Solvent Effects on Protonation Constants of Betanin in Different Aqueous Solutions of Methanol at T = 25 ºC

Authors

  • Fatemeh Zabihi IA University
  • Farhoush Kiani IA University
  • Mojtaba Yaghobi IA University
  • Seyed Ahmad Shahidi IA University
  • Fardad Koohyar Ton Duc Thang University

DOI:

https://doi.org/10.29356/jmcs.v63i2.789

Keywords:

Protonation Constants, Methanol, Spectrophotometric, Potentiometric, Solvent.

Abstract

Abstract. The protonation constants of the betanin (pKa1, pKa2, and pKa3) were determined in mixed solvent of water and methanol containing 0, 10, 20, 30, 40, 50, 60, 70, and 80 % (v/v) methanol, using a combination of the spectrophotometric and potentiometric methods at T = 25 ºC and constant ionic strength (0.1 mol.dm-3 NaClO4). The obtained protonation constants were analyzed using Kamlet, Abboud, and Taft parameters. KAT parameters are α (hydrogen-bond donor acidity), β (hydrogen-bond acceptor basicity), and π* (dipolarity/polarizability). In this study, a good linear relationship was obtained between protonation constants (on the logarithmic scale) and dielectric constant (ɛ) of the water-methanol mixed solvents. It was found that the dual-parameter correlation between log10K,s and π*, β  give us the best result in various volume fractions of methanol for water-methanol mixed solvent. Finally, the results are discussed in terms of the effect of the solvent on the protonation constants.

 

Resumen. Las constantes de protonación de la betanina (pKa1, pKa2 y pKa3) se determinaron en un disolvente mixto de agua y metanol que contenía metanol al 0, 10, 20, 30, 40, 50, 60, 70 y 80% (v / v), utilizando una combinación de los métodos espectrofotométricos y potenciométricos a T = 25 ºC y fuerza iónica constante (0,1 mol.dm-3 NaClO4). Las constantes de protonación obtenidas se analizaron utilizando los parámetros de Kamlet, Abboud y Taft. Los parámetros KAT son α (acidez del donante de enlaces de hidrógeno), β (basicidad del aceptor de enlaces de hidrógeno) y π* (dipolaridad / polarizabilidad). En este estudio, se obtuvo una buena relación lineal entre las constantes de protonación (en la escala logarítmica) y la constante dieléctrica (ɛ) de los disolventes mixtos agua-metanol. Se encontró que la correlación de doble parámetro entre log10K, s y π*, β nos da el mejor resultado en varias fracciones de volumen de metanol para el disolvente mixto agua-metanol. Finalmente, los resultados se discuten en términos del efecto del solvente en las constantes de protonación.

Downloads

Download data is not yet available.

References

SRaupp, D. D.; Rodrigues, E.; Rockenbach, I. I.; Carbonar, A.; Campos, P. F. D.; Borsato. A. L. V. Food Sci. Technol. (Campinas). 2011, 31, 688. DOI: https://doi.org/10.1590/S0101-20612011000300021

Slavov, A.; Karagyozov, V.; Denev, P.; Kratchanova, M.; Kratchanov, C. Czech J. Food Sci. 2013, 31, 139. DOI: https://doi.org/10.17221/61/2012-CJFS

Sapers, G.M.; Hornstein, G.S. J. Food Sci. 1979, 44, 1245. DOI: https://doi.org/10.1111/j.1365-2621.1979.tb03490.x

Hendry, G.A.R.; Houghton, J.D. Natural Food Colorants. Second edition, Blackie, 1996. DOI: https://doi.org/10.1007/978-1-4615-2155-6

Delgado-Vargas, F.; Jiménez, A.R.; Paredes-López, O. CRC Crit. Rev. Food Sci. Nutr. 2000, 40, 173. DOI: https://doi.org/10.1080/10408690091189257

Hendry, G.; Houghton, G. Natural Food Colorants, Blackie Bublication, 1992, London.

Saguy, I.; Kopelman, I.J.; Mizrahi, S. J. Food Sci. 1978, 43, 124. DOI: https://doi.org/10.1111/j.1365-2621.1978.tb09750.x

Gharib, F.; Farkhad-Ali, N. J. Phys. Theor. Chem. 2015, 12, 19.

Reichardt. S. Solvents and solvent effects in organic chemistry. 2004, 3rded.; VCH: New York,.

Mayer. U. Pure Appl. Chem. 1979, 51, 1697. DOI: https://doi.org/10.1351/pac197951081697

Krygowski, T.M.; Fawcett. W.R. J. Chem. 1976, 54, 2383.

