Porous Coordination Polymers (PCPs): New Platforms for Gas Storage
DOI:
https://doi.org/10.29356/jmcs.v60i2.72Keywords:
porous coordination polymers (PCPs), coordination chemistry, metal ions, ligands, dimensionality, porosity, gas storageAbstract
This review article presents the fundamental and practical aspects of porous coordination polymers (PCPs). A comprehensive description of PCPs, a crucial issue in order to identify the applications in which PCPs are promising candidates, is discussed here. By considering a non-exhaustive yet representative set of PCPs, the structural description, dimensionality, synthesis and characterisation of these materials is presented. Particularly, gas storage in PCPs is highlighted among many applications for these frameworks structures.Downloads
References
Batten, S. R.; Champness, N. R.; Chen, X.-M.; Garcia-Martinez, J.; Kitagawa, S.; Öhrström, L.; O’Keeffe, M.; Suh, M. P.; Reedijk, J. CrystEngComm 2012, 14, 3001-3004. DOI: https://doi.org/10.1039/c2ce06488j
In 2011 more than 1000 articles reporting either coordination polymers, coordination frameworks, MOFs or ZIFs were reported. Source, Thomson ISI, Web of Science.
Shibata, Y., CAN 11:5339, J. Coll. Sci., Imp. Univ. Tokyo 1916, 37, 1-17.
Hoskins, B. F.; Robson, R. J. Am. Chem. Soc. 1990, 112, 1546-1554. DOI: https://doi.org/10.1021/ja00160a038
Robson, R.; Abrahams, B. F.; Batten, S. R.; Gable, R. W.; Hoskins, B. F.; Liu, J., in: Supramolecular Architecture, Vol. 499, Bein, T., Ed., ACS Symp. Ser, 1992, 256-273. DOI: https://doi.org/10.1021/bk-1992-0499.ch019
Abrahams, B. F.; Hoskins, B. F.; Michail, D. M.; Robson, R. Na-ture 1994, 369, 727-729. DOI: https://doi.org/10.1038/369727a0
Champness, N. R. Dalt. Trans. 2011, 40, 10311-10315. DOI: https://doi.org/10.1039/c1dt11184a
Kondo, M.; Yoshitomi, T.; Matsuzaka, H.; Kitagawa, S.; Seki, K. Angew. Chem. Int. Ed. 1997, 36, 1725-1727.
Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276-279. DOI: https://doi.org/10.1038/46248
Ribas, J. Coordination Chemistry. Wiley-VCH, Weinheim, 2008.
J.C. Bailar Jr. Prep. Inorg. React. 1964, 1, 1.
Robin, A. Y.; Fromm, K. M. Coord. Chem. Rev. 2006, 250, 2127-2157. DOI: https://doi.org/10.1016/j.ccr.2006.02.013
Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem. Int. Ed. 2004, 43, 2334-2375. DOI: https://doi.org/10.1002/anie.200300610
Janiak, C. Dalt. Trans. 2003, 2781-2804. DOI: https://doi.org/10.1039/b305705b
Batten, S. R.; Neville, S. M.; Turner, D. R. Coordination Poly-mers. RSC Publishing, Cambridge, 2009.
