Carbon Paste Electrodes Obtained from Organic Waste After a Biodrying Process and Validation in an Electro-Fenton System Towards Alternative Valorization
DOI:
https://doi.org/10.29356/jmcs.v67i4.1962Keywords:
Activated carbon, agroindustrial waste, biodrying, carbon paste electrode, electro-Fenton, oxygen reduction reactionAbstract
Abstract. The transformation of agricultural waste into activated carbon represents an attractive approach as new and alternative source, but also as a reduction of pollution associated to the degradation of precursors.
The organic residues sugarcane (Saccharum officinarum) bagasse-shell, orange (Citrus sinensis) peel-bagasse, and eucalyptus (Eucalyptus globulus) leaves, obtained from a biodrying process were transformed into activated carbons using phosphoric acid as activating agent. The resulting materials were physicochemically characterized and after that, carbonaceous electrodes were prepared to test the feasibility of using them in a discoloration electro-Fenton wastewater treatment process. Orange peel-bagasse biodried precursor transformed into activated carbon showed the highest efficiency when used as the modifier in a carbon paste electrode due to its highest porosity, electroactive area (24.9x10-2 cm2), and roughness (1.21 a.u.), also to its chemical affinity for anionic molecules. These properties, in addition to the capability of electro-sorb iron ions on the surface during the Fenton reaction, allowed a 44 % methyl orange discoloration efficiency. Sugarcane bagasse-peel and eucalyptus leaves biodried residues were also evaluated with efficiencies under 30 %, mainly attributed to intrinsic composition of the precursor materials.
Resumen. La transformación de los residuos agrícolas en carbón activado representa un enfoque atractivo y novedoso, además de que representa una alternativa a la reducción de la contaminación asociada a la degradación de residuos orgánicos.
Los residuos orgánicos de bagazo de caña de azúcar (Saccharum officinarum), bagazo y cáscara de naranja (Citrus sinensis), y hojas de eucalipto (Eucalyptus globulus), que fueron obtenidos de un proceso de biosecado, se transformaron en carbón activado utilizando ácido fosfórico como agente activante. Los materiales resultantes se caracterizaron fisicoquímicamente y después de eso, se prepararon electrodos de pasta de carbón modificados con estos materiales, para estudiar la viabilidad de utilizarlos en un proceso de tratamiento de aguas residuales mediante electro-Fenton. El precursor biosecado de bagazo y cáscara de naranja transformado en carbón activado mostró la mayor eficiencia cuando se usó como modificador en un electrodo de pasta de carbón, debido a su mayor porosidad, área electroactiva (24.9x10-2 cm2) y rugosidad (1.21), también debido a su mayor afinidad química por moléculas aniónicas. Estas propiedades, aunadas a la capacidad de electro-sorber iones de hierro en la superficie durante la reacción de Fenton, permitieron una eficiencia de decoloración del naranja de metilo del 44 %. También se evaluaron residuos biosecados de bagazo de caña de azúcar y hojas de eucalipto, con eficiencias inferiores al 30 %, atribuidas principalmente a la composición intrínseca de los materiales precursores.
