Fe3O4@NH2@Oxalic Acid: A Convenient Catalyst for Synthesis of Pyrrolinone Derivatives

Authors

  • Seyran Esmaeilzadeh Islamic Azad University
  • Davood Setamdideh Islamic Azad University https://orcid.org/0000-0003-4608-9322
  • Fatemeh Ghanbary Islamic Azad University

DOI:

https://doi.org/10.29356/jmcs.v68i2.1910

Keywords:

ethylenediamine, amino-functionalization, nano-magnetite, pyrrolinones, green chemistry

Abstract

Abstract. In this context, an amine-functionalized magnetite nanoparticle was synthesized from FeCl3•6H2O and 1, 2-ethylenediamine at 110 °C in ethylene glycol within 6 hours. Then, the obtained corresponding Fe3O4@NH2 was used for the preparation of Fe3O4@NH2@oxalic acid as organoacid-magnetic nanoparticles under ultrasonic irradiation at 60 °C within 4 hours. Its chemical structure was characterized by FT-IR, XRD, SEM, VSM, and EDAX spectra. The Fe3O4@NH2@oxalic acid nanoparticles were successfully used for the synthesis of pyrrolinones derivatives in excellent yields of the products (90-95 %) within 6-10 hours at room temperature in ethanol.

 

Resumen. Se sintetizó una nanopartícula de magnetita funcionalizada con aminas a partir de FeCl3•6H2O y 1,2-etilendiamina a 110 °C en etilenglicol durante 6 horas. Posteriormente, el Fe3O4@NH2 que se obtuvo se utilizó para la preparación de nanopartículas magnéticas organoácidas de Fe3O4@NH2@ácido oxálico por irradiación ultrasónica a 60 °C durante 4 horas. Su estructura química se caracterizó por sus espectros de FT-IR, XRD, SEM, VSM, y EDAX. Las nanopartículas de Fe3O4@NH2@ácido oxálico se utilizaron existosamente para sintetizar derivados de pirrolinonas con rendimientos excelentes (90-95%), en 6-10 horas de reacción a temperatura ambiente en etanol.

Downloads

Download data is not yet available.

Author Biographies

Seyran Esmaeilzadeh, Islamic Azad University

Department of Chemistry, Mahabad Branch

Davood Setamdideh, Islamic Azad University

Department of Chemistry

Fatemeh Ghanbary, Islamic Azad University

Department of Chemistry

References

Wang, L.; Bao, J.; Wang, L.; Zhang, F.; Li, Y. Chem. Eur. J. 2012, 12, 6341- 6343. DOI: https://doi.org/10.1002/chem.200501334. DOI: https://doi.org/10.1002/chem.200501334

Hana, J.; Wang, L.; Wang, Y.; Dong, J.; Tang, X.; Ni, L.; Wang, L. Biochem. Eng. J. 2018, 130, 90-98. DOI: https://doi.org/10.1016/j.bej.2017.11.008. DOI: https://doi.org/10.1016/j.bej.2017.11.008

Liua, Y.; Lib, L.; Liub, S.; Xiea, C.; Yub, S. J. Mol. Catal. A. Chem. 2016, 424, 269-275. DOI: https://doi.org/10.1016/j.molcata.2016.09.007. DOI: https://doi.org/10.1016/j.molcata.2016.09.007

Ma, M.; Zhang, Q.; Yin, D.; Dou, J.; Zhang, H.; Xu, H. Catal. Commun. 2012, 17, 168-172. DOI: https://doi.org/10.1016/j.catcom.2011.10.015. DOI: https://doi.org/10.1016/j.catcom.2011.10.015

Naeimi, H.; Ansarian, Z. J. Taiwan Inst. Chem. Eng. 2018, 85, 265-272. DOI: https://doi.org/10.1016/j.jtice.2018.01.047. DOI: https://doi.org/10.1016/j.jtice.2018.01.047

