Microstructures of Binary Oxides with an Inverse Opal Structure Used as Photoelectrodes for Water Splitting
DOI:
https://doi.org/10.29356/jmcs.v67i4.1998Keywords:
Inverse opal, water splitting, template, hematite, titanium oxide, zinc oxide, copper (I) oxide, nickel sulfide, nickel oxide, photoelectrodeAbstract
Recently, the weather has experienced changes and these have affected our life style. Fossil fuels used by the human have contributed to climate change and today it is impossible to modify. Researchers have studied different kind of fuels that could use daily. Currently, hydrogen, from water splitting, is the best way to substitute the fossil fuels because water is present around the World. In photoelectrochemistry, the electrodes have a great importance. Behaviour of each semiconductor as TiO2, Fe2O3, NiO, CuO, NiS, ZnO, Cu2O, etc., give us individual efficiency respect to solar light. Also, the semiconductor chosen, type of crystallinity and superficial area are important points for achieve high in efficiency. This review shows that inverse opal has a greater contact compared to rod, cauliflower, nanotubes, etc. Different ways to deposit the polystyrene allows us gain more contact area and better photoelectrode efficiency. The main routes used to obtain binary oxides deposits, as electrophoretic, spin coating, vertical submersion, etc., help us to control polystyrene arrangement and obtain a uniform template. These techniques are discussed along this contribution.
Resumen. Recientemente, el clima ha experimentado cambios que han afectado a nuestro estilo de vida. Los combustibles fósiles utilizados por el ser humano han contribuido al cambio climático y hoy es imposible modificarlo. Los investigadores estudian diferentes tipos de combustibles que podrían utilizarse diaria y actualmente, el hidrógeno, a partir de la ruptura de la molécula de agua, es la mejor manera de sustituir los combustibles fósiles porque el agua está presente en todo el mundo. En fotoelectroquímica, los electrodos tienen una gran importancia. El comportamiento de cada semiconductor como TiO2, Fe2O3, NiO, CuO, NiS, ZnO, Cu2O, etc., tiene cada uno una eficiencia individual respecto a la luz solar que reciben. Además, del semiconductor elegido, el tipo de cristalinidad y el área superficial de este son puntos determinantes para alcanzar un alto grado de eficiencia. La presente revisión muestra que el ópalo inverso tiene un mayor contacto y eficiencia en comparación con las varillas, la coliflor, los nanotubos, etc. Diferentes formas de depositar el poliestireno como molde nos permiten obtener mayor área de contacto y mejor eficiencia del fotoelectrodo semiconductor. Las principales vías utilizadas para obtener depósitos de óxidos binarios, como electroforesis vertical, etc., nos ayudan a controlar la disposición del poliestireno y obtener una capa uniforme. Estas técnicas se discuten a lo largo de esta contribución.
Downloads
References
Rahman, G.; Najaf, Z.; Shah, A. ul H. A.; Mian, S. A. Optik (Stuttg). 2020, 200, 163454.DOI: https://doi.org/10.1016/j.ijleo.2019.163454. DOI: https://doi.org/10.1016/j.ijleo.2019.163454
Ge, M.; Cai, J.; Iocozzia, J.; Cao, C.; Huang, J.; Zhang, X.; Shen, J.; Wang, S.; Zhang, S.; Zhang, K. Q.; Lai, Y.; Lin, Z. Int. J. Hydrogen Energy. 2017, 42, 8418–8449. DOI: https://doi.org/10.1016/J.IJHYDENE.2016.12.052. DOI: https://doi.org/10.1016/j.ijhydene.2016.12.052
Bediako, D. K.; Lassalle-Kaiser, B.; Surendranath, Y.; Yano, J.; Yachandra, V. K.; Nocera, D. G. J. Am. Chem. Soc. 2012, 134, 6801-6809. DOI: https://doi.org/10.1021/ja301018q. DOI: https://doi.org/10.1021/ja301018q
Sharma, A.; Chakraborty, M.; Thangavel, R.; Udayabhanu, G. J. Solgel Sci. Technol. 2018, 85, 1–11. DOI: https://doi.org/10.1007/s10971-017-4536-3. DOI: https://doi.org/10.1007/s10971-017-4536-3
Jain, I. P. Int. J. Hydrogen Energy. 2009, 34, 7368–7378. DOI: https://doi.org/10.1016/j.ijhydene.2009.05.093. DOI: https://doi.org/10.1016/j.ijhydene.2009.05.093
Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446–6473. DOI: https://doi.org/10.1021/cr1002326. DOI: https://doi.org/10.1021/cr1002326
Crabtree, G. W.; Lewis, N. S. In: AIP Conference Proceedings 2008, Berkeley, CA, March 1-2, 2008; 1044, 309–321. https://doi.org/10.1063/1.2993729. DOI: https://doi.org/10.1063/1.2993729
Nikolaidis, P.; Poullikkas, A. Renewable and Sustainable Energy Rev. 2017, 1, 597–611. DOI: https://doi.org/10.1016/j.rser.2016.09.044. DOI: https://doi.org/10.1016/j.rser.2016.09.044
Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253–278. DOI: https://doi.org/10.1039/b800489g. DOI: https://doi.org/10.1039/B800489G
Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Nat. Photonics. 2012, 6, 511–518. https://doi.org/10.1038/nphoton.2012.175. DOI: https://doi.org/10.1038/nphoton.2012.175
Ameta, R.; Solanki, M. S.; Benjamin, S.; Ameta, S. C. Photocatalysis. In: Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology; Ameta S., Ameta R., Ed.; Academic Press, 2018; 135–175. DOI: https://doi.org/10.1016/B978-0-12-810499-6.00006-1. DOI: https://doi.org/10.1016/B978-0-12-810499-6.00006-1
Takanabe, K. ACS Catal. 2017, 7, 8006–8022. DOI: https://doi.org/10.1021/acscatal.7b02662. DOI: https://doi.org/10.1021/acscatal.7b02662
Thorne, J. E.; Li, S.; Du, C.; Qin, G.; Wang, D. J. Phys. Chem. Letters. 2015, 6, 4083–4088. DOI: https://doi.org/10.1021/acs.jpclett.5b01372. DOI: https://doi.org/10.1021/acs.jpclett.5b01372
Bockris, J. O.; Uosaki, K. J. Electrochem. Soc. 1977, 124, 98–99. DOI: https://doi.org/10.1149/1.2133256. DOI: https://doi.org/10.1149/1.2133256
Cao, S.; Piao, L. Angew. Chem., Int. Ed. Engl. 2020, 59, 18312–18320. DOI: https://doi.org/10.1002/anie.202009633. DOI: https://doi.org/10.1002/anie.202009633
Jiang, X.; Lin, Q.; Zhang, M.; He, G.; Sun, Z. Nanoscale Res. Lett. 2015, 10. DOI: https://doi.org/10.1186/s11671-015-0755-0. DOI: https://doi.org/10.1186/s11671-015-0755-0
Liu, M.; Nam, C. Y.; Black, C. T.; Kamcev, J.; Zhang, L. J. Phys. Chem. C. 2013, 117, 13396–13402. DOI: https://doi.org/10.1021/jp404032p. DOI: https://doi.org/10.1021/jp404032p
Young Kim, J.; Magesh, G.; Hyun Youn, D.; Jang, J.-W.; Kubota, J.; Domen, K.; Sung Lee, J. Sci. Rep. 2013, 3, 2681. DOI: https://doi.org/10.1038/srep02681. DOI: https://doi.org/10.1038/srep02681
Marlow, F.; Muldarisnur; Sharifi, P.; Brinkmann, R.; Mendive, C. Angew. Chem., Int. Ed. Engl. 2009, 48, 6212–6233. DOI: https://doi.org/10.1002/ANIE.200900210. DOI: https://doi.org/10.1002/anie.200900210
Fathi, F.; Rashidi, M. R.; Pakchin, P. S.; Ahmadi-Kandjani, S.; Nikniazi, A. Talanta. 2020, 221, 121615. DOI: https://doi.org/10.1016/J.TALANTA.2020.121615. DOI: https://doi.org/10.1016/j.talanta.2020.121615
Zheng, X.; Han, J.; Fu, Y.; Deng, Y.; Liu, Y.; Yang, Y.; Wang, T.; Zhang, L. Highly Nano Energy. 2018, 48, 93–100. DOI: https://doi.org/10.1016/J.NANOEN.2018.03.023. DOI: https://doi.org/10.1016/j.nanoen.2018.03.023
Zhou, Y.; Antonietti, M. Chem. Commun. 2003, 3, 2564–2565. DOI: https://doi.org/10.1039/b307444g. DOI: https://doi.org/10.1039/b307444g
Zhang, L.; D’Acunzi, M.; Kappl, M.; Auernhammer, G. K.; Vollmer, D.; Van Kats, C. M.; Van Blaaderen, A. Langmuir. 2009, 25, 2711–2717. DOI: https://doi.org/10.1021/la803546r. DOI: https://doi.org/10.1021/la803546r
Ghimire, P. P.; Jaroniec, M. J. Colloid Interface Sci. 2020, 584, 838–865. DOI: https://doi.org/10.1016/j.jcis.2020.10.014. DOI: https://doi.org/10.1016/j.jcis.2020.10.014
Waterhouse, G. I. N.; Chen, W. T.; Chan, A.; Sun-Waterhouse, D. ACS Omega. 2018, 3, 9658–9674. DOI: https://doi.org/10.1021/ACSOMEGA.8B01334/SUPPL_FILE/AO8B01334_SI_001.PDF. DOI: https://doi.org/10.1021/acsomega.8b01334
Chen, X.; Zhang, Y.; Pang, Y.; Jiang, Q. Materials. 2020, 13, 1–10. DOI: https://doi.org/10.3390/ma13204647. DOI: https://doi.org/10.3390/ma13204647
Zhang, K.; Shi, X.; Kim, J. K.; Lee, J. S.; Park, J. H. Nanoscale. 2012, 5, 1939-1944. DOI: https://doi.org/10.1039/c2nr33036a. DOI: https://doi.org/10.1039/c2nr33036a
Nishijima, Y.; Ueno, K.; Juodkazis, S.; Mizeikis, V.; Misawa, H.; Tanimura, T.; Maeda, K. Opt Express. 2007, 15, 12979-12988. DOI: https://doi.org/10.1364/oe.15.012979. DOI: https://doi.org/10.1364/OE.15.012979
Chung, W. A.; Hung, P. S.; Wu, C. J.; Guo, W. Q.; Wu, P. W. J. Alloys Compd. 2021, 886, 161243. DOI: https://doi.org/10.1016/J.JALLCOM.2021.161243. DOI: https://doi.org/10.1016/j.jallcom.2021.161243
Zhou, Y.; Zhao, J.; Liu, Y.; Ng, R. J. H.; Yang, J. K. W. Mater. Sci. Semicond. Process. 2021, 121, 1-8 https://doi.org/10.1016/j.mssp.2020.105444. DOI: https://doi.org/10.1016/j.mssp.2020.105444
Sordello, F.; Maurino, V.; Minero, C. J. Mater. Chem. 2011, 21, 19144–19152. DOI: https://doi.org/10.1039/c1jm12674a. DOI: https://doi.org/10.1039/c1jm12674a
Cho, T.-Y.; Han, C.-W.; Jun, Y.; Yoon, S.-G. Sci. Rep. 2013, 3, 1496, 1-7. DOI: https://doi.org/10.1038/srep01496. DOI: https://doi.org/10.1038/srep01496
Trang Pham, T. T.; Bessho, T.; Mathews, N.; Zakeeruddin, S. M.; Lam, Y. M.; Mhaisalkar, S.; Grätzel, M. J. Mater. Chem. 2012, 22, 16201-16204. DOI: https://doi.org/10.1039/c2jm32401f. DOI: https://doi.org/10.1039/c2jm32401f
