Microstructures of Binary Oxides with an Inverse Opal Structure Used as Photoelectrodes for Water Splitting

Authors

  • Bernardo A. Frontana-Uribe Associated Editor JMCSReseacher ID number: B-4660-201ORCID ID number: http://orcid.org/0000-0003-3796-5933Website: http://www.cciqs.unam.mx/index.php/investigadoresCurrent Office and Laboratory:Centro Conjunto de Investigación en Química Sustentable UAEMex-UNAM (CCIQS UAEMéx-UNAM)Carretera Toluca-Atlacomulco Km. 14.5C.P. 50200, Toluca, Estado de México, México.Office Phone: +(52) (722) 2766610 ext 7728Lab Phone (Messages only): +(52) (722) 2766610 ext 7750 http://orcid.org/0000-0003-3796-5933
  • Manuel Humberto Ríos-Domínguez

DOI:

https://doi.org/10.29356/jmcs.v67i4.1998

Keywords:

Inverse opal, water splitting, template, hematite, titanium oxide, zinc oxide, copper (I) oxide, nickel sulfide, nickel oxide, photoelectrode

Abstract

Recently, the weather has experienced changes and these have affected our life style. Fossil fuels used by the human have contributed to climate change and today it is impossible to modify. Researchers have studied different kind of fuels that could use daily. Currently, hydrogen, from water splitting, is the best way to substitute the fossil fuels because water is present around the World. In photoelectrochemistry, the electrodes have a great importance. Behaviour of each semiconductor as TiO2, Fe2O3, NiO, CuO, NiS, ZnO, Cu2O, etc., give us individual efficiency respect to solar light. Also, the semiconductor chosen, type of crystallinity and superficial area are important points for achieve high in efficiency. This review shows that inverse opal has a greater contact compared to rod, cauliflower, nanotubes, etc. Different ways to deposit the polystyrene allows us gain more contact area and better photoelectrode efficiency. The main routes used to obtain binary oxides deposits, as electrophoretic, spin coating, vertical submersion, etc., help us to control polystyrene arrangement and obtain a uniform template.  These techniques are discussed along this contribution.

 

Resumen. Recientemente, el clima ha experimentado cambios que han afectado a nuestro estilo de vida. Los combustibles fósiles utilizados por el ser humano han contribuido al cambio climático y hoy es imposible modificarlo. Los investigadores estudian diferentes tipos de combustibles que podrían utilizarse diaria y actualmente, el hidrógeno, a partir de la ruptura de la molécula de agua, es la mejor manera de sustituir los combustibles fósiles porque el agua está presente en todo el mundo. En fotoelectroquímica, los electrodos tienen una gran importancia. El comportamiento de cada semiconductor como TiO2, Fe2O3, NiO, CuO, NiS, ZnO, Cu2O, etc., tiene cada uno una eficiencia individual respecto a la luz solar que reciben. Además, del semiconductor elegido, el tipo de cristalinidad y el área superficial de este son puntos determinantes para alcanzar un alto grado de eficiencia. La presente revisión muestra que el ópalo inverso tiene un mayor contacto y eficiencia en comparación con las varillas, la coliflor, los nanotubos, etc. Diferentes formas de depositar el poliestireno como molde nos permiten obtener mayor área de contacto y mejor eficiencia del fotoelectrodo semiconductor. Las principales vías utilizadas para obtener depósitos de óxidos binarios, como electroforesis vertical, etc., nos ayudan a controlar la disposición del poliestireno y obtener una capa uniforme. Estas técnicas se discuten a lo largo de esta contribución.

Downloads

Download data is not yet available.

Author Biography

Bernardo A. Frontana-Uribe, Associated Editor JMCSReseacher ID number: B-4660-201ORCID ID number: http://orcid.org/0000-0003-3796-5933Website: http://www.cciqs.unam.mx/index.php/investigadoresCurrent Office and Laboratory:Centro Conjunto de Investigación en Química Sustentable UAEMex-UNAM (CCIQS UAEMéx-UNAM)Carretera Toluca-Atlacomulco Km. 14.5C.P. 50200, Toluca, Estado de México, México.Office Phone: +(52) (722) 2766610 ext 7728Lab Phone (Messages only): +(52) (722) 2766610 ext 7750

1. Electrochemistry and Electrosynthesis Laboratory

References

Rahman, G.; Najaf, Z.; Shah, A. ul H. A.; Mian, S. A. Optik (Stuttg). 2020, 200, 163454.DOI: https://doi.org/10.1016/j.ijleo.2019.163454. DOI: https://doi.org/10.1016/j.ijleo.2019.163454

Ge, M.; Cai, J.; Iocozzia, J.; Cao, C.; Huang, J.; Zhang, X.; Shen, J.; Wang, S.; Zhang, S.; Zhang, K. Q.; Lai, Y.; Lin, Z. Int. J. Hydrogen Energy. 2017, 42, 8418–8449. DOI: https://doi.org/10.1016/J.IJHYDENE.2016.12.052. DOI: https://doi.org/10.1016/j.ijhydene.2016.12.052

Bediako, D. K.; Lassalle-Kaiser, B.; Surendranath, Y.; Yano, J.; Yachandra, V. K.; Nocera, D. G. J. Am. Chem. Soc. 2012, 134, 6801-6809. DOI: https://doi.org/10.1021/ja301018q. DOI: https://doi.org/10.1021/ja301018q

Sharma, A.; Chakraborty, M.; Thangavel, R.; Udayabhanu, G. J. Solgel Sci. Technol. 2018, 85, 1–11. DOI: https://doi.org/10.1007/s10971-017-4536-3. DOI: https://doi.org/10.1007/s10971-017-4536-3

Jain, I. P. Int. J. Hydrogen Energy. 2009, 34, 7368–7378. DOI: https://doi.org/10.1016/j.ijhydene.2009.05.093. DOI: https://doi.org/10.1016/j.ijhydene.2009.05.093

Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446–6473. DOI: https://doi.org/10.1021/cr1002326. DOI: https://doi.org/10.1021/cr1002326

Crabtree, G. W.; Lewis, N. S. In: AIP Conference Proceedings 2008, Berkeley, CA, March 1-2, 2008; 1044, 309–321. https://doi.org/10.1063/1.2993729. DOI: https://doi.org/10.1063/1.2993729

Nikolaidis, P.; Poullikkas, A. Renewable and Sustainable Energy Rev. 2017, 1, 597–611. DOI: https://doi.org/10.1016/j.rser.2016.09.044. DOI: https://doi.org/10.1016/j.rser.2016.09.044

Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253–278. DOI: https://doi.org/10.1039/b800489g. DOI: https://doi.org/10.1039/B800489G

Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Nat. Photonics. 2012, 6, 511–518. https://doi.org/10.1038/nphoton.2012.175. DOI: https://doi.org/10.1038/nphoton.2012.175