Han, Q.; Wu, X.; Cao, Y.; Zhang, H.; Zhao, Y.; Kang, X.; Zhu, H. Separations 2021, 8, 196 https://doi.org/10.3390/separations8110196. DOI: https://doi.org/10.3390/separations8110196

Zhang, F.; Jin, J.; Zhong, X.; Li, S.; Niu, J.; Li, R.; Ma, J. Green Chem. 2011, 13, 1238-1243. DOI: https://doi.org/10.1039/C0GC00854K. DOI: https://doi.org/10.1039/c0gc00854k

Xu, Y. Y.; Zhou, M.; Geng, H. J.; Hao, J. J.; Ou, Q. Q. Appl. Surf. Sci. 2012, 258, 3897-3902. DOI: https://doi.org/10.1016/j.apsusc.2011.12.054 DOI: https://doi.org/10.1016/j.apsusc.2011.12.054

Wang, X.; Almoallim, H. S.; Cui, Q.; Alharbi, S. A.; Yang, H. Int. J. Biol. Macromol 2021, 171, 198-207. DOI: https://doi.org/10.1016/j.ijbiomac.2020.12.037. DOI: https://doi.org/10.1016/j.ijbiomac.2020.12.037

Sharma, K.; Dutta, S.; Sharma, S. Dalton Trans. 2015, 44, 1303-1316. DOI: https://doi.org/10.1039/C4DT03236E. DOI: https://doi.org/10.1039/C4DT03236E

Snoussi, Y.; Bastide, S.; Abderrabba, M.; Chehimi, M. M. Ultrason. Sonochem. 2018, 41, 551-561. DOI: https://doi.org/10.1016/j.ultsonch.2017.10.021. DOI: https://doi.org/10.1016/j.ultsonch.2017.10.021

Zhang, Z.; Zhu, Y.; Dai, R.; Zhang, Y.; Wang, H.; Li, J. Photodiagnosis Photodyn. Ther. 2018, 23, 50-54. DOI: https://doi.org/10.1016/j.pdpdt.2018.06.002. DOI: https://doi.org/10.1016/j.pdpdt.2018.06.002

Gemeay, A. H.; Keshta, B. E.; El-Sharkawy, R. G.; Zaki, A. B. Environ. Sci. Pollut. Res. 2020, 27, 32341-32358. DOI: https://doi.org/10.1007/s11356-019-06530-y. DOI: https://doi.org/10.1007/s11356-019-06530-y

Dwoskin, P.; Teng, L.; Buxton, S. T.; Crooks, P. A. J. Pharmacol. Exp. Ther. 1999, 288, 905-911. DOI:https://jpet.aspetjournals.org/content/288/3/905.short.

Singh, P.; Dimitriou, V.; Mahajan, R. P.; Crossley, A. W. Br. J. Anaesth. 1993, 71, 685-688. DOI: https://doi.org/10.1093/bja/71.5.685. DOI: https://doi.org/10.1093/bja/71.5.685

Patsalos, P. N. Epilepsia 2005, 46, 140-148. DOI: https://doi.org/10.1111/j.1528-1167.2005.00326.x. DOI: https://doi.org/10.1111/j.1528-1167.2005.00326.x

Lampe, J. W.; Chou, Y.; Hanna, R. G.; Di Meo, S. V.; Erhardt, P. W.; Hagedorn, A. A.; Ingebretsen, W. R.; Cantor, E. J. Med. Chem. 1993, 36, 1041-1047. DOI: https://doi.org/10.1021/jm00060a012. DOI: https://doi.org/10.1021/jm00060a012

Omura, S.; Fujimoto, T.; Otoguro, K.; Matsuzaki, K.; Moriguchi, R.; Tanaka, H.; Sasaki, Y. J. Antibiot. 1991, 44, 113-116. DOI: https://doi.org/10.7164/antibiotics.44.113. DOI: https://doi.org/10.7164/antibiotics.44.113