Abitaev, K.; Qawasmi, Y.; Atanasova, P.; Dargel, C.; Bill, J.; Hellweg, T.; Sottmann, T. Colloid Polym. Sci. 2020. 299, 243-258. DOI:https://doi.org/10.1007/s00396-020-04791-5/Published. DOI: https://doi.org/10.1007/s00396-020-04791-5
Zhu, H.; Zhang, Y.; Zhu, J.; Li, Y.; Jiang, S.; Wu, N.; Wei, Y.; Zhou, J.; Song, Y. J. Mater. Chem. A Mater. 2020, 8, 22929-22937. DOI: https://doi.org/10.1039/d0ta06975b. DOI: https://doi.org/10.1039/D0TA06975B
Gaulding, E. A.; Liu, G.; Chen, C. T.; Löbbert, L.; Li, A.; Segev, G.; Eichhorn, J.; Aloni, S.; Schwartzberg, A. M.; Sharp, I. D.; Toma, F. M. J. Mater. Chem. A Mater. 2017, 5, 11601-11614. DOI: https://doi.org/10.1039/c7ta00512a. DOI: https://doi.org/10.1039/C7TA00512A
Qu, H. Y.; Wang, J.; Montero, J.; Li, Y.; Österlund, L.; Niklasson, G. A. J. Appl. Phys. 2021, 129, 1-11. DOI: https://doi.org/10.1063/5.0043673. DOI: https://doi.org/10.1063/5.0043673
Kousik, S. R.; Sipp, D.; Abitaev, K.; Li, Y.; Sottmann, T.; Koynov, K.; Atanasova, P. Nanomaterials. 2021, 11, 196, 1-18. DOI: https://doi.org/10.3390/nano11010196. DOI: https://doi.org/10.3390/nano11010196
Wang, T.; Yu, Q.; Zhang, S.; Kou, X.; Sun, P.; Lu, G. Nanoscale. 2018, 10, 4841–4851. DOI: https://doi.org/10.1039/c7nr08366a. DOI: https://doi.org/10.1039/C7NR08366A
Li, Q.; Yang, C. Mater Lett. 2017, 199, 168–171. DOI: https://doi.org/10.1016/J.MATLET.2017.04.058. DOI: https://doi.org/10.1016/j.matlet.2017.04.058
Meng, S.; Li, D.; Wang, P.; Zheng, X.; Wang, J.; Chen, J.; Fang, J.; Fu, X. P RSC Adv. 2013, 3, 17021-17028. DOI: https://doi.org/10.1039/c3ra42618a. DOI: https://doi.org/10.1039/c3ra42618a
Lin, X.; Chen, M. Appl. Sci. 2016, 6, 259, 1-10. DOI: https://doi.org/10.3390/app6100259. DOI: https://doi.org/10.3390/app6100259
Zhou, Q.; Pu, J.; Sun, X.; Zhu, C.; Li, J.; Wang, J.; Chang, S.; Zhang, H. I J. Mater. Chem. A Mater. [Online] 2017, 5, 14873–14880. DOI: https://doi.org/10.1039/c7ta03044d. DOI: https://doi.org/10.1039/C7TA03044D
Tran, G. T. H.; Koike, M.; Uchikoshi, T.; Fudouzi, H. Adv. Powder Technol. 2020, 31, 3085–3092. DOI: https://doi.org/10.1016/J.APT.2020.05.029. DOI: https://doi.org/10.1016/j.apt.2020.05.029
Rogach, A. L.; Kotov, N. A.; Koktysh, D. S.; Ostrander, J. W.; Ragoisha, G. A. Chem. Mater. 2000, 12, 2721-2726. DOI: https://doi.org/10.1021/cm000274l. DOI: https://doi.org/10.1021/cm000274l
Galle, L.; Ehrling, S.; Lochmann, S.; Kaskel, S.; Bischoff, L.; Grothe, J. ChemNanoMat. 2020, 6, 560-566. DOI: https://doi.org/10.1002/cnma.201900731. DOI: https://doi.org/10.1002/cnma.201900731
Li, Z. Y.; Zhang, Z. Q. Phys. Rev. B Condens. Matter. Mater. Phys. 2000, 62, 1516-1519. https://doi.org/10.1103/PhysRevB.62.1516. DOI: https://doi.org/10.1103/PhysRevB.62.1516
Stöber, W.; Fink, A.; Bohn, J. Colloid. Interface Sci. 1968, 26, 62–69. DOI: https://doi.org/10.1016/0021-9797(68)90272-5. DOI: https://doi.org/10.1016/0021-9797(68)90272-5
Blanco, A.; Chomski, E.; Grabtchak, S.; Ibisate, M.; John, S.; Leonard, S. W.; Lopez, C.; Meseguer, F.; Miguez, H.; Mondla, J. P.; Ozin, G. A.; Toader, O.; Van Driel, H. M. Nature. 2000, 405, 437-440. DOI: https://doi.org/10.1038/35013024. DOI: https://doi.org/10.1038/35013024
Salvarezza, R. C.; Vázquez, L.; Míguez, H.; Mayoral, R.; López, C.; Meseguer, F. Phys. Rev. Lett. 1996, 77, 4572-4575. DOI: https://doi.org/10.1103/PhysRevLett.77.4572. DOI: https://doi.org/10.1103/PhysRevLett.77.4572
Salinas, G.; Frontana-Uribe, B. A.; Reculusa, S.; Garrigue, P.; Kuhn, A. Anal. Chem. 2018, 90, 11770–11774. DOI: https://doi.org/10.1021/acs.analchem.8b03779. DOI: https://doi.org/10.1021/acs.analchem.8b03779
Yi, D. K.; Lee, J. H.; Rogers, J. A.; Paik, U. Appl. Phys. Lett. 2009, 94. DOI: https://doi.org/10.1063/1.3089219. DOI: https://doi.org/10.1063/1.3089219
Song, T.; Jeon, Y.; Samal, M.; Han, H.; Park, H.; Ha, J.; Yi, D. K.; Choi, J. M.; Chang, H.; Choi, Y. M.; Paik, U. Energy Environ. Sci. 2012, 5, 9028–9033. DOI: https://doi.org/10.1039/c2ee22358a. DOI: https://doi.org/10.1039/c2ee22358a
Waleczek, M.; Dendooven, J.; Dyachenko, P.; Petrov, A. Y.; Eich, M.; Blick, R. H.; Detavernier, C.; Nielsch, K.; Furlan, K. P.; Zierold, R. Nanomaterials. 2021, 11, 1-16. DOI: https://doi.org/10.3390/nano11041053. DOI: https://doi.org/10.3390/nano11041053
Kim, K. H.; Yoon, K. H.; Yun, J. H.; Ahn, B. T. Electrochem. Solid-State Lett. 2006, 9, A382-A385. DOI: https://doi.org/10.1149/1.2208011. DOI: https://doi.org/10.1149/1.2208011
Shin, S. S.; Kim, K.; Yoo, J.; Kim, J. H.; Ahn, S.; Cho, A.; Kim, D.; Jo, Y.; Jeong, I.; Shin, D.; Cho, J. S.; Yun, J. H.; Park, J.; Park, J. H. Solar Energy Mater. Solar Cells. 2021, 224, 1-11. DOI: https://doi.org/10.1016/J.SOLMAT.2021.111010. DOI: https://doi.org/10.1016/j.solmat.2021.111010