Ameta, R.; Solanki, M. S.; Benjamin, S.; Ameta, S. C. Photocatalysis. In: Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology; Ameta S., Ameta R., Ed.; Academic Press, 2018; 135–175. DOI: https://doi.org/10.1016/B978-0-12-810499-6.00006-1. DOI: https://doi.org/10.1016/B978-0-12-810499-6.00006-1

Takanabe, K. ACS Catal. 2017, 7, 8006–8022. DOI: https://doi.org/10.1021/acscatal.7b02662. DOI: https://doi.org/10.1021/acscatal.7b02662

Thorne, J. E.; Li, S.; Du, C.; Qin, G.; Wang, D. J. Phys. Chem. Letters. 2015, 6, 4083–4088. DOI: https://doi.org/10.1021/acs.jpclett.5b01372. DOI: https://doi.org/10.1021/acs.jpclett.5b01372

Bockris, J. O.; Uosaki, K. J. Electrochem. Soc. 1977, 124, 98–99. DOI: https://doi.org/10.1149/1.2133256. DOI: https://doi.org/10.1149/1.2133256

Cao, S.; Piao, L. Angew. Chem., Int. Ed. Engl. 2020, 59, 18312–18320. DOI: https://doi.org/10.1002/anie.202009633. DOI: https://doi.org/10.1002/anie.202009633

Jiang, X.; Lin, Q.; Zhang, M.; He, G.; Sun, Z. Nanoscale Res. Lett. 2015, 10. DOI: https://doi.org/10.1186/s11671-015-0755-0. DOI: https://doi.org/10.1186/s11671-015-0755-0

Liu, M.; Nam, C. Y.; Black, C. T.; Kamcev, J.; Zhang, L. J. Phys. Chem. C. 2013, 117, 13396–13402. DOI: https://doi.org/10.1021/jp404032p. DOI: https://doi.org/10.1021/jp404032p

Young Kim, J.; Magesh, G.; Hyun Youn, D.; Jang, J.-W.; Kubota, J.; Domen, K.; Sung Lee, J. Sci. Rep. 2013, 3, 2681. DOI: https://doi.org/10.1038/srep02681. DOI: https://doi.org/10.1038/srep02681

Marlow, F.; Muldarisnur; Sharifi, P.; Brinkmann, R.; Mendive, C. Angew. Chem., Int. Ed. Engl. 2009, 48, 6212–6233. DOI: https://doi.org/10.1002/ANIE.200900210. DOI: https://doi.org/10.1002/anie.200900210

Fathi, F.; Rashidi, M. R.; Pakchin, P. S.; Ahmadi-Kandjani, S.; Nikniazi, A. Talanta. 2020, 221, 121615. DOI: https://doi.org/10.1016/J.TALANTA.2020.121615. DOI: https://doi.org/10.1016/j.talanta.2020.121615

Zheng, X.; Han, J.; Fu, Y.; Deng, Y.; Liu, Y.; Yang, Y.; Wang, T.; Zhang, L. Highly Nano Energy. 2018, 48, 93–100. DOI: https://doi.org/10.1016/J.NANOEN.2018.03.023. DOI: https://doi.org/10.1016/j.nanoen.2018.03.023

Zhou, Y.; Antonietti, M. Chem. Commun. 2003, 3, 2564–2565. DOI: https://doi.org/10.1039/b307444g. DOI: https://doi.org/10.1039/b307444g

Zhang, L.; D’Acunzi, M.; Kappl, M.; Auernhammer, G. K.; Vollmer, D.; Van Kats, C. M.; Van Blaaderen, A. Langmuir. 2009, 25, 2711–2717. DOI: https://doi.org/10.1021/la803546r. DOI: https://doi.org/10.1021/la803546r

Ghimire, P. P.; Jaroniec, M. J. Colloid Interface Sci. 2020, 584, 838–865. DOI: https://doi.org/10.1016/j.jcis.2020.10.014. DOI: https://doi.org/10.1016/j.jcis.2020.10.014

Waterhouse, G. I. N.; Chen, W. T.; Chan, A.; Sun-Waterhouse, D. ACS Omega. 2018, 3, 9658–9674. DOI: https://doi.org/10.1021/ACSOMEGA.8B01334/SUPPL_FILE/AO8B01334_SI_001.PDF. DOI: https://doi.org/10.1021/acsomega.8b01334

Chen, X.; Zhang, Y.; Pang, Y.; Jiang, Q. Materials. 2020, 13, 1–10. DOI: https://doi.org/10.3390/ma13204647. DOI: https://doi.org/10.3390/ma13204647

Zhang, K.; Shi, X.; Kim, J. K.; Lee, J. S.; Park, J. H. Nanoscale. 2012, 5, 1939-1944. DOI: https://doi.org/10.1039/c2nr33036a. DOI: https://doi.org/10.1039/c2nr33036a

Nishijima, Y.; Ueno, K.; Juodkazis, S.; Mizeikis, V.; Misawa, H.; Tanimura, T.; Maeda, K. Opt Express. 2007, 15, 12979-12988. DOI: https://doi.org/10.1364/oe.15.012979. DOI: https://doi.org/10.1364/OE.15.012979

Chung, W. A.; Hung, P. S.; Wu, C. J.; Guo, W. Q.; Wu, P. W. J. Alloys Compd. 2021, 886, 161243. DOI: https://doi.org/10.1016/J.JALLCOM.2021.161243. DOI: https://doi.org/10.1016/j.jallcom.2021.161243

Zhou, Y.; Zhao, J.; Liu, Y.; Ng, R. J. H.; Yang, J. K. W. Mater. Sci. Semicond. Process. 2021, 121, 1-8 https://doi.org/10.1016/j.mssp.2020.105444. DOI: https://doi.org/10.1016/j.mssp.2020.105444

Sordello, F.; Maurino, V.; Minero, C. J. Mater. Chem. 2011, 21, 19144–19152. DOI: https://doi.org/10.1039/c1jm12674a. DOI: https://doi.org/10.1039/c1jm12674a

Cho, T.-Y.; Han, C.-W.; Jun, Y.; Yoon, S.-G. Sci. Rep. 2013, 3, 1496, 1-7. DOI: https://doi.org/10.1038/srep01496. DOI: https://doi.org/10.1038/srep01496

Trang Pham, T. T.; Bessho, T.; Mathews, N.; Zakeeruddin, S. M.; Lam, Y. M.; Mhaisalkar, S.; Grätzel, M. J. Mater. Chem. 2012, 22, 16201-16204. DOI: https://doi.org/10.1039/c2jm32401f. DOI: https://doi.org/10.1039/c2jm32401f

Abitaev, K.; Qawasmi, Y.; Atanasova, P.; Dargel, C.; Bill, J.; Hellweg, T.; Sottmann, T. Colloid Polym. Sci. 2020. 299, 243-258. DOI:https://doi.org/10.1007/s00396-020-04791-5/Published. DOI: https://doi.org/10.1007/s00396-020-04791-5

Zhu, H.; Zhang, Y.; Zhu, J.; Li, Y.; Jiang, S.; Wu, N.; Wei, Y.; Zhou, J.; Song, Y. J. Mater. Chem. A Mater. 2020, 8, 22929-22937. DOI: https://doi.org/10.1039/d0ta06975b. DOI: https://doi.org/10.1039/D0TA06975B