Downloads
References
Mata, T. M.; Martins, A. A.; Caetano, N. S. Bioresour. Technol. 2018, 247, 1077–1084. DOI: https://doi.org/10.1016/j.biortech.2017.09.106. DOI: https://doi.org/10.1016/j.biortech.2017.09.106
Ballesteros, L. F.; Teixeira, J. A.; Mussatto, S. I. Food Bioproc. Tech. 2014, 7, 3493–3503. DOI: https://doi.org/10.1007/s11947-014-1349-z. DOI: https://doi.org/10.1007/s11947-014-1349-z
Colomer-Mendoza, F. J.; Robles-Martinez, F.; Herrera-Prats, L. Environ. Dev. Sustain. 2012, 14, 1013–1026. DOI: https://doi.org/10.1007/s10668-012-9369-1. DOI: https://doi.org/10.1007/s10668-012-9369-1
Gonçalves, M.; Guerreiro, M. C.; Ramos, P. H. Water Sci. Technol. 2013, 68, 1085–1090. DOI: https://doi.org/10.2166/wst.2013.349. DOI: https://doi.org/10.2166/wst.2013.349
Sahu, J. N.; Acharya, J.; Meikap, B. C. Bioresour. Technol. 2010, 101, 1974–1982. DOI: https://doi.org/10.1016/j.biortech.2009.10.031. DOI: https://doi.org/10.1016/j.biortech.2009.10.031
Yang, J.; Qiu, K. J. Chem. Eng. 2011, 167, 148–154. DOI: https://doi.org/10.1016/j.cej.2010.12.013. DOI: https://doi.org/10.1016/j.cej.2010.12.013
Biscoe, J.; Warren, B. E. J. Appl. Phys. 1942, 13, 364–371. DOI: https://doi.org/10.1063/1.1714879. DOI: https://doi.org/10.1063/1.1714879
Lillo-Ródenas, M. A.; Carratalá-Abril, J.; Cazorla-Amorós, D.; Linares-Solano, A. Fuel Process. Technol. 2002, 77–78, 331–336. DOI: https://doi.org/10.1016/S0378-3820(02)00073-5. DOI: https://doi.org/10.1016/S0378-3820(02)00073-5
Figueiredo, J. L.; Pereira, M. F. R.; Freitas, M. M. A.; Órfão, J. J. M. Carbon. 1999, 37, 1379–1389. DOI: https://doi.org/10.1016/S0008-6223(98)00333-9. DOI: https://doi.org/10.1016/S0008-6223(98)00333-9
Reis, R. M.; Beati, A. A.; Rocha, R. S. Ind. Eng. Chem. 2012, 51, 649–654. DOI: https://doi.org/10.1021/ie201317u. DOI: https://doi.org/10.1021/ie201317u
Paz, E. C.; Aveiro, L. R.; Pinheiro, V. S. Appl. Catal. B. 2018, 232, 436–445. DOI: https://doi.org/10.1016/j.apcatb.2018.03.082. DOI: https://doi.org/10.1016/j.apcatb.2018.03.082
Robles, I.; Moreno-Rubio, G.; García-Espinoza, J. D.; Martínez-Sánchez, C.; Rodríguez, A.; Meas-Vong, Y.; Rodríguez-Valadez, R.; Godínez, L. J. Environ. Chem. Eng. 2020, 8, 5, 104414. DOI: https://doi.org/10.1016/j.jece.2020.104414. DOI: https://doi.org/10.1016/j.jece.2020.104414
Zhang, L. Y.; Wang, M. R.; Lai, Y. Q.; Li, X. Y. J. Power Sources. 2017, 359, 71–79. DOI: https://doi.org/10.1016/j.jpowsour.2017.05.056. DOI: https://doi.org/10.1016/j.jpowsour.2017.05.056