Feling, R. H.; Buchanan, G. O.; Mincer, T. J.; Kauffman, C. A.; Jensen, P. R.; Fenical, W. Angew. Chem. Int. Ed. 2003, 42, 355-357. DOI: https://doi.org/10.1002/anie.200390115. DOI: https://doi.org/10.1002/anie.200390115

Asami, Y.; Kakeya, H.; Onose, R.; Yoshida, A.; Matsuzaki, H.; Osada, H. Org. Lett. 2002, 4, 2845-2848. DOI: https://doi.org/10.1021/ol020104+. DOI: https://doi.org/10.1021/ol020104+

Fischer, R.; Lehr, S.; Drewes, M. W.; Feucht, D.; Malsam, O.; Bojack, G.; Arnold, C.; Auler, T.; Hills, M.; Kehne, H. German Patent DE 102004053191 2006.

Franco, M. S. F.; Casagrande, G. A.; Raminelli, C.; Moura, S.; Rossatto, M.; Quina, F. H.; Pereira, C. M. P.; Flores, A. F. C.; Pizzuti, L. Synth. Commun. 2015, 45, 692-701. DOI: https://doi.org/10.1080/00397911.2014.978504. DOI: https://doi.org/10.1080/00397911.2014.978504

Andana, M.; Hashimoto, S. I. Tetrahedron Lett. 1998, 39, 79-82. DOI: https://doi.org/10.1016/S0040-4039(97)10493-2. DOI: https://doi.org/10.1016/S0040-4039(97)10493-2

Choi, D. R.; Lee, K. Y.; Chung, Y. S.; Joo, J. E.; Kim, Y. H.; Oh, Ch. Y.; Lee, Y. S.; Ham, W. H. Arch. Pharm. Res. 2005, 28, 151-158. DOI: https://doi.org/10.1007/bf02977706. DOI: https://doi.org/10.1007/BF02977706

Burgess, L. E.; Meyers, A. I.; J. Org. Chem. 1992, 57, 1656-1662. DOI: https://doi.org/10.1021/jo00032a012. DOI: https://doi.org/10.1021/jo00032a012

Overman, L. E.; Remarchuk, T. P.; J. Am. Chem. Soc. 2002, 124, 12-13. DOI: https://doi.org/10.1021/ja017198n. DOI: https://doi.org/10.1021/ja017198n

Singh, V.; Saxena, R.; Batra, S. J. Org. Chem. 2005, 70, 353-356. DOI: https://doi.org/10.1021/jo048411b. DOI: https://doi.org/10.1021/jo048411b

Sarkar, R.; Mukhopadhyay, C. Tetrahedron Lett. 2013, 54, 3706-3711. DOI: https://doi.org/10.1016/j.tetlet.2013.05.017. DOI: https://doi.org/10.1016/j.tetlet.2013.05.017

Zonouz, A. M.; Eskandari, I.; Notash, B. Synth. Commun. 2015, 45, 2115-2121. DOI: https://doi.org/10.1080/00397911.2015.1065506. DOI: https://doi.org/10.1080/00397911.2015.1065506

Sun, J.; Wu, Q.; Xia, E.Y.; Yan, C. G. Eur. J. Org. Chem. 2011, 2981-2986. DOI: https://doi.org/ 10.1002/ejoc.201100008. DOI: https://doi.org/10.1002/ejoc.201100008

Ahankar, H.; Ramazani, A.; Slepokura, K.; Lis, T.; Joo, S. W. Green Chem. 2016, 18, 3582-3593. DOI: https://doi.org/10.1039/c6gc00157b. DOI: https://doi.org/10.1039/C6GC00157B