Gaulding, E. A.; Liu, G.; Chen, C. T.; Löbbert, L.; Li, A.; Segev, G.; Eichhorn, J.; Aloni, S.; Schwartzberg, A. M.; Sharp, I. D.; Toma, F. M. J. Mater. Chem. A Mater. 2017, 5, 11601-11614. DOI: https://doi.org/10.1039/c7ta00512a. DOI: https://doi.org/10.1039/C7TA00512A

Qu, H. Y.; Wang, J.; Montero, J.; Li, Y.; Österlund, L.; Niklasson, G. A. J. Appl. Phys. 2021, 129, 1-11. DOI: https://doi.org/10.1063/5.0043673. DOI: https://doi.org/10.1063/5.0043673

Kousik, S. R.; Sipp, D.; Abitaev, K.; Li, Y.; Sottmann, T.; Koynov, K.; Atanasova, P. Nanomaterials. 2021, 11, 196, 1-18. DOI: https://doi.org/10.3390/nano11010196. DOI: https://doi.org/10.3390/nano11010196

Wang, T.; Yu, Q.; Zhang, S.; Kou, X.; Sun, P.; Lu, G. Nanoscale. 2018, 10, 4841–4851. DOI: https://doi.org/10.1039/c7nr08366a. DOI: https://doi.org/10.1039/C7NR08366A

Li, Q.; Yang, C. Mater Lett. 2017, 199, 168–171. DOI: https://doi.org/10.1016/J.MATLET.2017.04.058. DOI: https://doi.org/10.1016/j.matlet.2017.04.058

Meng, S.; Li, D.; Wang, P.; Zheng, X.; Wang, J.; Chen, J.; Fang, J.; Fu, X. P RSC Adv. 2013, 3, 17021-17028. DOI: https://doi.org/10.1039/c3ra42618a. DOI: https://doi.org/10.1039/c3ra42618a

Lin, X.; Chen, M. Appl. Sci. 2016, 6, 259, 1-10. DOI: https://doi.org/10.3390/app6100259. DOI: https://doi.org/10.3390/app6100259

Zhou, Q.; Pu, J.; Sun, X.; Zhu, C.; Li, J.; Wang, J.; Chang, S.; Zhang, H. I J. Mater. Chem. A Mater. [Online] 2017, 5, 14873–14880. DOI: https://doi.org/10.1039/c7ta03044d. DOI: https://doi.org/10.1039/C7TA03044D

Tran, G. T. H.; Koike, M.; Uchikoshi, T.; Fudouzi, H. Adv. Powder Technol. 2020, 31, 3085–3092. DOI: https://doi.org/10.1016/J.APT.2020.05.029. DOI: https://doi.org/10.1016/j.apt.2020.05.029

Rogach, A. L.; Kotov, N. A.; Koktysh, D. S.; Ostrander, J. W.; Ragoisha, G. A. Chem. Mater. 2000, 12, 2721-2726. DOI: https://doi.org/10.1021/cm000274l. DOI: https://doi.org/10.1021/cm000274l

Galle, L.; Ehrling, S.; Lochmann, S.; Kaskel, S.; Bischoff, L.; Grothe, J. ChemNanoMat. 2020, 6, 560-566. DOI: https://doi.org/10.1002/cnma.201900731. DOI: https://doi.org/10.1002/cnma.201900731

Li, Z. Y.; Zhang, Z. Q. Phys. Rev. B Condens. Matter. Mater. Phys. 2000, 62, 1516-1519. https://doi.org/10.1103/PhysRevB.62.1516. DOI: https://doi.org/10.1103/PhysRevB.62.1516

Stöber, W.; Fink, A.; Bohn, J. Colloid. Interface Sci. 1968, 26, 62–69. DOI: https://doi.org/10.1016/0021-9797(68)90272-5. DOI: https://doi.org/10.1016/0021-9797(68)90272-5

Blanco, A.; Chomski, E.; Grabtchak, S.; Ibisate, M.; John, S.; Leonard, S. W.; Lopez, C.; Meseguer, F.; Miguez, H.; Mondla, J. P.; Ozin, G. A.; Toader, O.; Van Driel, H. M. Nature. 2000, 405, 437-440. DOI: https://doi.org/10.1038/35013024. DOI: https://doi.org/10.1038/35013024

Salvarezza, R. C.; Vázquez, L.; Míguez, H.; Mayoral, R.; López, C.; Meseguer, F. Phys. Rev. Lett. 1996, 77, 4572-4575. DOI: https://doi.org/10.1103/PhysRevLett.77.4572. DOI: https://doi.org/10.1103/PhysRevLett.77.4572

Salinas, G.; Frontana-Uribe, B. A.; Reculusa, S.; Garrigue, P.; Kuhn, A. Anal. Chem. 2018, 90, 11770–11774. DOI: https://doi.org/10.1021/acs.analchem.8b03779. DOI: https://doi.org/10.1021/acs.analchem.8b03779

Yi, D. K.; Lee, J. H.; Rogers, J. A.; Paik, U. Appl. Phys. Lett. 2009, 94. DOI: https://doi.org/10.1063/1.3089219. DOI: https://doi.org/10.1063/1.3089219

Song, T.; Jeon, Y.; Samal, M.; Han, H.; Park, H.; Ha, J.; Yi, D. K.; Choi, J. M.; Chang, H.; Choi, Y. M.; Paik, U. Energy Environ. Sci. 2012, 5, 9028–9033. DOI: https://doi.org/10.1039/c2ee22358a. DOI: https://doi.org/10.1039/c2ee22358a

Waleczek, M.; Dendooven, J.; Dyachenko, P.; Petrov, A. Y.; Eich, M.; Blick, R. H.; Detavernier, C.; Nielsch, K.; Furlan, K. P.; Zierold, R. Nanomaterials. 2021, 11, 1-16. DOI: https://doi.org/10.3390/nano11041053. DOI: https://doi.org/10.3390/nano11041053

Kim, K. H.; Yoon, K. H.; Yun, J. H.; Ahn, B. T. Electrochem. Solid-State Lett. 2006, 9, A382-A385. DOI: https://doi.org/10.1149/1.2208011. DOI: https://doi.org/10.1149/1.2208011

Shin, S. S.; Kim, K.; Yoo, J.; Kim, J. H.; Ahn, S.; Cho, A.; Kim, D.; Jo, Y.; Jeong, I.; Shin, D.; Cho, J. S.; Yun, J. H.; Park, J.; Park, J. H. Solar Energy Mater. Solar Cells. 2021, 224, 1-11. DOI: https://doi.org/10.1016/J.SOLMAT.2021.111010. DOI: https://doi.org/10.1016/j.solmat.2021.111010

Scharrer, M.; Wu, X.; Yamilov, A.; Cao, H.; Chang, R. P. H. Appl. Phys. Lett. 2005, 86, 151113. DOI: https://doi.org/10.1063/1.1900957. DOI: https://doi.org/10.1063/1.1900957