Scharrer, M.; Wu, X.; Yamilov, A.; Cao, H.; Chang, R. P. H. Appl. Phys. Lett. 2005, 86, 151113. DOI: https://doi.org/10.1063/1.1900957. DOI: https://doi.org/10.1063/1.1900957
Gong, X.; Lou, X.; Kim, S. B.; Gordon, R. G. ACS Appl. Electron. Mater. 2021, 3, 845-853. DOI: https://doi.org/10.1021/acsaelm.0c00977. DOI: https://doi.org/10.1021/acsaelm.0c00977
Mandati, S.; Sarada, B. V.; Dey, S. R.; Joshi, S. V. Pulsed Electrochemical Deposition of CuInSe2 and Cu(In,Ga)Se2 Semiconductor Thin Films. in: Semiconductors - Growth and Characterization; Inguanta R. and Sunseri C., Ed.; InTech: United Kingdom, 2018; Chapter 6. DOI: https://doi.org/10.5772/intechopen.71857. DOI: https://doi.org/10.5772/intechopen.71857
Sun, H.; Qin, D.; Huang, S.; Guo, X.; Li, D.; Luo, Y.; Meng, Q. Energy Environ. Sci. 2011, 4, 2630-2637. DOI:https://doi.org/10.1039/c0ee00791a (. DOI: https://doi.org/10.1039/c0ee00791a
Park, J. Y.; Kim, S.; Hong, D. M.; Lim, J. W.; Yoo, C. J.; Dong, W. J.; Lee, J. L. Electron. Mater. Lett. 2019, 15, 454–461. DOI: https://doi.org/10.1007/s13391-019-00145-8. DOI: https://doi.org/10.1007/s13391-019-00145-8
Wang, J.; Zhou, H.; Nanda, J.; Braun, P. V. Chem. Mater. 2015, 27, 2803–2811. DOI: https://doi.org/10.1021/cm504365s. DOI: https://doi.org/10.1021/cm504365s
Fei, J. Y.; Wilcox, G. D. Electrochim. Acta. 2005, 50, 2693–2698. DOI: https://doi.org/10.1016/j.electacta.2004.11.014. DOI: https://doi.org/10.1016/j.electacta.2004.11.014
Zhao, J.; Sun, L.; Canepa, S.; Sun, H.; Yesibolati, M. N.; Sherburne, M.; Xu, R.; Sritharan, T.; Loo, J. S. C.; Ager, J. W.; Barber, J.; Mølhave, K.; Xu, Z. J. J. Mater. Chem. A Mater. 2017, 5, 11905-11916. DOI: https://doi.org/10.1039/c7ta01871a. DOI: https://doi.org/10.1039/C7TA01871A
Golden, T. D.; Shumsky, M. G.; Zhou, Y.; VanderWerf, R. A.; Van Leeuwen, R. A.; Switzer, J. A. Chem. Mater. 1996, 8, 2499-2509. DOI: https://doi.org/10.1021/cm9602095. DOI: https://doi.org/10.1021/cm9602095
Zhang, Z.; Kitada, A.; Fukami, K.; Yao, Z.; Murase, K. Electrochim. Acta. 2020, 348, 136289-1-136289-10. DOI: https://doi.org/10.1016/j.electacta.2020.136289. DOI: https://doi.org/10.1016/j.electacta.2020.136289
Pham, K.; Temerov, F.; Saarinen, J. J. Mater. Des. 2020, 194, 108886. DOI: https://doi.org/10.1016/J.MATDES.2020.108886. DOI: https://doi.org/10.1016/j.matdes.2020.108886
Tello, A.; Boulett, A.; Sánchez, J.; Pizarro, G. del C.; Soto, C.; Linarez Pérez, O. E.; Sanhueza, R.; Oyarzún, D. P. Chem. Phys. Lett. 2021, 778, 138825. DOI: https://doi.org/10.1016/J.CPLETT.2021.138825. DOI: https://doi.org/10.1016/j.cplett.2021.138825
Li, L.; Zhai, T.; Bando, Y.; Golberg, D. Nano Energy. 2011, 91–106. DOI: https://doi.org/10.1016/j.nanoen.2011.10.005. DOI: https://doi.org/10.1016/j.nanoen.2011.10.005
Zhang, C.; Shao, M.; Ning, F.; Xu, S.; Li, Z.; Wei, M.; Evans, D. G.; Duan, X. Au Nano Energy. 2015, 12, 231–239. DOI: https://doi.org/10.1016/J.NANOEN.2014.12.037. DOI: https://doi.org/10.1016/j.nanoen.2014.12.037
Wolcott, A.; Smith, W. A.; Kuykendall, T. R.; Zhao, Y.; Zhang, J. Z. Adv. Funct. Mater. 2009, 19, 1849-1856. DOI:https://doi.org/10.1002/adfm.200801363. DOI: https://doi.org/10.1002/adfm.200801363
Subalakshmi, K.; Senthilselvan, J.; Kumar, K. A.; Kumar, S. A.; Pandurangan, A. J. Mater. Sci.: Mater. Electron. 2017, 28, 15565–15595. DOI: https://doi.org/10.1007/s10854-017-7445-x. DOI: https://doi.org/10.1007/s10854-017-7445-x
(73) Tantray, A. M.; Shah, M. A. Chem. Pap. 2020, 75, 1739–1747. https://doi.org/10.1007/s11696-020-01419-4. DOI: https://doi.org/10.1007/s11696-020-01419-4
Lv, R.; Wang, T.; Su, F.; Zhang, P.; Li, C.; Gong, J. Nano Energy. 2014, 7, 143–150. DOI: https://doi.org/10.1016/J.NANOEN.2014.04.020. DOI: https://doi.org/10.1016/j.nanoen.2014.04.020
Zhang, B.; Wang, F.; Zhu, C.; Li, Q.; Song, J.; Zheng, M.; Ma, L.; Shen, W. Nano-Micro Lett. 2016, 8, 137-142. DOI: https://doi.org/10.1007/s40820-015-0068-y. DOI: https://doi.org/10.1007/s40820-015-0068-y
Guo, J. H.; Vayssieres, L.; Persson, C.; Ahuja, R.; Johansson, B.; Nordgren, J. J. Phys. Condens. Matter. 2002, 14, 6969-6974. DOI: https://doi.org/10.1088/0953-8984/17/1/022. DOI: https://doi.org/10.1088/0953-8984/14/28/308
Galsin, J. S. in: Solid State Physics: An Introduction to Theory; 1st ed.; Academic Press; United Kingdom, 2019; 1. DOI: https://doi.org/10.1016/C2018-0-01175-5. DOI: https://doi.org/10.1016/C2018-0-01175-5