Hong, M.-C.; Chen, L. Desing and Construction of Coordination Polymers. John Wiley & Sons , New Jersey, 2009. DOI: https://doi.org/10.1002/9780470467336
Champness, N. R.; Schröder, M. Curr. Opin. Solid State Mater. Sci. 1998, 3, 419-424. DOI: https://doi.org/10.1016/S1359-0286(98)80055-7
Cheetham, A. K.; Férey, G.; Loiseau, T. Angew. Chem. Int. Ed. 1999, 38, 3268-3292. DOI: https://doi.org/10.1002/(SICI)1521-3773(19991115)38:22<3268::AID-ANIE3268>3.3.CO;2-L
Davis, M. E. Nature 2002, 417, 813-821. DOI: https://doi.org/10.1038/nature00785
James, S. L. Chem. Soc. Rev. 2003, 32, 276-288. DOI: https://doi.org/10.1039/b200393g
Hill, R. J.; Long, D. L.; Champness, N. R.; Hubberstey, P.; Schröder, M. Acc. Chem. Res. 2005, 38, 335-348. DOI: https://doi.org/10.1021/ar040174b
Panella, B.; Hirscher, M. Adv. Mater. 2005, 17, 538-541. DOI: https://doi.org/10.1002/adma.200400946
Hill, R. J.; Long, D. L.; Hubberstey, P.; Schröder, M.; Champness, N. R. J. Solid State Chem. 2005, 178, 2414-2419. DOI: https://doi.org/10.1016/j.jssc.2005.05.008
Hosseini, M. W. Acc. Chem. Res. 2005, 38, 313-323. DOI: https://doi.org/10.1021/ar0401799
Natarajan, S.; Mandal, S. Angew. Chem. Int. Ed. 2008, 47, 4798-4828. DOI: https://doi.org/10.1002/anie.200701404
Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450-1459. DOI: https://doi.org/10.1039/b807080f
Morris, R. E.; Wheatley, P. S. Angew. Chem. Int. Ed. 2008, 47, 4966-4981. DOI: https://doi.org/10.1002/anie.200703934
Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev 2009, 38, 1477-1504. DOI: https://doi.org/10.1039/b802426j
Henschel, A.; Gedrich, K.; Kraehnert, R.; Kaskel, S. Chem. Com-mun. 2008, 4192-4194. DOI: https://doi.org/10.1039/b718371b
Alvaro, M.; Carbonell, E.; Ferrer, B.; Xamena, F.; Garcia, H. Chem. Eur. J. 2007, 13, 5106-5112. DOI: https://doi.org/10.1002/chem.200601003
Ren, P.; Liu, M. L.; Zhang, J.; Shi, W.; Cheng, P.; Liao, D. Z.; Yan, S. P. Dalt. Trans. 2008, 4711-4713. DOI: https://doi.org/10.1039/b806964f
Zhong, R. Q.; Zou, R. Q.; Du, M.; Jiang, L.; Yamada, T.; Maruta, G.; Takeda, S.; Xu, Q. Crystengcomm 2008, 10, 605-613. DOI: https://doi.org/10.1039/b714491a
Maspoch, D.; Ruiz-Molina, D.; Veciana, J. Chem. Soc. Rev. 2007, 36, 770-818. DOI: https://doi.org/10.1039/b501600m
Zhang, L.; Qin, Y. Y.; Li, Z. J.; Lin, Q. P.; Cheng, J. K.; Zhang, J.; Yao, Y. G. Inorg. Chem. 2008, 47, 8286-8293. DOI: https://doi.org/10.1021/ic800871r
Khlobystov, A. N.; Blake, A. J.; Champness, N. R.; Lemenovskii, D. A.; Majouga, A. G.; Zyk, N. V; Schröder, M. Coord. Chem. Rev. 2001, 222, 155-192. DOI: https://doi.org/10.1016/S0010-8545(01)00370-8
Lehn, J.-M. Supramolecular Chemistry: Concepts and Perpec-tives. 1995. DOI: https://doi.org/10.1002/3527607439
J.Cragg, P. A Practical Guide to Supramolecular Chemistry. Wi-ley, 2005. DOI: https://doi.org/10.1002/047086656X
Whitesides, G. M.; Grzybowski, B. Science (80-. ). 2002, 295, 2418-2421. DOI: https://doi.org/10.1126/science.1070821
Zaworotko, M. J. Chem. Commun. 2001, 1-9.
Munakata, M.; Wu, L. P.; Kuroda-Sowa, T., in: Advances in Inor-ganic Chemistry, Vol. 46, Eldik, R.; Olabe, J. A., Ed., Academic Press Inc, San Diego, 1999, 173-303.doe DOI: https://doi.org/10.1016/S0898-8838(08)60151-8
Janiak, C.; Vieth, J. New J. Chem. 2010, 34, 2366-2388. DOI: https://doi.org/10.1039/c0nj00275e
Seo, J.; Sakamoto, H.; Matsuda, R.; Kitagawa, S. J. Nanosci. Nan-otechnol. 2010, 10, 3-20. DOI: https://doi.org/10.1166/jnn.2010.1494
Barnett, S. A.; Champness, N. R. Coord. Chem. Rev. 2003, 246, DOI: https://doi.org/10.1016/S0010-8545(03)00121-8
- 168.
Blake, A. J.; Champness, N. R.; Hubberstey, P.; Li, W. S.; Withers-by, M. A.; Schröder, M. Coord. Chem. Rev. 1999, 183, 117-138. DOI: https://doi.org/10.1016/S0010-8545(98)00173-8
Lu, J.; Paliwala, T.; Lim, S. C.; Yu, C.; Niu, T. Y.; Jacobson, A. J. Inorg. Chem. 1997, 36, 923-929. DOI: https://doi.org/10.1021/ic961158g
Kitagawa, S.; Kondo, M. Bull. Chem. Soc. Jpn. 1998, 71, 1739-1753. DOI: https://doi.org/10.1246/bcsj.71.1739
Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629-1658. DOI: https://doi.org/10.1021/cr9900432
Kitagawa S.; S., N. Compreh. Coord. Chem. 2004, 7, 231.
