Studies of Structural, Dielectric and Electrical Characteristics of Complex Perovskite: Pb(Co1/3Mn1/3W1/3)O3
DOI:
https://doi.org/10.29356/jmcs.v64i2.983Keywords:
Multiferroic material, electrical properties, Nyquist plots, dielectric relaxationAbstract
A lead-based multiferroic, Pb(Co1/3Mn1/3W1/3)O3, was synthesized by using a high-temperature solid-state reaction technique. Based on X-ray structural analysis, an orthorhombic crystal structure has been suggested for the material. The scanning electron microscopy (SEM) image exhibits a morphology with and uniform grains distribution. A detailed study of variation of dielectric parameters with frequency and temperature exhibits that Pb(Co1/3Mn1/3W1/3)O3 undergoes multiple phase transitions; first transition (Tc1) appeared at 436K (ferroelastic to ferroelectric) whereas second transition ( Tc2) appeared at 504K ( ferroelectric to paraelectric). Since the peaks of dielectric constant are broader and diffused, a diffusivity parameter (γ) has been estimated to the amount of disordering in the material structure.The contribution of grain,grain boundaries and electrode effect in electrical conduction mechanisim can be understood by frequency-temperature dependence of resistive characterestics using CIS spectroscopy (complex impedance spectroscopy). Impedance or Nyquist plots were modeled with an equivalent circuit having capacitance, resistance and related parameters. Studies of transport properties, ac conductivity, electrical modulus and magneto-electric (ME) effect of the materialis reported in this communication.
Downloads
References
Ascher, E.; Rieder, H.; Schmid, H.; Stössel, H. J. Appl. Phys. 1966, 37, 1404. DOI: https://doi.org/10.1063/1.1708493. DOI: https://doi.org/10.1063/1.1708493
Wang, J.; Neaton, J.B.; Zheng, H.; Nagarajan, V.; Ogale, S.B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, Waghmare, U.V.; Spaldin, N.A.; Rabe, K.M.; Wuttig, M.; Ramesh, R. Science 2003, 299,1719.
DOI: https://doi.org/10.1126/science.1080615. DOI: https://doi.org/10.1126/science.1080615
Kimura, T.; Goto, T.; Shintani, H.; Ishizaka, K.; Arima, T.; Tokura, Y. Nature 2003, 426, 55. DOI: https://doi.org/10.1038/nature02018. DOI: https://doi.org/10.1038/nature02018
Hur, N.; Park, S.; Sharma, P.A.; Ahn, J.S.; Guha, S.; Cheong, S-W Nature 2004, 429, 392. DOI: https://doi.org/10.1038/nature02572. DOI: https://doi.org/10.1038/nature02572
Yoo, J.; Yoon, K.; Lee, Y.; Suh, S.; Kim, J.; Yoo, C. Jpn. J. Appl. Phys. 2000, 39, 2680. DOI: https://doi.org/10.1143/JJAP.39.2680. DOI: https://doi.org/10.1143/JJAP.39.2680
Sasaki, Y.; Yamamoto, M.; Ochi, A.; Inoue, T.; Takahashi, S. Jpn. J. Appl. Phys. 1999, 38, 5598. DOI: https://doi.org/10.1143/JJAP.38.5598. DOI: https://doi.org/10.1143/JJAP.38.5598
Masao, K.; Kazuaki, K. J. Am. Ceram. Soc. 2004, 84, 2469–2474.DOI: https://doi.org/10.1111/j.1151-2916.2001.tb01037.x. DOI: https://doi.org/10.1111/j.1151-2916.2001.tb01037.x
Corker, D. L.; Whatmore, R. W.; Ringgaard, E.; Wolny, W. W. J. Eur. Ceram. Soc. 2000, 20, 2039–2045. DOI: https://doi.org/https://doi.org/10.1016/S09552219(00)00089-3. DOI: https://doi.org/10.1016/S0955-2219(00)00089-3
Hayashi, T.; Hasegawa, T.; Tomizawa, J.; Akiyama, Y. Jpn. J. Appl. Phys. 2003, 42, 6074. DOI: https://doi.org/10.1143/JJAP.42.6074/meta.