Gong, X.; Lou, X.; Kim, S. B.; Gordon, R. G. ACS Appl. Electron. Mater. 2021, 3, 845-853. DOI: https://doi.org/10.1021/acsaelm.0c00977. DOI: https://doi.org/10.1021/acsaelm.0c00977

Mandati, S.; Sarada, B. V.; Dey, S. R.; Joshi, S. V. Pulsed Electrochemical Deposition of CuInSe2 and Cu(In,Ga)Se2 Semiconductor Thin Films. in: Semiconductors - Growth and Characterization; Inguanta R. and Sunseri C., Ed.; InTech: United Kingdom, 2018; Chapter 6. DOI: https://doi.org/10.5772/intechopen.71857. DOI: https://doi.org/10.5772/intechopen.71857

Sun, H.; Qin, D.; Huang, S.; Guo, X.; Li, D.; Luo, Y.; Meng, Q. Energy Environ. Sci. 2011, 4, 2630-2637. DOI:https://doi.org/10.1039/c0ee00791a (. DOI: https://doi.org/10.1039/c0ee00791a

Park, J. Y.; Kim, S.; Hong, D. M.; Lim, J. W.; Yoo, C. J.; Dong, W. J.; Lee, J. L. Electron. Mater. Lett. 2019, 15, 454–461. DOI: https://doi.org/10.1007/s13391-019-00145-8. DOI: https://doi.org/10.1007/s13391-019-00145-8

Wang, J.; Zhou, H.; Nanda, J.; Braun, P. V. Chem. Mater. 2015, 27, 2803–2811. DOI: https://doi.org/10.1021/cm504365s. DOI: https://doi.org/10.1021/cm504365s

Fei, J. Y.; Wilcox, G. D. Electrochim. Acta. 2005, 50, 2693–2698. DOI: https://doi.org/10.1016/j.electacta.2004.11.014. DOI: https://doi.org/10.1016/j.electacta.2004.11.014

Zhao, J.; Sun, L.; Canepa, S.; Sun, H.; Yesibolati, M. N.; Sherburne, M.; Xu, R.; Sritharan, T.; Loo, J. S. C.; Ager, J. W.; Barber, J.; Mølhave, K.; Xu, Z. J. J. Mater. Chem. A Mater. 2017, 5, 11905-11916. DOI: https://doi.org/10.1039/c7ta01871a. DOI: https://doi.org/10.1039/C7TA01871A

Golden, T. D.; Shumsky, M. G.; Zhou, Y.; VanderWerf, R. A.; Van Leeuwen, R. A.; Switzer, J. A. Chem. Mater. 1996, 8, 2499-2509. DOI: https://doi.org/10.1021/cm9602095. DOI: https://doi.org/10.1021/cm9602095

Zhang, Z.; Kitada, A.; Fukami, K.; Yao, Z.; Murase, K. Electrochim. Acta. 2020, 348, 136289-1-136289-10. DOI: https://doi.org/10.1016/j.electacta.2020.136289. DOI: https://doi.org/10.1016/j.electacta.2020.136289

Pham, K.; Temerov, F.; Saarinen, J. J. Mater. Des. 2020, 194, 108886. DOI: https://doi.org/10.1016/J.MATDES.2020.108886. DOI: https://doi.org/10.1016/j.matdes.2020.108886

Tello, A.; Boulett, A.; Sánchez, J.; Pizarro, G. del C.; Soto, C.; Linarez Pérez, O. E.; Sanhueza, R.; Oyarzún, D. P. Chem. Phys. Lett. 2021, 778, 138825. DOI: https://doi.org/10.1016/J.CPLETT.2021.138825. DOI: https://doi.org/10.1016/j.cplett.2021.138825

Li, L.; Zhai, T.; Bando, Y.; Golberg, D. Nano Energy. 2011, 91–106. DOI: https://doi.org/10.1016/j.nanoen.2011.10.005. DOI: https://doi.org/10.1016/j.nanoen.2011.10.005

Zhang, C.; Shao, M.; Ning, F.; Xu, S.; Li, Z.; Wei, M.; Evans, D. G.; Duan, X. Au Nano Energy. 2015, 12, 231–239. DOI: https://doi.org/10.1016/J.NANOEN.2014.12.037. DOI: https://doi.org/10.1016/j.nanoen.2014.12.037

Wolcott, A.; Smith, W. A.; Kuykendall, T. R.; Zhao, Y.; Zhang, J. Z. Adv. Funct. Mater. 2009, 19, 1849-1856. DOI:https://doi.org/10.1002/adfm.200801363. DOI: https://doi.org/10.1002/adfm.200801363

Subalakshmi, K.; Senthilselvan, J.; Kumar, K. A.; Kumar, S. A.; Pandurangan, A. J. Mater. Sci.: Mater. Electron. 2017, 28, 15565–15595. DOI: https://doi.org/10.1007/s10854-017-7445-x. DOI: https://doi.org/10.1007/s10854-017-7445-x

(73) Tantray, A. M.; Shah, M. A. Chem. Pap. 2020, 75, 1739–1747. https://doi.org/10.1007/s11696-020-01419-4. DOI: https://doi.org/10.1007/s11696-020-01419-4

Lv, R.; Wang, T.; Su, F.; Zhang, P.; Li, C.; Gong, J. Nano Energy. 2014, 7, 143–150. DOI: https://doi.org/10.1016/J.NANOEN.2014.04.020. DOI: https://doi.org/10.1016/j.nanoen.2014.04.020

Zhang, B.; Wang, F.; Zhu, C.; Li, Q.; Song, J.; Zheng, M.; Ma, L.; Shen, W. Nano-Micro Lett. 2016, 8, 137-142. DOI: https://doi.org/10.1007/s40820-015-0068-y. DOI: https://doi.org/10.1007/s40820-015-0068-y

Guo, J. H.; Vayssieres, L.; Persson, C.; Ahuja, R.; Johansson, B.; Nordgren, J. J. Phys. Condens. Matter. 2002, 14, 6969-6974. DOI: https://doi.org/10.1088/0953-8984/17/1/022. DOI: https://doi.org/10.1088/0953-8984/14/28/308

Galsin, J. S. in: Solid State Physics: An Introduction to Theory; 1st ed.; Academic Press; United Kingdom, 2019; 1. DOI: https://doi.org/10.1016/C2018-0-01175-5. DOI: https://doi.org/10.1016/C2018-0-01175-5

Shetty, A.; Nanda, K. K. Appl. Phys. A Mater. Sci. Process. 2012, 109, 151–157. DOI: https://doi.org/10.1007/s00339-012-7023-2. DOI: https://doi.org/10.1007/s00339-012-7023-2

Gilani, S.; Ghorbanpour, M.; Parchehbaf Jadid, A. J. Nanostruct. Chem. 2016, 6, 183–189. DOI: https://doi.org/10.1007/s40097-016-0194-1. DOI: https://doi.org/10.1007/s40097-016-0194-1