Eddaoudi, M.; Moler, D. B.; Li, H. L.; Chen, B. L.; Reineke, T. M.; O’Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2001, 34, 319-330. DOI: https://doi.org/10.1021/ar000034b
Burrows, A. D.; Harrington, R. W.; Mahon, M. F.; Price, C. E. J. Chem. Soc. Trans. 2000, 3845-3854. DOI: https://doi.org/10.1039/b003210g
Choi, H. J.; Lee, T. S.; Suh, M. P. J. Incl. Phenom. Macrocycl. Chem. 2001, 41, 155-162. DOI: https://doi.org/10.1023/A:1014436406651
Gutschke, S. O. H.; Price, D. J.; Powell, A. K.; Wood, P. T. Angew Angew. Chem. Int. Ed. 2001, 40, 1920-1923. DOI: https://doi.org/10.1002/1521-3773(20010518)40:10<1920::AID-ANIE1920>3.0.CO;2-2
Prior, T. J.; Rosseinsky, M. J. Chem. Commun. 2001, 495-496. DOI: https://doi.org/10.1039/b009455m
Yaghi, O. M.; Li, H. L.; Groy, T. L. J. Am. Chem. Soc. 1996, 118, 9096-9101. DOI: https://doi.org/10.1021/ja960746q
Murugavel, R.; Krishnamurthy, D.; Sathiyendiran, M. J. Chem. Soc. Trans. 2002, 34-39.
Kumagai, H.; Kepert, C. J.; Kurmoo, M. Inorg. Chem. 2002, 41, 3410-3422. DOI: https://doi.org/10.1021/ic020065y
Lin, X.; Jia, J. H.; Zhao, X. B.; Thomas, K. M.; Blake, A. J.; Walker, G. S.; Champness, N. R.; Hubberstey, P.; Schröder, M. Angew. Chem. Int. Ed. 2006, 45, 7358-7364. DOI: https://doi.org/10.1002/anie.200601991
Yang, S.; Lin, X.; Blake, A. J.; Thomas, K. M.; Hubberstey, P.; Champness, N. R.; Schröder, M. Chem. Commun. 2008, 6108-6110. DOI: https://doi.org/10.1039/b814155j
Endres, H.; Knieszner, A. Acta Crystallogr. Sect. C-Crystal Struct. Commun. 1984, 40, 770-772.
Chui, S. S. Y.; Siu, A.; Feng, X.; Zhang, Z. Y.; Mak, T. C. W.; Williams, I. D. Inorg. Chem. Commun. 2001, 4, 467-470. DOI: https://doi.org/10.1016/S1387-7003(01)00183-6
Yan, Y.; Lin, X.; Yang, S.; Blake, A. J.; Dailly, A.; Champness, N. R.; Hubberstey, P.; Schröder, M. Chem Commun 2009, 1025-1027. DOI: https://doi.org/10.1039/b900013e
Yan, Y.; Telepeni, I.; Yang, S.; Lin, X.; Kockelmann, W.; Dailly, A.; Blake, A. J.; Lewis, W.; Walker, G. S.; Allan, D. R.; Barnett, S. A.; Champness, N. R.; Schröder, M. J. Am. Chem. Soc. 2010, 132, 4092-4094. DOI: https://doi.org/10.1021/ja1001407
Tong, M. L.; Chen, H. J.; Chen, X. M. Inorg. Chem. 2000, 39, 2235-2238.
Carlucci, L.; Ciani, G.; Proserpio, D. M. Chem. Commun. 1999,
- 450.
Withersby, M. A.; Blake, A. J.; Champness, N. R.; Hubberstey, P.; Li, W. S.; Schröder, M. Angew. Chem. Int. Ed. 1997, 36, 2327-2329. DOI: https://doi.org/10.1002/anie.199723271
Gamez, P.; de Hoog, P.; Roubeau, O.; Lutz, M.; Driessen, W. L.; Spek, A. L.; Reedijk, J. Chem. Commun. 2002, 1488-1489.
