CaCO₃ (Calcite) Co-Doped with Eu and Cr: The Effect of Chromium/Europium Ratio on Blue Light Emission

Authors

  • E. E. Cervantes-Trujillo Universidad Autonoma Metropolitana Campus Iztapalapa https://orcid.org/0000-0001-6362-2833
  • S. A. Gómez-Torres Universidad Autónoma Metropolitana Campus Iztapalapa https://orcid.org/0000-0002-8023-766X
  • U. Caldiño Universidad Autónoma Metropolitana Campus Iztapalapa
  • V. H. Lara-Corona Universidad Autónoma Metropolitana Campus Iztapalapa

DOI:

https://doi.org/10.29356/jmcs.v69i3.2185

Keywords:

CaCO3: Eu-Cr, light emission, blueshift

Abstract

Abstract. The emission spectra of CaCO3 co-doped with Eu and Cr have been studied in the UV-Vis region. A change in both the emission wavelength from 426 to 423 nm and the intensity, which is 30 times higher with respect to CaCO3:Eu, indicates a significant modification of the optical properties of CaCO3:Eu due to the influence of chromium (Cr/Eu = 0.5). Changes in the band gap (Eg) from 6 to 5.2 eV were observed when the material was calcined at 700 °C. This emission phenomenon was also observed at 600, 800 and 900 °C, but with lower intensity. Analysis of the excitation and emission bands indicates that Eu is in the 2+ oxidation state and Cr is in the 6+ oxidation state. This is because the emission occurs in the blue-violet region of the visible spectrum when exposed to UV light with a wavelength of 254 nm. The material has potential LED applications.

 

Resumen. Se estudiaron los espectros de emisión del CaCO3 codopado con Eu y Cr en la región UV-Vis. Se observaron cambios en la longitud de onda de emisión de 426 a 423 nm y en la intensidad que resultó 30 veces mayor respecto a CaCO3:Eu, lo que indica una modificación significativa en las propiedades ópticas de CaCO3:Eu debido a la influencia del cromo (Cr/Eu = 0.5). Se observaron cambios en la energía de brecha (Eg) de 6 a 5.2 eV cuando el material se calcinó a 700 °C. Este fenómeno de emisión se observó también a 600, 800 y 900 °C, aunque con menor intensidad. El análisis de las bandas de excitación y emisión indica que el europio se encuentra en estado de oxidación 2+ y el cromo en estado de oxidación 6+. Esto se debe a que la emisión se produce en la región azul-violeta del espectro visible cuando se expone a una luz UV con una longitud de onda de 254 nm, por lo que el material puede tener aplicaciones potenciales como LED.

Downloads

Download data is not yet available.

Author Biographies

E. E. Cervantes-Trujillo, Universidad Autonoma Metropolitana Campus Iztapalapa

Process and Hydraulic Engineering Department

S. A. Gómez-Torres, Universidad Autónoma Metropolitana Campus Iztapalapa

Process and Hydraulic Engineering Department

U. Caldiño, Universidad Autónoma Metropolitana Campus Iztapalapa

Physics Department

V. H. Lara-Corona, Universidad Autónoma Metropolitana Campus Iztapalapa

Chemistry Department

References

Li, W. M.; Hänninen, T.; Leskelä, M.; Saari, J.; Hase, A. J. Alloy. Compd. 2001, 323-324, 236–238. DOI: http://dx.doi.org/10.1016/s0925-8388(01)01050-7. DOI: https://doi.org/10.1016/S0925-8388(01)01050-7

Weir, C. E.; Lippincott, E. R. J. Res. NBS. A Phys. Ch. 1961, 65, 173. DOI: http://dx.doi.org/10.6028/jres.065a.021. DOI: https://doi.org/10.6028/jres.065A.021

Hossain, F. M.; Murch, G. E.; Belova, I. V.; Turner, B. D. Solid State Commun. 2009, 149, 1201–1203. DOI: http://dx.doi.org/10.1016/j.ssc.2009.04.026. DOI: https://doi.org/10.1016/j.ssc.2009.04.026

Kowalska, K.; Kuwik, M.; Polak, J.; Pisarska, J.; Pisarski, W. A. Materials. 2021, 14, 7156. DOI: http://dx.doi.org/10.3390/ma14237156. DOI: https://doi.org/10.3390/ma14237156

Zhou, B.; Liu, B.; Zou, H.; Song, Y.; Gong, L.; Huo, Q.; Xu, X.; Sheng, Y. Colloids Surf., A. 2014, 447, 166–171. DOI: http://dx.doi.org/10.1016/j.colsurfa.2013.12.078. DOI: https://doi.org/10.1016/j.colsurfa.2013.12.078

Tamatani, M., in: Principal phosphor materials and their optical properties, 2nd ed.; Phosphor Handbook, CRC/Taylor and Francis, 2007, 178–182.