Basu, P. K.; Saha, N.; Maji, S.; Saha, H.; Basu, S. J. Mater. Sci. Mater. Electron. 2008, 19, 493–499. DOI: https://doi.org/10.1007/s10854-008-9604-6. DOI: https://doi.org/10.1007/s10854-008-9604-6

Mika, K.; Socha, R. P.; Nyga, P.; Wiercigroch, E.; Małek, K.; Jarosz, M.; Uchacz, T.; Sulka, G. D.; Zaraska, L. Electrochim. Acta. 2019, 305, 349–359. DOI: https://doi.org/10.1016/J.ELECTACTA.2019.03.052. DOI: https://doi.org/10.1016/j.electacta.2019.03.052

He, S.; Zheng, M.; Yao, L.; Yuan, X.; Li, M.; Ma, L.; Shen, W. P Appl. Surf. Sci. 2010, 256, 2557–2562. https://doi.org/10.1016/J.APSUSC.2009.10.104. DOI: https://doi.org/10.1016/j.apsusc.2009.10.104

Kim, S. J.; Choi, J. Electrochem. Commun. 2007, 10, 175–179. DOI: https://doi.org/10.1016/j.elecom.2007.11.014. DOI: https://doi.org/10.1016/j.elecom.2007.11.014

Goh, H. S.; Adnan, R.; Farrukh, M. A. Turk. J. Chem. 2011, 35, 375–391. DOI: https://doi.org/10.3906/kim-1010-742. DOI: https://doi.org/10.3906/kim-1010-742

Ramirez-Canon, A.; Miles, D. O.; Cameron, P. J.; Mattia, D. RSC Adv. 2013, 3, 25323-25330. DOI: https://doi.org/10.1039/c2ra43886d. DOI: https://doi.org/10.1039/c3ra43886d

Farrukh, M. A.; Thong, C. K.; Adnan, R.; Kamarulzaman, M. A. Russ. J. Phys. Chem. A. 2012, 86, 2041–2048. DOI: https://doi.org/10.1134/S0036024412130171. DOI: https://doi.org/10.1134/S0036024412130171

Zhao, J.; Wang, X.; Liu, J.; Meng, Y.; Xu, X.; Tang, C. Mater. Chem. Phys. 2011, 126, 555–559. DOI: https://doi.org/10.1016/j.matchemphys.2011.01.028. DOI: https://doi.org/10.1016/j.matchemphys.2011.01.028

Hu, Z.; Chen, Q.; Li, Z.; Yu, Y.; Peng, L. M. J. Phys. Chem. C. 2009, 114, 881–889. DOI: https://doi.org/10.1021/jp9094744. DOI: https://doi.org/10.1021/jp9094744

Miles, D. O.; Cameron, P. J.; Mattia, D. J. Mater. Chem. A Mater. 2015, 3, 17569–17577. DOI: https://doi.org/10.1039/c5ta03578c. DOI: https://doi.org/10.1039/C5TA03578C

Park, J.; Kim, K.; Choi, J. Curr. Appl. Phys. 2013, 13, 1370–1375. DOI: https://doi.org/10.1016/j.cap.2013.04.015. DOI: https://doi.org/10.1016/j.cap.2013.04.015

Mateen Tantray, A.; Shah, M. A. Chem. Phys. Lett. 2020, 747, 137346. DOI: https://doi.org/10.1016/j.cplett.2020.137346. DOI: https://doi.org/10.1016/j.cplett.2020.137346

Batista-Grau, P.; Sánchez-Tovar, R.; Fernández-Domene, R. M.; García-Antón, J. Surf. Coat Technol. 2019, 381, 125197. DOI: https://doi.org/10.1016/j.surfcoat.2019.125197. DOI: https://doi.org/10.1016/j.surfcoat.2019.125197

Kim, S. J.; Lee, J.; Choi, J. Electrochim. Acta. 2008, 53, 7941–7945. DOI: https://doi.org/10.1016/j.electacta.2008.06.006. DOI: https://doi.org/10.1016/j.electacta.2008.06.006

Ilyas, U.; Rawat, R. S.; Tan, T. L.; Lee, P.; Chen, R.; Sun, H. D.; Fengji, L.; Zhang, S. J. Appl. Phys. 2011, 110, 093522. DOI: https://doi.org/10.1063/1.3660284. DOI: https://doi.org/10.1063/1.3660284

Juárez, B. H.; García, P. D.; Golmayo, D.; Blanco, A.; López, C. Adv. Mater. 2005, 17, 2761–2765. DOI:https://doi.org/10.1002/adma.200500569. DOI: https://doi.org/10.1002/adma.200500569

Wang, B. S.; Li, R. Y.; Zhang, Z. Y.; Xing-Wang; Wu, X. L.; Cheng, G. A.; Zheng, R. T. Catal Today. 2019, 321-322,100–106. DOI: https://doi.org/10.1016/j.cattod.2018.02.028. DOI: https://doi.org/10.1016/j.cattod.2018.02.028

Sayão, F. A.; Martins, A. S.; da Silva, J. J.; Boldrin Zanoni, M. V. J. Electrochem. Soc. 2021, 168, 076503. DOI: https://doi.org/10.1149/1945-7111/ac0ec5. DOI: https://doi.org/10.1149/1945-7111/ac0ec5

Muniyappa, M.; N. Kalegowda, S.; Shetty, M.; Sriramoju, J. B.; Shastri, M.; Navakoteswara, N. R.; De, D.; M.V., S.; Rangappa, D. Int. J. Hydrogen Energy. 2021, 47, 5307–5318. DOI: https://doi.org/10.1016/j.ijhydene.2021.11.171 (. DOI: https://doi.org/10.1016/j.ijhydene.2021.11.171

Goh, S. W.; Buckley, A. N.; Lamb, R. N.; Skinner, W. M.; Pring, A.; Wang, H.; Fan, L. J.; Jang, L. Y.; Lai, L. J.; Yang, Y. W. Phys. Chem. Miner. 2006, 33, 98–105. DOI: https://doi.org/10.1007/s00269-006-0058-1. DOI: https://doi.org/10.1007/s00269-006-0058-1

Shombe, G. B.; Khan, M. D.; Zequine, C.; Zhao, C.; Gupta, R. K.; Revaprasadu, N. Sci. Rep. 2020, 10, 3260. DOI: https://doi.org/10.1038/s41598-020-59714-9. DOI: https://doi.org/10.1038/s41598-020-59714-9

Youn, J.-S.; Jeong, S.; Oh, I.; Park, S.; Mai, H. D.; Jeon, K.-J. Catalysts. 2020, 10, 1274. DOI: https://doi.org/10.3390/catal10111274. DOI: https://doi.org/10.3390/catal10111274

Yang, X.; Zhou, L.; Feng, A.; Tang, H.; Zhang, H.; Ding, Z.; Ma, Y.; Wu, M.; Jin, S.; Li, G. J. Mater. Res. 2014, 29, 935–941. DOI: https://doi.org/10.1557/jmr.2014.74. DOI: https://doi.org/10.1557/jmr.2014.74