Biradha, K.; Seward, C.; Zaworotko, M. J. Angew. Chem. Int. Ed. 1999, 38, 492-495. DOI: https://doi.org/10.1002/(SICI)1521-3773(19990215)38:4<492::AID-ANIE492>3.3.CO;2-R
Holman, K. T.; Hammud, H. H.; Isber, S.; Tabbal, M. Polyhedron 2005, 24, 221-228. DOI: https://doi.org/10.1016/j.poly.2004.11.017
Horikoshi, R.; Mikuriya, M. Cryst. Growth Des. 2005, 5, 223-230. DOI: https://doi.org/10.1021/cg049909+
Cheng, J. Y.; Dong, Y. B.; Huang, R. Q.; Smith, M. D. Inorganica Chim. Acta 2005, 358, 891-902. DOI: https://doi.org/10.1016/j.ica.2004.10.034
Kawata, S.; Kitagawa, S.; Kumagai, H.; Ishiyama, T.; Honda, K.; Tobita, H.; Adachi, K.; Katada, M. Chem. Mater. 1998, 10, 3902-3912. DOI: https://doi.org/10.1021/cm980326v
Kawata, S.; Kitagawa, S.; Kumagai, H.; Kudo, C.; Kamesaki, H.; Ishiyama, T.; Suzuki, R.; Kondo, M.; Katada, M. Inorg. Chem. 1996, 35, 4449-4461. DOI: https://doi.org/10.1021/ic9603520
Abrahams, B. F.; Lu, K. D.; Moubaraki, B.; Murray, K. S.; Rob-son, R. J. Chem. Soc. Trans. 2000, 11, 1793-1797. DOI: https://doi.org/10.1039/b000192i
Mathoniere, C.; Carling, S. G.; Dou, Y. S.; Day, P. J. Chem. Soc. Commun. 1994, 1551-1552. DOI: https://doi.org/10.1039/C39940001551
Mathoniere, C.; Nuttall, C. J.; Carling, S. G.; Day, P. Inorg. Chem. 1996, 35, 1201-1206. DOI: https://doi.org/10.1021/ic950703v
Uemura, K.; Kitagawa, S.; Kondo, M.; Fukui, K.; Kitaura, R.; Chang, H. C.; Mizutani, T. Chem. Eur. J. 2002, 8, 3586-3600. DOI: https://doi.org/10.1002/1521-3765(20020816)8:16<3586::AID-CHEM3586>3.0.CO;2-K
Spichal, Z.; Necas, M.; Pinkas, J. Inorg. Chem. 2005, 44, 2074-2080. DOI: https://doi.org/10.1021/ic048826f
Breck, D. W.; Eversole, W. G.; Milton, R. M. J. Am. Chem. Soc. 1956, 78, 2338-2339. DOI: https://doi.org/10.1021/ja01591a082
Du, X. M.; Li, J.; Wu, E. D. Prog. Chem. 2010, 22, 248-254. DOI: https://doi.org/10.1097/GCO.0b013e3283373be9
Corma, A. Chem. Rev. 1995, 95, 559-614. DOI: https://doi.org/10.1021/cr00035a006
Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B. L.; O’Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 1504-1518. DOI: https://doi.org/10.1021/ja045123o
Rosi, N. L.; Eddaoudi, M.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Angew. Chem. Int. Ed. 2002, 41, 284-287. DOI: https://doi.org/10.1002/1521-3773(20020118)41:2<284::AID-ANIE284>3.0.CO;2-M
Chen, Q. Y.; Li, Y.; Zheng, F. K.; Zou, W. Q.; Wu, M. F.; Guo, G. C.; Wu, A. Q.; Huang, J. S. Inorg. Chem. Commun. 2008, 11, 969-971. DOI: https://doi.org/10.1016/j.inoche.2008.05.009
Chen, Z. F.; Xiong, R. G.; Abrahams, B. F.; You, X. Z.; Che, C. M. J. Chem. Soc. Trans. 2001, 2453-2455. DOI: https://doi.org/10.1039/b105130j
Collins, D. J.; Ma, S.; Zhou, H.-C. Metal Organic Frameworks esign and Application. Wiley-VCH, New Jersey, 2009.