Shetty, A.; Nanda, K. K. Appl. Phys. A Mater. Sci. Process. 2012, 109, 151–157. DOI: https://doi.org/10.1007/s00339-012-7023-2. DOI: https://doi.org/10.1007/s00339-012-7023-2
Gilani, S.; Ghorbanpour, M.; Parchehbaf Jadid, A. J. Nanostruct. Chem. 2016, 6, 183–189. DOI: https://doi.org/10.1007/s40097-016-0194-1. DOI: https://doi.org/10.1007/s40097-016-0194-1
Basu, P. K.; Saha, N.; Maji, S.; Saha, H.; Basu, S. J. Mater. Sci. Mater. Electron. 2008, 19, 493–499. DOI: https://doi.org/10.1007/s10854-008-9604-6. DOI: https://doi.org/10.1007/s10854-008-9604-6
Mika, K.; Socha, R. P.; Nyga, P.; Wiercigroch, E.; Małek, K.; Jarosz, M.; Uchacz, T.; Sulka, G. D.; Zaraska, L. Electrochim. Acta. 2019, 305, 349–359. DOI: https://doi.org/10.1016/J.ELECTACTA.2019.03.052. DOI: https://doi.org/10.1016/j.electacta.2019.03.052
He, S.; Zheng, M.; Yao, L.; Yuan, X.; Li, M.; Ma, L.; Shen, W. P Appl. Surf. Sci. 2010, 256, 2557–2562. https://doi.org/10.1016/J.APSUSC.2009.10.104. DOI: https://doi.org/10.1016/j.apsusc.2009.10.104
Kim, S. J.; Choi, J. Electrochem. Commun. 2007, 10, 175–179. DOI: https://doi.org/10.1016/j.elecom.2007.11.014. DOI: https://doi.org/10.1016/j.elecom.2007.11.014
Goh, H. S.; Adnan, R.; Farrukh, M. A. Turk. J. Chem. 2011, 35, 375–391. DOI: https://doi.org/10.3906/kim-1010-742. DOI: https://doi.org/10.3906/kim-1010-742
Ramirez-Canon, A.; Miles, D. O.; Cameron, P. J.; Mattia, D. RSC Adv. 2013, 3, 25323-25330. DOI: https://doi.org/10.1039/c2ra43886d. DOI: https://doi.org/10.1039/c3ra43886d
Farrukh, M. A.; Thong, C. K.; Adnan, R.; Kamarulzaman, M. A. Russ. J. Phys. Chem. A. 2012, 86, 2041–2048. DOI: https://doi.org/10.1134/S0036024412130171. DOI: https://doi.org/10.1134/S0036024412130171
Zhao, J.; Wang, X.; Liu, J.; Meng, Y.; Xu, X.; Tang, C. Mater. Chem. Phys. 2011, 126, 555–559. DOI: https://doi.org/10.1016/j.matchemphys.2011.01.028. DOI: https://doi.org/10.1016/j.matchemphys.2011.01.028
Hu, Z.; Chen, Q.; Li, Z.; Yu, Y.; Peng, L. M. J. Phys. Chem. C. 2009, 114, 881–889. DOI: https://doi.org/10.1021/jp9094744. DOI: https://doi.org/10.1021/jp9094744
Miles, D. O.; Cameron, P. J.; Mattia, D. J. Mater. Chem. A Mater. 2015, 3, 17569–17577. DOI: https://doi.org/10.1039/c5ta03578c. DOI: https://doi.org/10.1039/C5TA03578C
Park, J.; Kim, K.; Choi, J. Curr. Appl. Phys. 2013, 13, 1370–1375. DOI: https://doi.org/10.1016/j.cap.2013.04.015. DOI: https://doi.org/10.1016/j.cap.2013.04.015
Mateen Tantray, A.; Shah, M. A. Chem. Phys. Lett. 2020, 747, 137346. DOI: https://doi.org/10.1016/j.cplett.2020.137346. DOI: https://doi.org/10.1016/j.cplett.2020.137346
Batista-Grau, P.; Sánchez-Tovar, R.; Fernández-Domene, R. M.; García-Antón, J. Surf. Coat Technol. 2019, 381, 125197. DOI: https://doi.org/10.1016/j.surfcoat.2019.125197. DOI: https://doi.org/10.1016/j.surfcoat.2019.125197
Kim, S. J.; Lee, J.; Choi, J. Electrochim. Acta. 2008, 53, 7941–7945. DOI: https://doi.org/10.1016/j.electacta.2008.06.006. DOI: https://doi.org/10.1016/j.electacta.2008.06.006
Ilyas, U.; Rawat, R. S.; Tan, T. L.; Lee, P.; Chen, R.; Sun, H. D.; Fengji, L.; Zhang, S. J. Appl. Phys. 2011, 110, 093522. DOI: https://doi.org/10.1063/1.3660284. DOI: https://doi.org/10.1063/1.3660284
Juárez, B. H.; García, P. D.; Golmayo, D.; Blanco, A.; López, C. Adv. Mater. 2005, 17, 2761–2765. DOI:https://doi.org/10.1002/adma.200500569. DOI: https://doi.org/10.1002/adma.200500569
Wang, B. S.; Li, R. Y.; Zhang, Z. Y.; Xing-Wang; Wu, X. L.; Cheng, G. A.; Zheng, R. T. Catal Today. 2019, 321-322,100–106. DOI: https://doi.org/10.1016/j.cattod.2018.02.028. DOI: https://doi.org/10.1016/j.cattod.2018.02.028
Sayão, F. A.; Martins, A. S.; da Silva, J. J.; Boldrin Zanoni, M. V. J. Electrochem. Soc. 2021, 168, 076503. DOI: https://doi.org/10.1149/1945-7111/ac0ec5. DOI: https://doi.org/10.1149/1945-7111/ac0ec5
Muniyappa, M.; N. Kalegowda, S.; Shetty, M.; Sriramoju, J. B.; Shastri, M.; Navakoteswara, N. R.; De, D.; M.V., S.; Rangappa, D. Int. J. Hydrogen Energy. 2021, 47, 5307–5318. DOI: https://doi.org/10.1016/j.ijhydene.2021.11.171 (. DOI: https://doi.org/10.1016/j.ijhydene.2021.11.171
Goh, S. W.; Buckley, A. N.; Lamb, R. N.; Skinner, W. M.; Pring, A.; Wang, H.; Fan, L. J.; Jang, L. Y.; Lai, L. J.; Yang, Y. W. Phys. Chem. Miner. 2006, 33, 98–105. DOI: https://doi.org/10.1007/s00269-006-0058-1. DOI: https://doi.org/10.1007/s00269-006-0058-1
Shombe, G. B.; Khan, M. D.; Zequine, C.; Zhao, C.; Gupta, R. K.; Revaprasadu, N. Sci. Rep. 2020, 10, 3260. DOI: https://doi.org/10.1038/s41598-020-59714-9. DOI: https://doi.org/10.1038/s41598-020-59714-9
Youn, J.-S.; Jeong, S.; Oh, I.; Park, S.; Mai, H. D.; Jeon, K.-J. Catalysts. 2020, 10, 1274. DOI: https://doi.org/10.3390/catal10111274. DOI: https://doi.org/10.3390/catal10111274
