0082.

Malik, B.; Pirzadah, T.B.; Islam, S. T.; Tahir, I.; Kumar, M.; Rehman, R. in: Agricultural biomass based potential materials. 2015, Springer International Publishing Switzerland K. R. Hakeem et al. (eds.).

Gendek, A.; Aniszewska, M.; Malatak, J.; Velebil, J. Biomass Bioenerg. 2018, 117, 173-179. DOI: https://doi.org/10.1016/j.biombioe.2018.07.025.

www.parrinst.com, Bulletin 2811, 1-4, accessed in November 2023.

Gheorghe, D.; Neacsu, A. Rev. Roum. Chim. 2019, 64, 633-639. DOI: https://doi.org/10.33224/rrch%2F2019.64.7.10.

ASTM D5865, Standard Test Method for Gross Calorific Value of coal and coke, 2013, www.astm.org, accessed in January 2023.

Parr Instrument Company, 6200 Isoperibolic Calorimeter, 2014, http://www.parrinst.com/products/oxygenbomb-calorimeters/6200isoperibolcalorimeter, accesed in February 2023.

Neacsu, A.; Gheorghe, D. Rev. Roum. Chim. 2021, 66, 321-329. DOI: 10.33224/rrch.2021.66.4.02.

Parr Analytical Methods for Oxygen Bombs No 207M, accessed in January 2023

Onukak, I. E.; Mohammed-Dabo, I.A.; Ameh, A.O.; Okoduwa, I.D.S.I.R.; Fasanya, O.O. Recycling. 2017, 2, 1-19. DOI: https://doi.org/10.3390/recycling2040017.

Villanueva, M.; Proupin, J.; Rodriguez-Anon, J.A.; Fraga-Grueiro, L.; Salgado, J.; Barros, N. J Therm. Anal. Calorim. 2011, 104, 61–67. DOI: https://doi.org/10.1007/s10973-010-1177-y.

Miao, M.; Kong, H.; Deng, B.; Chen, L.; Yang, H.; Lyu, J.; Zhang, M. Fuel Process. Technol. 2020, 208, 106517. DOI: https://doi.org/10.1016/j.fuproc.2020.106517.

Wang, T.; Yang, Q.; Wang, Y.; Wang, J.; Zhang, Y.; Pan, W.P. Biores. Technol. 2020, 297, 122388. DOI: https://doi.org/10.1016/j.biortech.2019.122388.

Lu, Z.; Chen, X.; Yao, S.; Qin, H.; Zhang, L.; Yao, X.; Yu, Z.; Lu, J. Fuel. 2019, 258, 116150. DOI: https://doi.org/10.1016/j.fuel.2019.116150.

Sadiku, N.A.; Oluyege, A.O.; Sadiku, I.B. Lignocellulose. 2016, 5, 34–49.

Holtmeyer, M.L.; Li, G.; Kumfer, B.M.; Li, S.; Axelbaum, R.L. Energy Fuels. 2013, 27, 7762–7771. DOI: https://doi.org/10.1021/ef4013505.

Ivanova, T.; Muntean, A.; Havrland, B.; Hutla, P. BIO Web of Conferences 10. https://doi.org/10.1051/bioconf/20181002007,Contemporary Research Trends in Agricultural Engineering.2018.

ASTM D3174-04 Standard test method for ash in the analysis sample of coal and coke from coal. 2003, www.astm.org, accessed January 2023.

ISO 1171:2010 Solid mineral fuels-determination of ash.

Ivanova, T.; Muntean, A.; Titei,V.; Havrland, B.; Kolarikova, M. Agronomy Res. 2015, 13, 311-317.

Vijayanand, C.; Kamaraj, S.; Karthikeyan, S.; Sriramajayam, S. Intl. J. Agric. Sci. 2016, 8, 2124-2127.

Lunguleasa, A.; Dobrev, T.; Fotin, A. Pro Ligno. 2015, 11, 686-691.