Ma, S.; Collier, C. D.; Zhou, H.-C. Design and Construction of Metal-Organic Frameworks for Hydrogen Storage and Selective Gas Adsoprtion. New Jersey, 2009. DOI: https://doi.org/10.1002/9780470467336.ch12
Clegg, W. Compr. Coord. Chem. 2003, 1, 579-583. DOI: https://doi.org/10.1016/B0-08-043748-6/01114-2
Demazeau, G. High Press. Res. 2007, 27, 173-177. DOI: https://doi.org/10.1080/08957950601105002
Mukhopadhyay, S.; Lasri, J.; Charmier, M. A. J.; da Silva, M.; Pombeiro, A. J. L. Dalt. Trans. 2007, 5297-5304. DOI: https://doi.org/10.1039/b709959b
Barbour, L. J. Chem. Commun. 2006, 1163-1168. DOI: https://doi.org/10.1039/b515612m
Soegiarto, A. C.; Ward, M. D. Cryst. Growth Des. 2009, 9, 3803-3815. DOI: https://doi.org/10.1021/cg900578u
Langmuir, I. J. Am. Chem. Soc. 1916, 38, 2221-2295. DOI: https://doi.org/10.1021/ja02268a002
Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309-319. DOI: https://doi.org/10.1021/ja01269a023
IUPAC Manual of Symbols and Terminology Appendix 2, Pt. 1, Colloid and Surface Chemistry. 1972.
Takamizawa, S. Making Crystals by Design: Nanoporosity, Gas Storage, Gas Sensing . Wiley-VCH, 2007. DOI: https://doi.org/10.1002/9783527610112.ch12
Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E. J. Am. Chem. Soc. 1940, 62, 1723-1732. DOI: https://doi.org/10.1021/ja01864a025
Greeg, S. J.; Sing, K. S. W. Adsorption, Surface Area, and Poro-sity. Academic Press, London, 1984.
Sing, K. S. W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pie-rotti, R.A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603-619. DOI: https://doi.org/10.1351/pac198557040603
Dinc?, M.; Han, W. S.; Liu, Y.; Dailly, A.; Brown, C. M.; Long, J. R. Angew. Chem. Int. Ed. 2007, 46, 1419-1422. DOI: https://doi.org/10.1002/anie.200604362
Ma, S. Q.; Zhou, H. C. Chem. Commun. 2010, 46, 44-53. DOI: https://doi.org/10.1039/B916295J
Férey, G. Nature 2005, 436, 187-188. DOI: https://doi.org/10.1038/436187a
Britt, D.; Tranchemontagne, D.; Yaghi, O. M. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 11623-11627. DOI: https://doi.org/10.1073/pnas.0804900105
Walker, G. Solid-State Hydrogen Storage. Woodhead Publishing in Materials, Cambridge , 2008. DOI: https://doi.org/10.1201/9781439832417
Kondo, M.; Yoshitomi, T.; Seki, K.; Matsuzaka, H.; Kitagawa, S. Angew. Chem. Int. Ed. 1997, 36, 1725-1727. DOI: https://doi.org/10.1002/anie.199717251
Johnson, J. Chem. Eng. News 2004, 82, 36-42. DOI: https://doi.org/10.1021/cen-v082n051.p036
Yong, Z.; Mata, V.; Rodrigues, A. E. Sep. Purif. Technol. 2002, 26, 195-205. DOI: https://doi.org/10.1016/S1383-5866(01)00165-4
Millward, A. R.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 17998-17999. DOI: https://doi.org/10.1021/ja0570032
Arstad, B.; Fjellvag, H.; Kongshaug, K. O.; Swang, O.; Blom, R. Adsorpt. Int. Adsorpt. Soc. 2008, 14, 755-762. DOI: https://doi.org/10.1007/s10450-008-9137-6
Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O’Keeffe, M.; Yaghi, O. M. Nature 2004, 427, 523- 527. DOI: https://doi.org/10.1038/nature02311
Stang, P. J.; Diederich, F. Modern Acetylene Chemistry. VCH, New York, 1995. DOI: https://doi.org/10.1002/9783527615278
Chien, J. C. W. Polyacetylene: Chemistry, Physics and Material Science. Academic, New York, 1984.
Balachandra, P.; Nathan, H. S. K.; Reddy, B. S. Renew. Energy 2010, 35, 1842-1851. DOI: https://doi.org/10.1016/j.renene.2009.12.020
Budavari, S. The Merck Index , 12th edn. Merck Research Labo-ratories, New Jersey, 1996.