Yang, X.; Zhou, L.; Feng, A.; Tang, H.; Zhang, H.; Ding, Z.; Ma, Y.; Wu, M.; Jin, S.; Li, G. J. Mater. Res. 2014, 29, 935–941. DOI: https://doi.org/10.1557/jmr.2014.74. DOI: https://doi.org/10.1557/jmr.2014.74
Dai, Z.; Xue, L.; Zhang, Z.; Gao, Y.; Wang, J.; Gao, Q.; Chen, D. Energy Fuels. 2020, 34, 10178–10187. DOI: https://doi.org/10.1021/acs.energyfuels.0c01797. DOI: https://doi.org/10.1021/acs.energyfuels.0c01797
Shankar, A.; Elakkiya, R.; Maduraiveeran, G. New J. Chem. 2020, 44, 5071-5078. DOI: https://doi.org/10.1039/d0nj00192a. DOI: https://doi.org/10.1039/D0NJ00192A
Guan, B.; Li, Y.; Yin, B.; Liu, K.; Wang, D.; Zhang, H.; Cheng, C. Chem. Eng. J. 2016, 308, 1165–1173. DOI: https://doi.org/10.1016/j.cej.2016.10.016. DOI: https://doi.org/10.1016/j.cej.2016.10.016
Li, H.; Wang, J.; Chu, Q.; Wang, Z.; Zhang, F.; Wang, S. J. Power Sources. 2009, 190, 578–586. DOI: https://doi.org/10.1016/j.jpowsour.2009.01.052. DOI: https://doi.org/10.1016/j.jpowsour.2009.01.052
Li, Y.; Ye, K.; Cheng, K.; Yin, J.; Cao, D.; Wang, G. J .Power Sources. 2014, 274, 943–950. DOI:https://doi.org/10.1016/j.jpowsour.2014.10.156. DOI: https://doi.org/10.1016/j.jpowsour.2014.10.156
Zhu, B. T.; Wang, Z.; Ding, S.; Chen, J. S.; Lou, X. W. RSC Adv. 2011, 1, 397–400. DOI: https://doi.org/10.1039/c1ra00240f. DOI: https://doi.org/10.1039/c1ra00240f
Yu, L.; Yang, B.; Liu, Q.; Liu, J.; Wang, X.; Song, D.; Wang, J.; Jing, X. J. Electroanal. Chem. 2014, 739, 156–163. DOI: https://doi.org/10.1016/j.jelechem.2014.12.031. DOI: https://doi.org/10.1016/j.jelechem.2014.12.031
Tang, S.; Vongehr, S.; Wang, Y.; Cui, J.; Wang, X.; Meng, X. J. Mater. Chem. A Mater. 2014, 2, 3648–3660. DOI: https://doi.org/10.1039/c3ta14541g. DOI: https://doi.org/10.1039/C3TA14541G
Alegría, M.; Aliaga, Juan; Luis Ballesteros, Sotomayor-Torres, C.; González, G.; Top Catal. 2021, 64, 167–180. DOI: https://doi.org/10.1007/s11244-020-01360-6. DOI: https://doi.org/10.1007/s11244-020-01360-6
Panzeri, G.; Cristina, M.; Jagadeesh, M. S.; Bussetti, G.; Magagnin, L. Sci. Rep. 2020, 10, 18730. DOI: https://doi.org/10.1038/s41598-020-75700-7. DOI: https://doi.org/10.1038/s41598-020-75700-7
Das, C.; Singh, A. K.; Heo, Y.; Aggarwal, G.; Maurya, S. K.; Seidel, J.; Kavaipatti, B. J. Phys. Chem. C. 2018, 122. DOI: https://doi.org/10.1021/acs.jpcc.7b10103. DOI: https://doi.org/10.1021/acs.jpcc.7b10103
Li, X.; Jiang, Y.; Shi, Z.; Xu, Z. Chem. Mater. 2007, 19, 5424-5430. DOI: https://doi.org/10.1021/cm071180f. DOI: https://doi.org/10.1021/cm071180f
Chung, W. A.; Wu, C. J.; Hung, P. S.; Chou, S. C.; Guo, W. Q.; Wu, P. W. J Taiwan Inst. Chem. Eng. 2021, 119, 277–285. DOI: https://doi.org/10.1016/J.JTICE.2021.01.027. DOI: https://doi.org/10.1016/j.jtice.2021.01.027
Wan, C.; Jiao, Y.; Li, J. J. Mater. Chem. A Mater. 2017, 5, 17267-17278. DOI: https://doi.org/10.1039/c7ta04994c. DOI: https://doi.org/10.1039/C7TA04994C
Chen, L.; Zhang, Y.; Zhu, P.; Zhou, F.; Zeng, W.; Daniel Lu, D.; Sun, R.; Wong, C. Sci. Rep. 2015, 5, 9672. DOI: https://doi.org/10.1038/srep09672. DOI: https://doi.org/10.1038/srep09672
Ahmad, W. R. W.; Mamat, M. H.; Khusaimi, Z.; Ismail, A. S.; Rusop, M. Indonesian J. Electr. Eng. Comput. Sci. 2018, 13, 1079–1086. DOI: https://doi.org/10.11591/ijeecs.v13.i3.pp1079-1086. DOI: https://doi.org/10.11591/ijeecs.v13.i3.pp1079-1086
Shi, X.; Zhang, K.; Shin, K.; Moon, J. H.; Lee, T. W.; Park, J. H. Phys. Chem. Chem. Phys. 2013, 15. 11717-1722. DOI: https://doi.org/10.1039/c3cp50459j. DOI: https://doi.org/10.1039/c3cp50459j
Mao, A.; Han, G. Y.; Park, J. H. J. Mater. Chem. 2010, 20, 2247–2250. DOI: https://doi.org/10.1039/B921965J. DOI: https://doi.org/10.1039/b921965j
Qiu, W. T.; Huang, Y. C.; Wang, Z. L.; Xiao, S.; Ji, H. B.; Tong, Y. X. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica. Beijing University Press. 2017, 33, 80–102. DOI: https://doi.org/10.3866/PKU.WHXB201607293. DOI: https://doi.org/10.3866/PKU.WHXB201607293
Ahn, H.-J.; Yoon, K.-Y.; Kwak, M.-J.; Jang, J.-H. Angew. Chem., Int. Ed. Engl. 2016, 128, 10076–10080. DOI: https://doi.org/10.1002/ange.201603666 (. DOI: https://doi.org/10.1002/ange.201603666
Shinde, P. S.; Annamalai, A.; Kim, J. Y.; Choi, S. H.; Lee, J. S.; Jang, J. S. Fine- J. Phys. Chem. C. 2015, 119, 5281–5292. DOI: https://doi.org/10.1021/jp5100186. DOI: https://doi.org/10.1021/jp5100186
Smart, T. J.; Ping, Y. J. Phys. Condens. Matter. 2017, 29, 394006. DOI: https://doi.org/10.1088/1361-648X/aa7e3d. DOI: https://doi.org/10.1088/1361-648X/aa7e3d