Mierzwa-Hersztek, M.; Gondek, K.; Jewiarz, M.; Dziedzic, K. J. Mater. Cycles. 2019, 21, 786-800. DOI: https://doi.org/10.1007/s10163-019-00832-6.

Neacsu, A.; Gheorghe, D. J. Mex.Chem.Soc. 2022, 66, 408-420. DOI: https://doi.org/10.29356/jmcs.v66i4.1739.

Sadaka, S.; Johnson, D.M. Technical Report. 2010, Agriculture and Natural Resources, University of Arkansas System.

Nussbaumer, T.; Good, J. Biomass for Energy and Industry.1998, 10th European Conference and Technology Exhibition, Würzburg (Germany).

Chen, Y.S.; Workman, E.C. Jr. Wood and Fiber Sci. 1990, 22, 378-387.

Minitab Statistical Software https://www.minitab.com/en-us/products/minitab/, accessed in November 2023.

Spîrchez, C.; Lunguleasa, A. Wood Res.2019, 64, 549-556.

Wojcieszak, D.; Przybył, J.; Czajkowski, L.; Majka, J.; Pawłowski, A. Materials. 2022, 15, 2831-2836.

Yunita, L.; Irmaya, A.I. IOP Conf. Ser.: Earth Environ. Sci. 2018, 212, 012079, DOI: https://doi.org/10.1088/1755-1315/212/1/012079.

Sofyan Munawar, S.; Subiyanto, B. Proc. Environm. Sci. 2014, 20, 336-341. DOI: https://doi.org/10.1016/j.proenv.2014.03.042.

Akhtar, J.; Imran, M.; Ali, A.M.; Nawaz, Z.; Muhammad, A.; Butt, K.R.; Jillani, M.S.; Naeem, H.A. Energies. 2021, 14, 4218-4231.

Chen, W. H.; Lin, B. J.; Lin, Y. Y.; Chu, Y. S.; Show, A.; Ong, H. C.; Chang, J. S.; Ho, S.H.; Culaba, A. B.; Pétrissans, A.; Pétrissans, M. Prog. Energy Combust. Sci. 2021, 82-87. DOI: https://doi.org/10.1016/j.pecs.2020.100887.

Wang, L.; Riva, L.; Skreiberg, O.; Khalil, R.; Bartocci, P.; Yang, Q.; Yang, H.; Wang, X.; Chen, D.; Rudolfsson, M.; Nielsen, H.K. Energy Fuels. 2020,34,15343-15354. DOI: https://doi.org/10.1021/acs.energyfuels.0c02671.

Gravalos, I.; Xyradakis, P.; Kateris, D.; Gialamas, T.; Bartzialis, D.; Giannoulis, K. Nat. Resour. 2016, 7, 57-68. DOI: https://doi.org/10.4236/nr.2016.71006.

Tian, X.; Dai, L.; Wang, Y.; Zeng, Z.; Zhang, S.; Jiang, L.; Yang, X.; Yue, L.; Liu, Y.; Ruan, R. Bioresour. Technol. 2020, 297, 122490. DOI: https://doi.org/10.1016/j.biortech.2019.122490.

www.extension.psu.edu/manufacturing-fuel-pellets-from-biomass, accessed in November 2023.

Saracoglu, N.; Gunduz, G. Energy Sources. Part A, 2009, 31, 1708–1718. DOI: https://doi.org/10.1080/15567030802459677.

Lalak, J.; Martyniak, D.; Kasprzycka, A.; Żurek, G.; Moroń, W.; Chmielewska, M.; Wiącek, D.; Tys, J. Int. Agrophys. 2016, 30, 475-482. DOI: https://doi.org/10.1515/intag-2016-0021.

www.ecostan.com, accessed in November 2023.

Hasan, E.S.; Mashuni, M.J.; Ilmawati, W.; Wati, W.; Sudiana, N. J. Phys.: Conf. Series. 2017, 846, 012022.

Misljenovic, N.; Bach, Q.V.; Tran, K.Q.; Bringas, C. S.; Skreiberg, O. Energy Fuels. 2014, 28, 2554-2561. DOI: https://doi.org/10.1021/ef4023674.