Marapala, K. S.; Venkatesh, N.; Swapna, M.; Venkateswar, P. R. Int. J. ChemTech Res. 2020, 13, 227-231. DOI: https://doi.org/10.20902/ijctr.2019.130128. DOI: https://doi.org/10.20902/IJCTR.2019.130128

a) Pervaram, S.; Ashok, D.; Venkata Ramana Reddy, C.; Sarasija, M.; Ganesh, A. Chem. Data Collect. 2020, 29, 100508. DOI: https://doi.org/10.1016/j.cdc.2020.100508. b) Ghaffari Khaligh, N.; Mihankhah, T.; Rafie Johan, M.; Titinchi, S. J. J. Green Process Synth. 2019, 8, 373-381. DOI: https://doi.org/10.1515/gps-2019-0004. c) Ghaffari Khaligh, N.; Mihankhah, T.; Rafie Johan, M.; Synth. Commun. 2019, 49, 1334-1342. DOI: https://doi.org/10.1080/00397911.2019.1601225. DOI: https://doi.org/10.1080/00397911.2019.1601225

a) Ghorbani-Vaghei, R.; Sarmast, N.; Mahmoodi, J. Appl. Organomet. Chem. 2017, 31, e3681. DOI: https://doi.org/10.1002/aoc.3681. b) Esmaeilzadeh, S.; Setamdideh, D. J. Serb. Chem. Soc. 2021, 86, 1039-1056. DOI: https://doi.org/10.2298/JSC210521059E. DOI: https://doi.org/10.2298/JSC210521059E

Hamdi Mohamadabad, P.; Setamdideh, D. Org. Prep. Proced. Int. 2023, 55, 265-275. DOI: https://doi.org/10.1080/00304948.2022.2141044. DOI: https://doi.org/10.1080/00304948.2022.2141044

a) Kim, H. K.; Park, J. W.; J. Environ. Sci. Health. A. 2019, 54, 648-656. DOI: https://doi.org/10.1080/10934529.2019.1579535. b) Burakevich, J. V.; Lore, A. M.; Volpp, G. P. J. Org. Chem. 1971, 36, 1-4. DOI: https://doi.org/10.1021/jo00800a001. DOI: https://doi.org/10.1021/jo00800a001

Chan, C. C. P.; Gallard, H.; Majewski, P. J. Nanopart. Res. 2012, 14, 828. DOI: https://doi.org/10.1007/s11051-012-0828-2. DOI: https://doi.org/10.1007/s11051-012-0828-2

Ebrahimi-Tazangi, F.; Hekmatara, S. H.; Yazdi, J. S. J. Alloys Compd. 2019, 809, 151779. DOI: https://doi.org/10.1016/j.jallcom.2019.151779. DOI: https://doi.org/10.1016/j.jallcom.2019.151779

Zhang, C. L.; Cheng, H. D.; Ren, S. Y.; Zhang, W. P.; Chen, Z.; Wang, Y.; MA, J. H.; Zhang, C. S.; Guo, Z. Y. IOP Conf. Ser.: Earth Environ. Sci. 2018, 199, 052042. DOI: https://doi.org/10.1088/1755-1315/199/5/052042. DOI: https://doi.org/10.1088/1755-1315/199/5/052042

Fan, G.; Rena, Y.; Jiangb, W.; Wang, C.; Xub, B.; Liu, F. Catal. Commun. 2014, 52, 22. DOI: https://doi.org/10.1016/j.catcom.2014.04.006. DOI: https://doi.org/10.1016/j.catcom.2014.04.006

Gao, J.; He, Y.; Zhao, X.; Ran, X.; Wuc, Y.; Su, Y.; Dai, J. J. Colloid Interface. Sci. 2016, 481, 220-228. DOI: https://doi.org/10.1016/j.jcis.2016.07.057. DOI: https://doi.org/10.1016/j.jcis.2016.07.057

Chu, C.; Lu, C.; Yuan, J.; Xing, C. Sci. Nutr. 2020, 8, 3673-3681. DOI: https://doi.org/10.1002/fsn3.1651. DOI: https://doi.org/10.1002/fsn3.1651

Guan, N.; Xu, J.; Wang, L.; Sun, D. Colloid Surf. A-Phsicochem. Eng. Asp. 2009, 346, 221-228. DOI: https://doi.org/10.1016/j.colsurfa.2009.06.022. DOI: https://doi.org/10.1016/j.colsurfa.2009.06.022