Finger, L. W.; Hazen, R. M. J. Appl. Phys. 1980, 51, 5362–5367. DOI: https://doi.org/10.1063/1.327451. DOI: https://doi.org/10.1063/1.327451
Gilbert, B.; Frandsen, C.; Maxey, E. R.; Sherman, D. M. Phys. Rev. B Condens. Matter. Mater. Phys. 2009, 79, 035108. DOI: https://doi.org/10.1103/PhysRevB.79.035108. DOI: https://doi.org/10.1103/PhysRevB.79.035108
Coey, J. M. D.; Sawatzkyt, G. A. J. Phys. C. Solid State Phys. 1971, 4, 2386-2407. DOI: https://doi.org/10.1088/0022-3719/4/15/025. DOI: https://doi.org/10.1088/0022-3719/4/15/025
Cai, J.; Liu, H.; Liu, C.; Xie, Q.; Xu, L.; Li, H.; Wang, J.; Li, S. Appl Surf Sci. 2021, 568, 150606. DOI: https://doi.org/10.1016/j.apsusc.2021.150606. DOI: https://doi.org/10.1016/j.apsusc.2021.150606
Yi, S. S.; Wang, Z. Y.; Li, H. M.; Zafar, Z.; Zhang, Z. T.; Zhang, L. Y.; Chen, D. L.; Liu, Z. Y.; Yue, X. Z. Appl. Catal. B. 2021, 283, 119649. DOI: https://doi.org/10.1016/j.apcatb.2020.119649. DOI: https://doi.org/10.1016/j.apcatb.2020.119649
Tilley, S. D.; Cornuz, M.; Sivula, K.; Grätzel, M. Angew. Chem., Int. Ed. Engl. 2010, 49, 6405–6408. DOI: https://doi.org/10.1002/anie.201003110. DOI: https://doi.org/10.1002/anie.201003110
Mir, J. F.; Rubab, S.; Shah, M. A. Chem. Phys. Lett. 2020, 741, 137088. DOI: https://doi.org/10.1016/j.cplett.2020.137088. DOI: https://doi.org/10.1016/j.cplett.2020.137088
Mohapatra, S. K.; John, S. E.; Banerjee, S.; Misra, M. Chem. Mater. 2009, 21, 3048–3055. DOI: https://doi.org/10.1021/cm8030208. DOI: https://doi.org/10.1021/cm8030208
Sivula, K.; Zboril, R.; Le Formal, F.; Robert, R.; Weidenkaff, A.; Tucek, J.; Frydrych, J.; Grätzel, M. J. Am. Chem. Soc. 2010, 132, 7436–7444. DOI: https://doi.org/10.1021/ja101564f. DOI: https://doi.org/10.1021/ja101564f
Maabong, K.; Machatine, A. G. J.; Mwankemwa, B. S.; Braun, A.; Bora, D. K.; Toth, R.; Diale, M. Phys. B Condens. Matter. 2018, 535, 67–71. DOI: https://doi.org/10.1016/j.physb.2017.06.054. DOI: https://doi.org/10.1016/j.physb.2017.06.054
Yilmaz, C.; Unal, U. RSC Adv. 2015, 5, 16082–16088. DOI: https://doi.org/10.1039/c4ra16028b. DOI: https://doi.org/10.1039/C4RA16028B
Shinde, P. S.; Go, G. H.; Lee, W. J. J. Mater. Chem. 2012, 22, 10469–10471. DOI: https://doi.org/10.1039/c2jm31254a. DOI: https://doi.org/10.1039/c2jm31254a
Saremi-Yarahmadi, S.; Vaidhyanathan, B.; Wijayantha, K. G. U. Int. J. Hydrogen Energy. 2010, 35, 10155–10165. DOI: https://doi.org/10.1016/j.ijhydene.2010.08.004. DOI: https://doi.org/10.1016/j.ijhydene.2010.08.004
Phuan, Y. W.; Chong, M. N.; Zhu, T.; Yong, S. T.; Chan, E. S. Mater. Res. Bull. 2015, 69, 71–77. DOI: https://doi.org/10.1016/j.materresbull.2014.12.059. DOI: https://doi.org/10.1016/j.materresbull.2014.12.059
Ling, Y.; Wang, G.; Wheeler, D. A.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11, 2119–2125. DOI: https://doi.org/10.1021/nl200708y. DOI: https://doi.org/10.1021/nl200708y
Roose, B.; Pathak, S.; Steiner, U. Chem. Soc. Rev. 2015, 44, 8326-8349. DOI: https://doi.org/10.1039/c5cs00352k. DOI: https://doi.org/10.1039/C5CS00352K
Han, X.; Shao, G. J. Phys. Chem. C. 2011, 115, 8274-8282. DOI: https://doi.org/10.1021/jp1106586. DOI: https://doi.org/10.1021/jp1106586
Yang, X.; Wu, X.; Li, J.; Liu, Y. TiO 2-Au RSC Adv. 2019, 9, 29097-29104. DOI: bhttps://doi.org/10.1039/c9ra05113a. DOI: https://doi.org/10.1039/C9RA05113A
Yew, R.; Karuturi, S. K.; Liu, J.; Tan, H. H.; Wu, Y.; Jagadish, C. Opt. Express. 2019, 27, 761-773. DOI: https://doi.org/10.1364/oe.27.000761. DOI: https://doi.org/10.1364/OE.27.000761
Spathis, P.; Karagiannidou, E.; Magoula-a3, A.-E. Stud. Consev. 2003, 48, 57–64. DOI: https://doi.org/10.1179/sic.2003.48.1.57. DOI: https://doi.org/10.1179/sic.2003.48.1.57
Qian, Y.; Du, J.; Kang, D. J. Microporous Mesoporous Mater. 2019, 273, 148–155. DOI: https://doi.org/10.1016/J.MICROMESO.2018.06.056. DOI: https://doi.org/10.1016/j.micromeso.2018.06.056
He, X.; Yang, C. P.; Zhang, G. L.; Shi, D. W.; Huang, Q. A.; Xiao, H. B.; Liu, Y.; Xiong, R. Mater. Des. 2016, 106, 74–80. DOI: https://doi.org/10.1016/J.MATDES.2016.05.025. DOI: https://doi.org/10.1016/j.matdes.2016.05.025
Ramadoss, A.; Kim, S. J. J. Alloys Compd. 2013, 561, 262–267. DOI: https://doi.org/10.1016/J.JALLCOM.2013.02.015. DOI: https://doi.org/10.1016/j.jallcom.2013.02.015
Selvakumar, M.; Bhat, D. K. Appl. Surf. Sci. 2012, 263, 236–241. DOI: https://doi.org/10.1016/J.APSUSC.2012.09.036. DOI: https://doi.org/10.1016/j.apsusc.2012.09.036
Hamed S. H. K. M. S. P. Thesis. Sudan University of Science & Technology (SUST), Faculty of Science-Department of Physics, Sep 2017. https://api.semanticscholar.org/CorpusID:55193279, accessed September 2019.