Shah, K.; Yusop, N. A. K. A.; Rohani, M. Z. M.; Fadil, J. M.; Manaf, N. A.; Hartono, N.A.; Tuyen, B.; Masaki, N.D.; Ahmad, T.; Ramli, A.S. Chem. Eng. Trans. 2021, 89, 127– 132.

Dhyani, V.; Bhaskar, T. Renew. Energy. 2018, 129, 695–716. DOI: https://doi.org/10.1016/j.renene.2017.04.035.

Annamalai, K.; Sweeten, J.M.; Ramalingam, S.C. Trans. Asae.1987, 30, 1205-1208.

Dumitrascu, R.; Lunguleasa, A.; Spirchez, C. Bioresurces. 2018, 13, 6985-7001.

Muhamad, A.; Farid Nasir, A.; Ab Saman Makhrani, K. Adv. Sci. Lett. 2017, 23, 4184-4187. DOI: https://doi.org/10.1166/asl.2017.8242.

Holubcik, M.; Nosek, R.; Jnadacka, J. Intl. J. Energ. Optim. Energ. 2012, 1, 20-40. DOI: https://doi.org/10.4018/ijeoe.2012040102.

Li, Y.; Liu, H. Biomass Bioenergy. 2000, 19, 177–186. DOI: https://doi.org/10.1016/S0961-9534(00)00026-X.

Ajith Kumar, T.T.; Mech, N.; Ramesh, S.T.; Gandhimathi, R. J. Cleaner Prod. 2022, 350, 131312. DOI: https://doi.org/10.1016/j.jclepro.2022.131312.

Greinert, A.; Mrówczy’nska, M.; Grech, R.; Szefner, W. Energies. 2020, 13, 463-468.

Zajac, G.; Szyszlak-Bargłowicz, J.; Gołebiowski, W.; Szczepanik, M. Energies. 2018, 11, 2885-2889.

Grover, P.D. Proceedings of the International Workshop on Biomass Briquetting. Bankok, april, 1996, http://www.rwedp.org, accessed in November 2023.

Ebeling, J.M.; Jenkins, B.M. ASAE. 1985, 28, 898-902.

Kuokkanen, M.; Kuokkanen, T.; Pohjonen, V. 2009, Energ. Res. University of Oulu. Proced. of the EnePro Conf. June 3rd, 2009, University of Oulu, Finland. Kalevaprint, Oulu, ISBN 978-951-42-9154-8. 36-40.

Lesego, M.; Mohlala, M.; Bodunrin, O.; Ayotunde, A.; Awosusi, M.; Daramola, O.; Nonhlanhla, P.; Cele, P.; Olubambi, A. Alexandria Eng. J. 2016, 55, 3025-3036. DOI: https://doi.org/10.1016/j.aej.2016.05.014.

Demirbas, A. Energy Convers. Manage. 2001, 42, 183–188. DOI: https://doi.org/10.1016/S0196-8904(00)00050-9.

Thabout, M.; Pagketanang, T.; Panyacharoen, K.; Mongkuta, P.; Wongwicha, P. Energy Procedia. 2015, 79, 890-895.

Khan, A.A.; De Jong, W.; Jansens, P.J.; Spliethoff, H. Fuel Process. Technol. 2009, 90, 21–50. DOI: https://doi.org/10.1016/J.FUPROC.2008.07.012.

Maj, G.; Szyszlak-Bargłowicz, J.; Zajac, G.; Słowik, T.; Krzaczek, P.; Piekarski, W. Energies. 2019, 12, 4383-4390.

Loo, S.; Koppejan, J. The Handbook of Biomass Combustion and Co-firing, 2008, 134-173. https://www.researchgate.net/publication/237079687, accessed in November 2023.

Stahl, M.; Berghel, J.; Granstrom, K. BioResources. 2016, 11, 3373-3383.

Abbot, P.G.; Lowore, J. D. For. Ecol. Management. 1999, 11, 111–121.

Downloads

Published

2024-04-23

Issue

Section

Regular Articles