Dai, Z.; Xue, L.; Zhang, Z.; Gao, Y.; Wang, J.; Gao, Q.; Chen, D. Energy Fuels. 2020, 34, 10178–10187. DOI: https://doi.org/10.1021/acs.energyfuels.0c01797. DOI: https://doi.org/10.1021/acs.energyfuels.0c01797

Shankar, A.; Elakkiya, R.; Maduraiveeran, G. New J. Chem. 2020, 44, 5071-5078. DOI: https://doi.org/10.1039/d0nj00192a. DOI: https://doi.org/10.1039/D0NJ00192A

Guan, B.; Li, Y.; Yin, B.; Liu, K.; Wang, D.; Zhang, H.; Cheng, C. Chem. Eng. J. 2016, 308, 1165–1173. DOI: https://doi.org/10.1016/j.cej.2016.10.016. DOI: https://doi.org/10.1016/j.cej.2016.10.016

Li, H.; Wang, J.; Chu, Q.; Wang, Z.; Zhang, F.; Wang, S. J. Power Sources. 2009, 190, 578–586. DOI: https://doi.org/10.1016/j.jpowsour.2009.01.052. DOI: https://doi.org/10.1016/j.jpowsour.2009.01.052

Li, Y.; Ye, K.; Cheng, K.; Yin, J.; Cao, D.; Wang, G. J .Power Sources. 2014, 274, 943–950. DOI:https://doi.org/10.1016/j.jpowsour.2014.10.156. DOI: https://doi.org/10.1016/j.jpowsour.2014.10.156

Zhu, B. T.; Wang, Z.; Ding, S.; Chen, J. S.; Lou, X. W. RSC Adv. 2011, 1, 397–400. DOI: https://doi.org/10.1039/c1ra00240f. DOI: https://doi.org/10.1039/c1ra00240f

Yu, L.; Yang, B.; Liu, Q.; Liu, J.; Wang, X.; Song, D.; Wang, J.; Jing, X. J. Electroanal. Chem. 2014, 739, 156–163. DOI: https://doi.org/10.1016/j.jelechem.2014.12.031. DOI: https://doi.org/10.1016/j.jelechem.2014.12.031

Tang, S.; Vongehr, S.; Wang, Y.; Cui, J.; Wang, X.; Meng, X. J. Mater. Chem. A Mater. 2014, 2, 3648–3660. DOI: https://doi.org/10.1039/c3ta14541g. DOI: https://doi.org/10.1039/C3TA14541G

Alegría, M.; Aliaga, Juan; Luis Ballesteros, Sotomayor-Torres, C.; González, G.; Top Catal. 2021, 64, 167–180. DOI: https://doi.org/10.1007/s11244-020-01360-6. DOI: https://doi.org/10.1007/s11244-020-01360-6

Panzeri, G.; Cristina, M.; Jagadeesh, M. S.; Bussetti, G.; Magagnin, L. Sci. Rep. 2020, 10, 18730. DOI: https://doi.org/10.1038/s41598-020-75700-7. DOI: https://doi.org/10.1038/s41598-020-75700-7

Das, C.; Singh, A. K.; Heo, Y.; Aggarwal, G.; Maurya, S. K.; Seidel, J.; Kavaipatti, B. J. Phys. Chem. C. 2018, 122. DOI: https://doi.org/10.1021/acs.jpcc.7b10103. DOI: https://doi.org/10.1021/acs.jpcc.7b10103

Li, X.; Jiang, Y.; Shi, Z.; Xu, Z. Chem. Mater. 2007, 19, 5424-5430. DOI: https://doi.org/10.1021/cm071180f. DOI: https://doi.org/10.1021/cm071180f

Chung, W. A.; Wu, C. J.; Hung, P. S.; Chou, S. C.; Guo, W. Q.; Wu, P. W. J Taiwan Inst. Chem. Eng. 2021, 119, 277–285. DOI: https://doi.org/10.1016/J.JTICE.2021.01.027. DOI: https://doi.org/10.1016/j.jtice.2021.01.027

Wan, C.; Jiao, Y.; Li, J. J. Mater. Chem. A Mater. 2017, 5, 17267-17278. DOI: https://doi.org/10.1039/c7ta04994c. DOI: https://doi.org/10.1039/C7TA04994C

Chen, L.; Zhang, Y.; Zhu, P.; Zhou, F.; Zeng, W.; Daniel Lu, D.; Sun, R.; Wong, C. Sci. Rep. 2015, 5, 9672. DOI: https://doi.org/10.1038/srep09672. DOI: https://doi.org/10.1038/srep09672

Ahmad, W. R. W.; Mamat, M. H.; Khusaimi, Z.; Ismail, A. S.; Rusop, M. Indonesian J. Electr. Eng. Comput. Sci. 2018, 13, 1079–1086. DOI: https://doi.org/10.11591/ijeecs.v13.i3.pp1079-1086. DOI: https://doi.org/10.11591/ijeecs.v13.i3.pp1079-1086

Shi, X.; Zhang, K.; Shin, K.; Moon, J. H.; Lee, T. W.; Park, J. H. Phys. Chem. Chem. Phys. 2013, 15. 11717-1722. DOI: https://doi.org/10.1039/c3cp50459j. DOI: https://doi.org/10.1039/c3cp50459j

Mao, A.; Han, G. Y.; Park, J. H. J. Mater. Chem. 2010, 20, 2247–2250. DOI: https://doi.org/10.1039/B921965J. DOI: https://doi.org/10.1039/b921965j

Qiu, W. T.; Huang, Y. C.; Wang, Z. L.; Xiao, S.; Ji, H. B.; Tong, Y. X. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica. Beijing University Press. 2017, 33, 80–102. DOI: https://doi.org/10.3866/PKU.WHXB201607293. DOI: https://doi.org/10.3866/PKU.WHXB201607293

Ahn, H.-J.; Yoon, K.-Y.; Kwak, M.-J.; Jang, J.-H. Angew. Chem., Int. Ed. Engl. 2016, 128, 10076–10080. DOI: https://doi.org/10.1002/ange.201603666 (. DOI: https://doi.org/10.1002/ange.201603666

Shinde, P. S.; Annamalai, A.; Kim, J. Y.; Choi, S. H.; Lee, J. S.; Jang, J. S. Fine- J. Phys. Chem. C. 2015, 119, 5281–5292. DOI: https://doi.org/10.1021/jp5100186. DOI: https://doi.org/10.1021/jp5100186

Smart, T. J.; Ping, Y. J. Phys. Condens. Matter. 2017, 29, 394006. DOI: https://doi.org/10.1088/1361-648X/aa7e3d. DOI: https://doi.org/10.1088/1361-648X/aa7e3d

Finger, L. W.; Hazen, R. M. J. Appl. Phys. 1980, 51, 5362–5367. DOI: https://doi.org/10.1063/1.327451. DOI: https://doi.org/10.1063/1.327451