He, X.; Yang, W.; Li, S.; Liu, Y.; Hu, B.; Wang, T.; Hou, X. Microchim. Acta. 2018, 185, 125. DOI: https://doi.org/10.1007/s00604-018-2672-2. DOI: https://doi.org/10.1007/s00604-018-2672-2

Jafarnejad, M.; Daghighi Asli, M.; Afshar Taromi, F.; Manoochehri, M. Int. J. Biol. Macromol. 2020, 148, 201-217. DOI: https://doi.org/10.1016/j.ijbiomac.2020.01.017. DOI: https://doi.org/10.1016/j.ijbiomac.2020.01.017

Lin, S.; Hua, X.; Yang, Y.; Liu, L.; Lin, K. Water Sci. Technol. 2017, 76, 452-458. DOI: https://doi.org/10.2166/wst.2017.225. DOI: https://doi.org/10.2166/wst.2017.225

Das, M.; Dhak, P.; Gupta, S.; Mishra, D.; Maiti, T. K.; Basak, A.; Pramanik, P. Nanotechnology 2010, 21, 125103. DOI: https://doi.org/10.1088/0957-4484/21/12/125103. DOI: https://doi.org/10.1088/0957-4484/21/12/125103

Baghani, A. N.; Mahvi, A. H.; Gholami, M.; Delikhoon, N. R. M. J. Environ. Health Sci. Eng. 2016, 14, 11. DOI: https://doi.org/10.1186/s40201-016-0252-0. DOI: https://doi.org/10.1186/s40201-016-0252-0

Pazouki, M.; Zabihi, M.; Shayegan, J.; Fatehi, M. H. J. Chem. Eng. 2018, 35, 671-683. DOI: https://doi.org/10.1007/s11814-017-0293-9. DOI: https://doi.org/10.1007/s11814-017-0293-9

Han, L.; Li, Q.; Chen, S.; Xie, W.; Bao, W.; Chang, L.; Wang, J. Sci. Rep. 2017, 7, 7448. DOI: https://doi.org/10.1038/s41598-017-07802-8. DOI: https://doi.org/10.1038/s41598-017-07802-8

Li, Y.; Xie, Q.; Hu, Q.; Li, C.; Huang, Z.; Yang, X.; Guo, H. Sci. Rep. 2016, 6, 30651. DOI:https://doi.org/10.1038/srep30651. DOI: https://doi.org/10.1038/srep30651

Xiong, S.; Wang, M.; Cai, D.; Li, Y.; Gu, N.; Wu, Z.; Anal. Lett. 2013, 46, 912-922. DOI: https://doi.org/10.1080/00032719.2012.747094. DOI: https://doi.org/10.1080/00032719.2012.747094

Tang, Z.; Li, F. J. Comput. Theor. Nanosci. 2016, 13, 772-776. DOI: https://doi.org/ 10.1166/jctn.2016.4873. DOI: https://doi.org/10.1166/jctn.2016.4873

Cornell, R. M.; Schwertmann, U. U. in: The Iron Oxides: Structure Properties, Reactions, Occurrences and Uses, 2nd ed.; Completely Revised and Extended Edition; Wiley-VCH:Weinheim, Germany, 2003. DOI: https://doi.org/10.1002/3527602097

Loh, K. S.; Lee, Y. H.; Musa, A.; Salmah, A. A.; Zamri, I. Sensors. 2008, 8, 5775. DOI: https://doi.org/10.3390/s8095775. DOI: https://doi.org/10.3390/s8095775

Dutta, A.; Rohman, M. A.; Nongrum, R.; Thongni, A.; Mitra, S.; Nongkhlaw, R. New J. Chem. 2021, 45, 8136 -8148. DOI: https://doi.org/10.1039/D1NJ00343G. DOI: https://doi.org/10.1039/D1NJ00343G

×

Downloads

Additional Files

Published

2024-02-01
x

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...