López-Arce, P.; Gómez-Villalba, L.S.; Martínez-Ramírez, S.; Álvarez de Buergo, M.; Fort, R. Powder Technol., 2010, 205, 263–269. DOI: http://dx.doi.org/10.1016/j.powtec.2010.09.026. DOI: https://doi.org/10.1016/j.powtec.2010.09.026

Graf, D. L. Am. Mineral. 1961, 46, 11-12. DOI: https://doi.org/10.1353/swe.1961.a962701

Dove, M. T.; Powell, B. M. Phys. Chem. Miner. 1989, 16. DOI: http://dx.doi.org/10.1007/bf00197019. DOI: https://doi.org/10.1007/BF00197019

Ishizawa, N.; Setoguchi, H.; Yanagisawa, K. Sci Rep-UK. 2013, 3. DOI: http://dx.doi.org/10.1038/srep02832. DOI: https://doi.org/10.1038/srep02832

Dorenbos, P. J. Lumin. 2000, 91, 91–106. DOI: http://dx.doi.org/10.1016/s0022-2313(00)00197-6. DOI: https://doi.org/10.1016/S0022-2313(00)00197-6

Dorenbos, P. J. Lumin. 2003, 104, 239–260. DOI: http://dx.doi.org/10.1016/s0022-2313(03)00078-4. DOI: https://doi.org/10.1016/S0022-2313(03)00078-4

Dorenbos, P. J. Phys-Condensed Mat. 2003, 15, 575–594. DOI: http://dx.doi.org/10.1088/0953-8984/15/3/322. DOI: https://doi.org/10.1088/0953-8984/15/3/322

Tanguy, B.; Merle, P.; Pezat, M.; Fouassier, C. Mater. Res. Bull. 1974, 9, 831–836. DOI: http://dx.doi.org/10.1016/0025-5408(74)90119-6. DOI: https://doi.org/10.1016/0025-5408(74)90119-6

Aboshyan-Sorgho, L.; Cantuel, M.; Petoud, S.; Hauser, A.; Piguet, C. Coordination Chem. Rev. 2012, 256, 1644–1663. DOI: http://dx.doi.org/10.1016/j.ccr.2011.12.013. DOI: https://doi.org/10.1016/j.ccr.2011.12.013

Wang, D.; Zhang, X.; Wang, X.; Leng, Z.; Yang, Q.; Ji, W.; Lin, H.; Zeng, F.; Li, C.; Su, Z. Crystals. 2020, 10, 1019. DOI: http://dx.doi.org/10.3390/cryst10111019. DOI: https://doi.org/10.3390/cryst10111019

Barton, D. G.; Soled, S. L.; Iglesia, E. J. Phys. Chem. 1999, 6, 87–99. DOI: http://dx.doi.org/10.1023/a:1019126708945. DOI: https://doi.org/10.1023/A:1019126708945

Medeiros, S. K.; Albuquerque, E. L.; Maia, F. F.; Caetano, E. W. S.; Freire, V. N. J. Phys. D Appl. Phys. 2007, 40, 5747–5752. DOI: http://dx.doi.org/10.1088/0022-3727/40/18/036. DOI: https://doi.org/10.1088/0022-3727/40/18/036

Atkins, P. W.; Shriver, D. E.; Overton, T.; Rourke, J.; Weller, M.; Armstrong, F., in: Inorganic Chemistry, 4th ed.; McGraw Hill, 2008, 19, 473.

http://wwwchem.uwimona.edu.jm/lab_manuals/CrTSexptnu/TSd3.html, accessed in August 2022.

Adachi, C.; Tsutsui, T., in: Fundamentals of luminescence, 2nd ed.; Phosphor Handbook, CRC/Taylor and Francis, 2007, 66–69.

Nassau, K., in: Color for Science, Art and Technology (AZimuth). North Holland, 1997, 45–50.

Caldiño, U.; Lira, A.; Meza-Rocha, A. N.; Camarillo, I.; Lozada-Morales, R. J. Lumin. 2018, 194, 231–239. DOI: http://dx.doi.org/10.1016/j.jlumin.2017.10.028. DOI: https://doi.org/10.1016/j.jlumin.2017.10.028

Bünzli, J. C. G. Handb. Phys. Chem. Rare Earths. 2016, 50, 141–176. DOI: http://dx.doi.org/10.1016/bs.hpcre.2016.08.003. DOI: https://doi.org/10.1016/bs.hpcre.2016.08.003

Yen, W.M.; Shionoya, S.; Yamamoto, H., in: Phosphor Handbook. CRC Press/Taylor and Francis, 2007, 149–151. DOI: https://doi.org/10.1201/9781420005233

×

Downloads

Published

2025-06-11

Issue

Section

Regular Articles
x

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.

Loading...