Ortiz-Martínez, A. K.; Godínez, L. A.; Martínez-Sánchez, C.; García-Espinoza, J. D.; Robles, I. Electrochim. Acta. 2021, 390, 138861. DOI: https://doi.org/10.1016/j.electacta.2021.138861. DOI: https://doi.org/10.1016/j.electacta.2021.138861
Dhelipan, M; Arunchander, A.; Sahu, A. K.; Kalpana, D. J. Saudi Chem. Soc. 2017, 21, 487–494. DOI: https://doi.org/10.1016/j.jscs.2016.12.003. DOI: https://doi.org/10.1016/j.jscs.2016.12.003
Chung, D. Y.; Son, Y. J.; Yoo, J. M. ACS Appl. Mater. Interfaces 2017, 9, 41303–41313. DOI: https://doi.org/10.1021/acsami.7b13799. DOI: https://doi.org/10.1021/acsami.7b13799
Akula, S.; Sahu, A. K. J. Electrochem. Soc. 2019, 166, F93–F101. DOI: https://doi.org/10.1149/2.0441902jes. DOI: https://doi.org/10.1149/2.0441902jes
Srinu, A.; Peera, S. G.; Parthiban, V. ChemistrySelect. 2018, 3, 690–702. DOI: https://doi.org/10.1002/slct.201702042. DOI: https://doi.org/10.1002/slct.201702042
Tovar, A. K.; Godínez, L. A.; Espejel, F.; Ramírez-Zamora, R. M.; Robles, I. Waste Manag. 2019, 85, 202–213. DOI: https://doi.org/10.1016/j.wasman.2018.12.029. DOI: https://doi.org/10.1016/j.wasman.2018.12.029
Giraldo, S.; Robles. I.; Ramirez, A.; Florez, E.; Acelas, N. SN Appl. Sci. 2020, 2, 1029. DOI: https://doi.org/10.1007/s42452-020-2736-x. DOI: https://doi.org/10.1007/s42452-020-2736-x
Oickle, A. M.; Tarasuk, A. C.; Goertzen, S. L. Carbon. 2009, 48, 1–9. DOI: https://doi.org/10.1016/j.carbon.2009.11.050. DOI: https://doi.org/10.1016/j.carbon.2009.11.050
Fulazzaky, M. A.; Environ. Nanotechnol. 2019, 12, 1100230. DOI: https://doi.org/10.1016/j.enmm.2019.100230. DOI: https://doi.org/10.1016/j.enmm.2019.100230
Di, L.; Kerns, E.H. in: Drug-Like Properties. Second Ed., Academic Press, 2016, 307–312. DOI: https://doi.org/10.1016/C2013-0-18378-X. DOI: https://doi.org/10.1016/B978-0-12-801076-1.00024-1
Adan-Mas, A.; Alcaraz, L.; Arévalo-Cid, P. Waste Manag. 2021, 120, 280–289. DOI: https://doi.org/10.1016/j.wasman.2020.11.043. DOI: https://doi.org/10.1016/j.wasman.2020.11.043
Švancara, I.; Schachl, K. Chem. Listy. 1999, 93, 498–499.
O’Sullivan, D. W.; Tyree, M. Int. J. Chem. Kinet. 2007, 39, 457–461. DOI: https://doi.org/10.1002/kin.20259. DOI: https://doi.org/10.1002/kin.20259
Nyamful, A.; Nyogbe, E. K.; Mohammed, L. Ghana J. Sci. 2021, 61, 91–104. https://doi.org/10.4314/gjs.v61i2.9. DOI: https://doi.org/10.4314/gjs.v61i2.9
Vela-Carrillo, A.Z.; Martínez, R. J.; Godínez, L. A.; Pérez-Bueno, J. J.; Espejel Ayala, F.; Robles, I. Biomass Convers. Biorefin. 2022. DOI: https://doi.org/10.1007/s13399-022-02367-7. DOI: https://doi.org/10.1007/s13399-022-02367-7
Paul, E.; Vannke, M. A. Carbon. 1991, 31, 721–730.