Taft, R.W.; Abbound, J.M.; Abraham. M.H. J. Solution Chem. 1985, 14, 153. DOI: https://doi.org/10.1007/BF00647061

Svoboda, P.; Pytela, O.; Vecera. M. Chem. Commun. 1983, 48, 3287. DOI: https://doi.org/10.1135/cccc19833287

Gutmann, V.; Wychera, E. Inorg. Nucl. Chem. Lett. 1966, 2, 257. DOI: https://doi.org/10.1016/0020-1650(66)80056-9

Kamlet, M.J.; Abboud, J.M.; Abraham, M.H.; Taft, R.W. J. Org. Chem. 1983, 48, 2877. DOI: https://doi.org/10.1021/jo00165a018

Pehrsson, L.; Ingman, L.; Johansson, A. Talanta, 1976, 23, 769. DOI: https://doi.org/10.1016/0039-9140(76)80086-0

Gameiro, P.; Reis, S.; Lima, J.L.F.C.; Castro. B.D.E. Anal. Chim. Acta, 2000, 405, 167. DOI: https://doi.org/10.1016/S0003-2670(99)00641-8

Ferrer, J.S.; Couallier, E.; Rakib, M.; Durand, G. Electrochim. Acta. 2007, 52, 5773. DOI: https://doi.org/10.1016/j.electacta.2007.02.058

Gharib, F.; Farajtabar, F.; Farahani, A.M.; Bahmani, F. J. Chem. Eng. Data. 2010, 55, 327. DOI: https://doi.org/10.1021/je900352f

Nilsson, T. Lantbrukshoegskolans Annaler, 1970, 36, 179. DOI: https://doi.org/10.1016/0029-554X(70)90315-0

Beck, M.T.; Nagypal, I. Chemistry of Complex Equilibria. 1990, Ellis Harwood, New York.

Leggett, D.J. Computational Methods for the Determination of Formation Constants, 1985, Plenum Press, New York. DOI: https://doi.org/10.1007/978-1-4684-4934-1

Meloun, M.; Javurek, M.; Havel, J. Talanta. 1986, 33, 513. DOI: https://doi.org/10.1016/0039-9140(86)80263-6

Tutone, M.; Lauria, A.; Almerico, A. Interdisciplinary Sciences: Computational Life Sciences, 2016, 8, 177. DOI: https://doi.org/10.1007/s12539-015-0101-3

Barbosa, J.; Barron, D.; Beltran, J.L.; Buti, S. Talanta. 1998, 45, 817. DOI: https://doi.org/10.1016/S0039-9140(97)00167-7

Barbosa, J.; Toro, I.; Sanz-Nebot, V. Anal. Chim. Acta. 1997, 347, 295. DOI: https://doi.org/10.1016/S0003-2670(97)00163-3

Taft, R.W.; Abboud, J.L.M.; Kamlet, M.J. J. Org. Chem. 1984, 49, 2001. DOI: https://doi.org/10.1021/jo00185a034

Soleimani, F.; Gharib, F. J. Solution Chem. 2014, 43, 763. DOI: https://doi.org/10.1007/s10953-014-0161-8

Shamel, A.; Saghiri, A.; Jaberi, F.; Farajtabar, A.; Mofidi, F.; Khorrami, S.A.; Gharib. F. J. Solution Chem. 2012, 41, 1020. DOI: https://doi.org/10.1007/s10953-012-9845-0

Jabbari, M.; Gharib. F. J. Mol. Liq. 2012, 168, 36. DOI: https://doi.org/10.1016/j.molliq.2012.02.001

Jabbari, M.; Gharib. F. J. Solution Chem. 2011, 40, 561. DOI: https://doi.org/10.1007/s10953-011-9667-5

Farajtabar, A.; Jaberi, F.; Gharib, F. Spectrochim. Acta A. 2011, 83, 213. DOI: https://doi.org/10.1016/j.saa.2011.08.020

Billo. E.J. Excel for Chemists: A Comprehensive Guide. Wiley, Weinheim. 2001. DOI: https://doi.org/10.1002/0471220582

Maleki, N.; Haghighi, B.; Safavi, A. Microchem. J. 1999, 62, 229. DOI: https://doi.org/10.1006/mchj.1998.1665

Akerlof, G. J. Am. Chem. Soc. 1932, 54, 4125. DOI: https://doi.org/10.1021/ja01350a001

Moyano, F.; Biasutti, M.A. Silber, J.J.; Correa, N.M. J. Phys. Chem. B., 2006, 110, 11838. DOI: https://doi.org/10.1021/jp057208x

×

Published

2019-04-24

Issue

Section

Regular Articles
x

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...