Sanchez, D. A.; Ortega, N.; Kumar, A.; Roque-Malherbe, R.; Polanco, R.; Scott, J. F.; Katiyar, R. S. AIP Adv. 2011, 1, 42169. DOI: https://doi.org/10.1063/1.3670361. DOI: https://doi.org/10.1063/1.3670361
Mathe, V. L.; Patankar, K. K.; Lotke, S. D.; Joshi, P. B.; Patil, S. A. Bull. Mater. Sci. 2002, 25, 347–350. DOI: https://doi.org/10.1007/BF02704130. DOI: https://doi.org/10.1007/BF02704130
Quirós, M.; Gražulis, S.; Girdzijauskait.e, S. .; Merkys, A.; Vaitkus, A. J. Cheminform. 2018, 10. DOI: https://doi.org/10.1186/s13321-018-0279-6. DOI: https://doi.org/10.1186/s13321-018-0279-6
Vasconcelos, D. C. L.; Costa, V. C.; Nunes, E. H. M.; Sabioni, A. C. S.; Gasparon, M.; Vasconcelos, W. L. Mater. Sci. Appl. 2011, 02, 1375–1382. DOI: https://doi.org/10.4236/msa.2011.210186. DOI: https://doi.org/10.4236/msa.2011.210186
Koops, C. G. Phys. Rev. 1951, 83, 121–124. DOI: https://doi.org/10.1103/PhysRev.83.121 . DOI: https://doi.org/10.1103/PhysRev.83.121
Pawar, R. P.; Puri, V. Ceram. Int. 2014, 40, 10423–10430. DOI: https://doi.org/http://dx.doi.org/10.1016/j.ceramint.2014.03.013. DOI: https://doi.org/10.1016/j.ceramint.2014.03.013
Dos santos-García, A. J.; Solana-Madruga, E.; Ritter, C.; Andrada-Chacón, A.; Sánchez-Benítez, J.; Mompean, F. J.; Garcia-Hernandez, M.; Sáez-Puche, R.; Schmidt, R. Angew. Chemie Int. Ed. 2017, 56, 4438–4442. DOI: https://doi.org/10.1002/anie.201609762. DOI: https://doi.org/10.1002/anie.201609762
Goodenough, J. B.; Zhou, J. Sci. Technol. Adv. Mater. 2015, 16, 36003. DOI: https://doi.org/10.1088/1468-6996/16/3/036003. DOI: https://doi.org/10.1088/1468-6996/16/3/036003
Liang, F.; Hui, Z.; Bolin, W.; Runzhang, Y. Prog. Cryst. Growth Charact. Mater. 2000, 40, 161–165. DOI: https://doi.org/10.1016/S0960-8974(00)00037-1. DOI: https://doi.org/10.1016/S0960-8974(00)00037-1
Pilgrim, S. M.; Sutherland, A. E.; Winzer, S. R. J. Am. Ceram. Soc. 1990, 73, 3122–3125. DOI: https://doi.org/10.1111/j.1151-2916.1990.tb06733.x. DOI: https://doi.org/10.1111/j.1151-2916.1990.tb06733.x
Kumar, A.; Singh, B. P.; Choudhary, R. N. P.; Thakur, A. K. J. Alloys Compd. 2005, 394, 292–302. DOI: https://doi.org/http://dx.doi.org/10.1016/j.jallcom.2004.11.012. DOI: https://doi.org/10.1016/j.jallcom.2004.11.012
Ram, M. J. Alloys Compd. 2011, 509, 1744–1748. DOI: https://doi.org/http://dx.doi.org/10.1016/j.jallcom.2010.09.212. DOI: https://doi.org/10.1016/j.jallcom.2010.09.212
Jonscher, A. K. J. Phys. D. Appl. Phys. 1999, 32, R57. DOI: https://doi.org/10.1088/0022-3727/32/14/201. DOI: https://doi.org/10.1088/0022-3727/32/14/201
Jonscher, A. K. Nature 1977, 267, 673–679. DOI: https://doi.org/10.1038/267673a0. DOI: https://doi.org/10.1038/267673a0
Ross Macdonald, J. Solid State Ionics 1984, 13, 147–149. DOI: https://doi.org/http://dx.doi.org/10.1016/0167-2738(84)90049-3.} DOI: https://doi.org/10.1016/0167-2738(84)90049-3
Ranjan, R.; Kumar, R.; Kumar, N.; Behera, B.; Choudhary, R. N. P. J. Alloys Compd. 2011, 509, 6388–6394. DOI: https://doi.org/http://dx.doi.org/10.1016/j.jallcom.2011.03.003. DOI: https://doi.org/10.1016/j.jallcom.2011.03.003
Sen, S.; Choudhary, R. N. P.; Pramanik, P. Phys. B Condens. Matter 2007, 387, 56–62. DOI: https://doi.org/http://dx.doi.org/10.1016/j.physb.2006.03.028. DOI: https://doi.org/10.1016/j.physb.2006.03.028
Hirose, N.; West, A. R. J. Am. Ceram. Soc. 1996, 79, 1633–1641. DOI: https://doi.org/10.1111/j.1151-2916.1996.tb08775.x. DOI: https://doi.org/10.1111/j.1151-2916.1996.tb08775.x
Gabal, M. A. E.-F.; Al Angari, Y. M.; Obaid, A. Y. Comptes Rendus Chim. 2013, 16, 704–711. DOI:
https://doi.org/http://dx.doi.org/10.1016/j.crci.2013.01.009. DOI: https://doi.org/10.1016/j.crci.2013.01.009
Shi, M.; Zuo, R.; Xu, Y.; Wang, L.; Gu, C.; Su, H.; Zhong, J.; Yu, G. Ceram. Int. 2014, 40 , 9249–9256. DOI: https://doi.org/http://dx.doi.org/10.1016/j.ceramint.2014.01.146. DOI: https://doi.org/10.1016/j.ceramint.2014.01.146


Downloads
Additional Files
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