Chen, N.; Pilla, S. JCOMC. 2022, 7, 100225. DOI: https://doi.org/10.1016/j.jcomc.2021.100225. DOI: https://doi.org/10.1016/j.jcomc.2021.100225
Gupta, A., Mohanty, A. K.; Misra, M. JCOMC. 2022, 154, 106759. DOI: https://doi.org/10.1016/j.compositesa.2021.106759. DOI: https://doi.org/10.1016/j.compositesa.2021.106759
Moraes, A.; Assumpção, M. H. M. T.; Simões, F. C. Electrocatalysis. 2016, 7, 60–69. DOI: https://doi.org/10.1007/s12678-015-0279-5. DOI: https://doi.org/10.1007/s12678-015-0279-5
Assumpção, M. H. M. T.; De Souza, R. F. B.; Rascio, D. C. Carbon. 2011, 49, 2842–2851. DOI: https://doi.org/10.1016/j.carbon.2011.03.014. DOI: https://doi.org/10.1016/j.carbon.2011.03.014
Lu, Z.; Chen, G.; Siahrostami, S. Nat. Catal. 2018, 1, 156–162. DOI: https://doi.org/10.1038/s41929-017-0017-x. DOI: https://doi.org/10.1038/s41929-017-0017-x
Hashemian, S.; Salari, K.; Yazdi, Z. A. J. Ind. Eng. Chem. 2014, 20, 1892–1900. DOI: https://doi.org/10.1016/j.jiec.2013.09.009. DOI: https://doi.org/10.1016/j.jiec.2013.09.009
Fernandez, M. E.; Nunell, G. V.; Bonelli, P. R.; Cukierman, A. L. Ind. Crops Prod. 2014, 62, 437–445. DOI: https://doi.org/10.1016/j.indcrop.2014.09.015. DOI: https://doi.org/10.1016/j.indcrop.2014.09.015
Cummings, E. A.; Eggins. B. R. Analyst. 1998, 123, 1975–1980. DOI: https://doi.org/10.1039/a804021d. DOI: https://doi.org/10.1039/a804021d
Estrada-Aldrete, J.; Hernández-López, J. M.; García-León, A. M.; Prealta-Hernández, J. M.; Cerino-Cordeva, F. J. Electroanal. Chem. 2020, 857, 113663. DOI: https://doi.org/10.1016/j.jelechem.2019.113663. DOI: https://doi.org/10.1016/j.jelechem.2019.113663
Bard, A.J.; Faulkner, in: L.R. Fundamentals and applications, 2nd Edition, Ed., John Wiley & Sons, Incorporated, United Estates of America, 2000, 590-594.
Švancara, I.; Hvízdalová, M.; Vytřas, K. Electroanalysis. 1996, 8, 61–65. DOI: https://doi.org/10.1002/elan.1140080113. DOI: https://doi.org/10.1002/elan.1140080113
Svancara, I.; Kalcher, K.; Walcarius, A.; Vytras, K. CRC Press. 2012. DOI: https://doi.org/10.1201/b11478. DOI: https://doi.org/10.1201/b11478
Chmiola, J.; Yushin, G.; Dash, R.; Gogotsi, Y. J. Power Sources. 2006, 158, 765–772. DOI: https://doi.org/10.1016/j.jpowsour.2005.09.008. DOI: https://doi.org/10.1016/j.jpowsour.2005.09.008
Frackowiak, E. Phys. Chem. Chem. Phys. 2007, 9, 1774–1785. DOI: https://doi.org/10.1039/b618139m. DOI: https://doi.org/10.1039/b618139m
Kötz, R., Carlen, M. Electrochim. Acta. 2000, 45, 2483–2498. DOI: https://doi.org/10.1016/S0013-4686(00)00354-6. DOI: https://doi.org/10.1016/S0013-4686(00)00354-6
Rufford, T. E; Hulicova-Jurcakova, D.; Zhu, Z. J., in: Green carbon materials advances and applications, Ed. Pan Stanford Publishing, CRC Press Taylor & Francis Group, 2014, 93-110. DOI: https://doi.org/10.1201/b15651
He, Y.; Zhang, Y.; Li, X. Electrochim. Acta. 2018, 282, 618–625. DOI: https://doi.org/10.1016/j.electacta.2018.06.103. DOI: https://doi.org/10.1016/j.electacta.2018.06.103


Downloads
Published
Issue
Section
License
Copyright (c) 2023 A.Z. Vela-Carrillo , Luis A. Godínez, J. D. García-Espinoza , R.J. Martínez, M.O. Franco-Hernández, A.B. Piña-Guzman , M.C. Santos , F. Robles-Martínez , I. Robles

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