Gilbert, B.; Frandsen, C.; Maxey, E. R.; Sherman, D. M. Phys. Rev. B Condens. Matter. Mater. Phys. 2009, 79, 035108. DOI: https://doi.org/10.1103/PhysRevB.79.035108. DOI: https://doi.org/10.1103/PhysRevB.79.035108

Coey, J. M. D.; Sawatzkyt, G. A. J. Phys. C. Solid State Phys. 1971, 4, 2386-2407. DOI: https://doi.org/10.1088/0022-3719/4/15/025. DOI: https://doi.org/10.1088/0022-3719/4/15/025

Cai, J.; Liu, H.; Liu, C.; Xie, Q.; Xu, L.; Li, H.; Wang, J.; Li, S. Appl Surf Sci. 2021, 568, 150606. DOI: https://doi.org/10.1016/j.apsusc.2021.150606. DOI: https://doi.org/10.1016/j.apsusc.2021.150606

Yi, S. S.; Wang, Z. Y.; Li, H. M.; Zafar, Z.; Zhang, Z. T.; Zhang, L. Y.; Chen, D. L.; Liu, Z. Y.; Yue, X. Z. Appl. Catal. B. 2021, 283, 119649. DOI: https://doi.org/10.1016/j.apcatb.2020.119649. DOI: https://doi.org/10.1016/j.apcatb.2020.119649

Tilley, S. D.; Cornuz, M.; Sivula, K.; Grätzel, M. Angew. Chem., Int. Ed. Engl. 2010, 49, 6405–6408. DOI: https://doi.org/10.1002/anie.201003110. DOI: https://doi.org/10.1002/anie.201003110

Mir, J. F.; Rubab, S.; Shah, M. A. Chem. Phys. Lett. 2020, 741, 137088. DOI: https://doi.org/10.1016/j.cplett.2020.137088. DOI: https://doi.org/10.1016/j.cplett.2020.137088

Mohapatra, S. K.; John, S. E.; Banerjee, S.; Misra, M. Chem. Mater. 2009, 21, 3048–3055. DOI: https://doi.org/10.1021/cm8030208. DOI: https://doi.org/10.1021/cm8030208

Sivula, K.; Zboril, R.; Le Formal, F.; Robert, R.; Weidenkaff, A.; Tucek, J.; Frydrych, J.; Grätzel, M. J. Am. Chem. Soc. 2010, 132, 7436–7444. DOI: https://doi.org/10.1021/ja101564f. DOI: https://doi.org/10.1021/ja101564f

Maabong, K.; Machatine, A. G. J.; Mwankemwa, B. S.; Braun, A.; Bora, D. K.; Toth, R.; Diale, M. Phys. B Condens. Matter. 2018, 535, 67–71. DOI: https://doi.org/10.1016/j.physb.2017.06.054. DOI: https://doi.org/10.1016/j.physb.2017.06.054

Yilmaz, C.; Unal, U. RSC Adv. 2015, 5, 16082–16088. DOI: https://doi.org/10.1039/c4ra16028b. DOI: https://doi.org/10.1039/C4RA16028B

Shinde, P. S.; Go, G. H.; Lee, W. J. J. Mater. Chem. 2012, 22, 10469–10471. DOI: https://doi.org/10.1039/c2jm31254a. DOI: https://doi.org/10.1039/c2jm31254a

Saremi-Yarahmadi, S.; Vaidhyanathan, B.; Wijayantha, K. G. U. Int. J. Hydrogen Energy. 2010, 35, 10155–10165. DOI: https://doi.org/10.1016/j.ijhydene.2010.08.004. DOI: https://doi.org/10.1016/j.ijhydene.2010.08.004

Phuan, Y. W.; Chong, M. N.; Zhu, T.; Yong, S. T.; Chan, E. S. Mater. Res. Bull. 2015, 69, 71–77. DOI: https://doi.org/10.1016/j.materresbull.2014.12.059. DOI: https://doi.org/10.1016/j.materresbull.2014.12.059

Ling, Y.; Wang, G.; Wheeler, D. A.; Zhang, J. Z.; Li, Y. Nano Lett. 2011, 11, 2119–2125. DOI: https://doi.org/10.1021/nl200708y. DOI: https://doi.org/10.1021/nl200708y

Roose, B.; Pathak, S.; Steiner, U. Chem. Soc. Rev. 2015, 44, 8326-8349. DOI: https://doi.org/10.1039/c5cs00352k. DOI: https://doi.org/10.1039/C5CS00352K

Han, X.; Shao, G. J. Phys. Chem. C. 2011, 115, 8274-8282. DOI: https://doi.org/10.1021/jp1106586. DOI: https://doi.org/10.1021/jp1106586

Yang, X.; Wu, X.; Li, J.; Liu, Y. TiO 2-Au RSC Adv. 2019, 9, 29097-29104. DOI: bhttps://doi.org/10.1039/c9ra05113a. DOI: https://doi.org/10.1039/C9RA05113A

Yew, R.; Karuturi, S. K.; Liu, J.; Tan, H. H.; Wu, Y.; Jagadish, C. Opt. Express. 2019, 27, 761-773. DOI: https://doi.org/10.1364/oe.27.000761. DOI: https://doi.org/10.1364/OE.27.000761

Spathis, P.; Karagiannidou, E.; Magoula-a3, A.-E. Stud. Consev. 2003, 48, 57–64. DOI: https://doi.org/10.1179/sic.2003.48.1.57. DOI: https://doi.org/10.1179/sic.2003.48.1.57

Qian, Y.; Du, J.; Kang, D. J. Microporous Mesoporous Mater. 2019, 273, 148–155. DOI: https://doi.org/10.1016/J.MICROMESO.2018.06.056. DOI: https://doi.org/10.1016/j.micromeso.2018.06.056

He, X.; Yang, C. P.; Zhang, G. L.; Shi, D. W.; Huang, Q. A.; Xiao, H. B.; Liu, Y.; Xiong, R. Mater. Des. 2016, 106, 74–80. DOI: https://doi.org/10.1016/J.MATDES.2016.05.025. DOI: https://doi.org/10.1016/j.matdes.2016.05.025

Ramadoss, A.; Kim, S. J. J. Alloys Compd. 2013, 561, 262–267. DOI: https://doi.org/10.1016/J.JALLCOM.2013.02.015. DOI: https://doi.org/10.1016/j.jallcom.2013.02.015

Selvakumar, M.; Bhat, D. K. Appl. Surf. Sci. 2012, 263, 236–241. DOI: https://doi.org/10.1016/J.APSUSC.2012.09.036. DOI: https://doi.org/10.1016/j.apsusc.2012.09.036

Hamed S. H. K. M. S. P.‬ Thesis. Sudan University of Science & Technology (SUST), Faculty of Science-Department of Physics, Sep 2017. https://api.semanticscholar.org/CorpusID:55193279, accessed September 2019‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬.‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬

El-Kemary, M.; Nagy, N.; El-Mehasseb, I. Mater. Sci. Semicond. Process. 2013, 16, 1747–1752. DOI: https://doi.org/10.1016/J.MSSP.2013.05.018. DOI: https://doi.org/10.1016/j.mssp.2013.05.018

Koussi-Daoud, S.; Majerus, O.; Schaming, D.; Pauporté, T. Electrochim. Acta. 2016, 219, 638–646. DOI: https://doi.org/10.1016/j.electacta.2016.10.074. DOI: https://doi.org/10.1016/j.electacta.2016.10.074

Marrani, A. G.; Novelli, V.; Sheehan, S.; Dowling, D. P.; Dini, D. ACS Appl. Mater. Interfaces. 2014, 6, 143-152. DOI: https://doi.org/10.1021/am403671h. DOI: https://doi.org/10.1021/am403671h

Belousov, A. L.; Patrusheva, T. N.; Karacharov, A. A.; Ivanenko, A. A.; Kirik, S. D.; Khol’kin, A. I. Theor. Found. Chem. Eng. 2020, 54, 699–705. DOI: https://doi.org/10.1134/S0040579520040041. DOI: https://doi.org/10.1134/S0040579520040041

Diao, C. C.; Huang, C. Y.; Yang, C. F.; Wu, C. C. Nanomaterials. 2020, 10, 636. DOI: https://doi.org/10.3390/nano10040636. DOI: https://doi.org/10.3390/nano10040636

Ma, J.; Yang, J.; Jiao, L.; Mao, Y.; Wang, T.; Duan, X.; Lian, J.; Zheng, W. NiO CrystEngComm. 2012, 14, 453–459. DOI: https://doi.org/10.1039/c1ce05567d. DOI: https://doi.org/10.1039/C1CE05567D

Tamirat, A. G.; Rick, J.; Dubale, A. A.; Su, W. N.; Hwang, B. J. Nanoscale Horiz. Royal Soc. Chem. 2016, 243–267. DOI: https://doi.org/10.1039/c5nh00098j. DOI: https://doi.org/10.1039/C5NH00098J

Beranek, R.; Kisch, H. Electrochem. Commun. 2007, 9, 761–766. DOI: https://doi.org/10.1016/j.elecom.2006.11.011. DOI: https://doi.org/10.1016/j.elecom.2006.11.011

Gai, Y.; Li, J.; Li, S. S.; Xia, J. B.; Wei, S. H. Phys. Rev. Lett. 2009, 102, 036402. DOI: https://doi.org/10.1103/PhysRevLett.102.036402. DOI: https://doi.org/10.1103/PhysRevLett.102.036402

Radecka, M.; Rekas, M.; Trenczek-Zajac, A.; Zakrzewska, K. J. Power Sources. 2008, 181, 46–55. DOI: https://doi.org/10.1016/j.jpowsour.2007.10.082. DOI: https://doi.org/10.1016/j.jpowsour.2007.10.082

Sasi, B.; Gopchandran, K. G. Sol. Energy Mater. Sol. Cells. 2007, 91, 1505–1509. DOI: https://doi.org/10.1016/j.solmat.2007.04.019. DOI: https://doi.org/10.1016/j.solmat.2007.04.019

Sahoo, P.; Sharma, A.; Padhan, S.; Thangavel, R. Superlattices Microstruct. 2021, 159, 107050. DOI: https://doi.org/10.1016/j.spmi.2021.107050. DOI: https://doi.org/10.1016/j.spmi.2021.107050

Yoo, J.; Kwak, I. H.; Kwon, I. S.; Park, K.; Kim, D.; Lee, J. H.; Lim, S. A.; Cha, E. H.; Park, J. J. Mater. Chem. C Mater. 2020, 8, 3240–3247. DOI: https://doi.org/10.1039/c9tc05703j. DOI: https://doi.org/10.1039/C9TC05703J

Katsounaros, I.; Cherevko, S.; Zeradjanin, A. R.; Mayrhofer, K. J. J. Angew. Chem., Int. Ed. Engl. 2014, 53, 102–121. DOI: https://doi.org/10.1002/anie.201306588. DOI: https://doi.org/10.1002/anie.201306588

Krol, R. Van de; Grätzel, M. Electronic Materials: Science & Technology. In: Photoelectrochemical Hydrogen Production; New York: USA. 2012. DOI: https://doi.org/10.1007/978-1-4614-1380-6

Hellman, A.; Wang, B. Inorganics. 2017, 5, 2-27. DOI: https://doi.org/10.3390/inorganics5020037. DOI: https://doi.org/10.3390/inorganics5020037

Iandolo, B.; Wickman, B.; Zorić, I.; Hellman, A. J. Mater. Chem. A Mater. 2015, 3, 16896-16912. DOI: https://doi.org/10.1039/c5ta03362d. DOI: https://doi.org/10.1039/C5TA03362D

Pan, J.; Fu, Y.; Xiao, G.; Niu, J.; Cao, J.; Wang, J.; Zheng, Y.; Li, C. J. Environ. Chem. Eng. 2022, 10, 108587. DOI: https://doi.org/10.1016/j.jece.2022.108587. DOI: https://doi.org/10.1016/j.jece.2022.108587

Ma, L.; Xu, J.; Liu, Z.; Liu, Y.; Liu, X.; Xu, S. J. Mater. Sci. 2022, 57, 6734–6748. DOI: https://doi.org/10.1007/s10853-022-07064-4. DOI: https://doi.org/10.1007/s10853-022-07064-4

Yoon, S.; Kim, M.; Kim, I. S.; Lim, J. H.; Yoo, B. J. Mater. Chem. A Mater. 2014, 2, 11621–11627. DOI: https://doi.org/10.1039/c4ta00616j. DOI: https://doi.org/10.1039/C4TA00616J

Hsu, Y. K.; Yu, C. H.; Chen, Y. C.; Lin, Y. G. Electrochim. Acta. 2013, 105, 62–68. DOI: https://doi.org/10.1016/j.electacta.2013.05.003 . DOI: https://doi.org/10.1016/j.electacta.2013.05.003

Yang, Y.; Xu, D.; Wu, Q.; Diao, P. Sci. Rep. 2016, 6, 35158. DOI: https://doi.org/10.1038/srep35158. DOI: https://doi.org/10.1038/srep35158

Grez, P.; Henríquez, R.; Muñoz, E.; Rojas, C.; Moreno, S.; Sessarego, G.; Heyser, C.; Celedón, C.; Schrebler, R. Int. J. Electrochem. Sci. 2016, 14, 5646-5653. DOI: https://doi.org/10.20964/2019.06.03. DOI: https://doi.org/10.20964/2019.06.03

Nian, J. N.; Hu, C. C.; Teng, H. Int. J. Hydrogen Energy. 2008, 33, 2897–2903. DOI: https://doi.org/10.1016/j.ijhydene.2008.03.052. DOI: https://doi.org/10.1016/j.ijhydene.2008.03.052

×

Downloads

Additional Files

Published

2023-12-09

Issue

Section

Special Issue. Tribute to the electrochemical emeritus researchers of SNI
x

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...