El-Kemary, M.; Nagy, N.; El-Mehasseb, I. Mater. Sci. Semicond. Process. 2013, 16, 1747–1752. DOI: https://doi.org/10.1016/J.MSSP.2013.05.018. DOI: https://doi.org/10.1016/j.mssp.2013.05.018
Koussi-Daoud, S.; Majerus, O.; Schaming, D.; Pauporté, T. Electrochim. Acta. 2016, 219, 638–646. DOI: https://doi.org/10.1016/j.electacta.2016.10.074. DOI: https://doi.org/10.1016/j.electacta.2016.10.074
Marrani, A. G.; Novelli, V.; Sheehan, S.; Dowling, D. P.; Dini, D. ACS Appl. Mater. Interfaces. 2014, 6, 143-152. DOI: https://doi.org/10.1021/am403671h. DOI: https://doi.org/10.1021/am403671h
Belousov, A. L.; Patrusheva, T. N.; Karacharov, A. A.; Ivanenko, A. A.; Kirik, S. D.; Khol’kin, A. I. Theor. Found. Chem. Eng. 2020, 54, 699–705. DOI: https://doi.org/10.1134/S0040579520040041. DOI: https://doi.org/10.1134/S0040579520040041
Diao, C. C.; Huang, C. Y.; Yang, C. F.; Wu, C. C. Nanomaterials. 2020, 10, 636. DOI: https://doi.org/10.3390/nano10040636. DOI: https://doi.org/10.3390/nano10040636
Ma, J.; Yang, J.; Jiao, L.; Mao, Y.; Wang, T.; Duan, X.; Lian, J.; Zheng, W. NiO CrystEngComm. 2012, 14, 453–459. DOI: https://doi.org/10.1039/c1ce05567d. DOI: https://doi.org/10.1039/C1CE05567D
Tamirat, A. G.; Rick, J.; Dubale, A. A.; Su, W. N.; Hwang, B. J. Nanoscale Horiz. Royal Soc. Chem. 2016, 243–267. DOI: https://doi.org/10.1039/c5nh00098j. DOI: https://doi.org/10.1039/C5NH00098J
Beranek, R.; Kisch, H. Electrochem. Commun. 2007, 9, 761–766. DOI: https://doi.org/10.1016/j.elecom.2006.11.011. DOI: https://doi.org/10.1016/j.elecom.2006.11.011
Gai, Y.; Li, J.; Li, S. S.; Xia, J. B.; Wei, S. H. Phys. Rev. Lett. 2009, 102, 036402. DOI: https://doi.org/10.1103/PhysRevLett.102.036402. DOI: https://doi.org/10.1103/PhysRevLett.102.036402
Radecka, M.; Rekas, M.; Trenczek-Zajac, A.; Zakrzewska, K. J. Power Sources. 2008, 181, 46–55. DOI: https://doi.org/10.1016/j.jpowsour.2007.10.082. DOI: https://doi.org/10.1016/j.jpowsour.2007.10.082
Sasi, B.; Gopchandran, K. G. Sol. Energy Mater. Sol. Cells. 2007, 91, 1505–1509. DOI: https://doi.org/10.1016/j.solmat.2007.04.019. DOI: https://doi.org/10.1016/j.solmat.2007.04.019
Sahoo, P.; Sharma, A.; Padhan, S.; Thangavel, R. Superlattices Microstruct. 2021, 159, 107050. DOI: https://doi.org/10.1016/j.spmi.2021.107050. DOI: https://doi.org/10.1016/j.spmi.2021.107050
Yoo, J.; Kwak, I. H.; Kwon, I. S.; Park, K.; Kim, D.; Lee, J. H.; Lim, S. A.; Cha, E. H.; Park, J. J. Mater. Chem. C Mater. 2020, 8, 3240–3247. DOI: https://doi.org/10.1039/c9tc05703j. DOI: https://doi.org/10.1039/C9TC05703J
Katsounaros, I.; Cherevko, S.; Zeradjanin, A. R.; Mayrhofer, K. J. J. Angew. Chem., Int. Ed. Engl. 2014, 53, 102–121. DOI: https://doi.org/10.1002/anie.201306588. DOI: https://doi.org/10.1002/anie.201306588
Krol, R. Van de; Grätzel, M. Electronic Materials: Science & Technology. In: Photoelectrochemical Hydrogen Production; New York: USA. 2012. DOI: https://doi.org/10.1007/978-1-4614-1380-6
Hellman, A.; Wang, B. Inorganics. 2017, 5, 2-27. DOI: https://doi.org/10.3390/inorganics5020037. DOI: https://doi.org/10.3390/inorganics5020037
Iandolo, B.; Wickman, B.; Zorić, I.; Hellman, A. J. Mater. Chem. A Mater. 2015, 3, 16896-16912. DOI: https://doi.org/10.1039/c5ta03362d. DOI: https://doi.org/10.1039/C5TA03362D
Pan, J.; Fu, Y.; Xiao, G.; Niu, J.; Cao, J.; Wang, J.; Zheng, Y.; Li, C. J. Environ. Chem. Eng. 2022, 10, 108587. DOI: https://doi.org/10.1016/j.jece.2022.108587. DOI: https://doi.org/10.1016/j.jece.2022.108587
Ma, L.; Xu, J.; Liu, Z.; Liu, Y.; Liu, X.; Xu, S. J. Mater. Sci. 2022, 57, 6734–6748. DOI: https://doi.org/10.1007/s10853-022-07064-4. DOI: https://doi.org/10.1007/s10853-022-07064-4
Yoon, S.; Kim, M.; Kim, I. S.; Lim, J. H.; Yoo, B. J. Mater. Chem. A Mater. 2014, 2, 11621–11627. DOI: https://doi.org/10.1039/c4ta00616j. DOI: https://doi.org/10.1039/C4TA00616J
Hsu, Y. K.; Yu, C. H.; Chen, Y. C.; Lin, Y. G. Electrochim. Acta. 2013, 105, 62–68. DOI: https://doi.org/10.1016/j.electacta.2013.05.003 . DOI: https://doi.org/10.1016/j.electacta.2013.05.003
Yang, Y.; Xu, D.; Wu, Q.; Diao, P. Sci. Rep. 2016, 6, 35158. DOI: https://doi.org/10.1038/srep35158. DOI: https://doi.org/10.1038/srep35158
Grez, P.; Henríquez, R.; Muñoz, E.; Rojas, C.; Moreno, S.; Sessarego, G.; Heyser, C.; Celedón, C.; Schrebler, R. Int. J. Electrochem. Sci. 2016, 14, 5646-5653. DOI: https://doi.org/10.20964/2019.06.03. DOI: https://doi.org/10.20964/2019.06.03
Nian, J. N.; Hu, C. C.; Teng, H. Int. J. Hydrogen Energy. 2008, 33, 2897–2903. DOI: https://doi.org/10.1016/j.ijhydene.2008.03.052. DOI: https://doi.org/10.1016/j.ijhydene.2008.03.052


Downloads
Additional Files
Published
Issue
Section
License
Copyright (c) 2023 Bernardo A. Frontana-Uribe, Manuel Humberto Ríos-Domínguez

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