Radhakrishnan, R.; Gubbins, K. E.; Sliwinska-Bartkowiak, M. J. Chem. Phys. 2000, 112, 11048-11057. DOI: https://doi.org/10.1063/1.481745
Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota, Y.; Belosludov, R. V; Kobayashi, T. C.; Sakamoto, H.; Chiba, T.; Takata, M.; Kawazoe, Y.; Mita, Y. Nature 2005, 436, 238-241. DOI: https://doi.org/10.1038/nature03852
Yang, J.; Sudik, A.; Wolverton, C.; Siegel, D. J. Chem. Soc. Rev. 2010, 39, 656-675. DOI: https://doi.org/10.1039/B802882F
Kitaura, R.; Kitagawa, S.; Kubota, Y.; Kobayashi, T. C.; Kindo, K.; Mita, Y.; Matsuo, A.; Kobayashi, M.; Chang, H-.C.; Ozawa, T. C.; Suzuki, M.; Sakata, M.; Takata, M. Science 2005, 298, 2358-2361. DOI: https://doi.org/10.1126/science.1078481
Satyapal, S.; Petrovic, J.; Read, C.; Thomas, G.; Ordaz, G. Catal. Today 2007, 120, 246-256. DOI: https://doi.org/10.1016/j.cattod.2006.09.022
Rowsell, J. L. C.; Yaghi, O. M. Microporous Mesoporous Mater. 2004, 73, 3-14. DOI: https://doi.org/10.1016/j.micromeso.2004.03.034
Rowsell, J. L. C.; Yaghi, O. M. Angew. Chem. Int. Ed. 2005, 44, 4670-4679. DOI: https://doi.org/10.1002/anie.200462786
Collins, D. J.; Zhou, H. C. J. Mater. Chem. 2007, 17, 3154-3160. DOI: https://doi.org/10.1039/b702858j
Lin, X.; Jia, J. H.; Hubberstey, P.; Schröder, M.; Champness, N.
R. Crystengcomm 2007, 9, 438-448. DOI: https://doi.org/10.1039/B706207A
Thomas, K. M. Dalt. Trans. 2009, 1487-1505. DOI: https://doi.org/10.1039/b815583f
Zhao, D.; Yuan, D. Q.; Zhou, H. C. Energy Environ. Sci. 2008, 1, DOI: https://doi.org/10.1039/b808322n
- 235.
Thomas, K. M. Catal. Today 2007, 120, 389-398. DOI: https://doi.org/10.1016/j.cattod.2006.09.015
DOE Hydrogen, Fuel Cells & Infrastructure Technologies Pro-gram. 2007.
Zhou, W.; Wu, H.; Hartman, M. R.; Yildirim, T. J. Phys. Chem. C 2007, 111, 16131-16137. DOI: https://doi.org/10.1021/jp074889i
Panella, B.; Hirscher, M.; Putter, H.; Muller, U. Adv. Funct. Ma-ter. 2006, 16, 520-524. DOI: https://doi.org/10.1002/adfm.200500561
Rowsell, J. L. C.; Millward, A. R.; Park, K. S.; Yaghi, O. M. J. Am. Chem. Soc. 2004, 126, 5666-5667. DOI: https://doi.org/10.1021/ja049408c
Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Ed-daoudi, M.; Kim, J. Nature 2003, 423, 705-714. DOI: https://doi.org/10.1038/nature01650
Latroche, M.; Surblé, S.; Serre, C.; Mellot-Draznieks, C.; Llewellyn, P. L.; Lee, J. H.; Chang, J. S.; Jhung, S. H.; Férey, G. Angew. Chem. Int. Ed. 2006, 45, 8227-8231. DOI: https://doi.org/10.1002/anie.200600105
Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, I.; Margiolaki, I. Science 2005, 309, 2040-2042. DOI: https://doi.org/10.1126/science.1116275
Wong-Foy, A. G.; Matzger, A. J.; Yaghi, O. M. J. Am. Chem. Soc. 2006, 128, 3494-3495. DOI: https://doi.org/10.1021/ja058213h
Kesanli, B.; Cui, Y.; Smith, M. R.; Bittner, E. W.; Bockrath, B. C.; Lin, W. B. Angew. Chem. Int. Ed. 2005, 44, 72-75. DOI: https://doi.org/10.1002/anie.200461214
Dinc?, M.; Long, J. R. Angew. Chem. Int. Ed. 2008, 47, 6766-6779. DOI: https://doi.org/10.1002/anie.200801163
Bhatia, S. K.; Myers, A. L. Langmuir 2006, 22, 1688-1700. DOI: https://doi.org/10.1021/la0523816
Dinc?, M.; Long, J. R. J. Am. Chem. Soc. 2007, 129, 11172-11176. DOI: https://doi.org/10.1021/ja072871f
Dinc?, M.; Long, J. R. J. Am. Chem. Soc. 2005, 127, 9376-9377. DOI: https://doi.org/10.1021/ja0523082
Dinc?, M.; Dailly, A.; Liu, Y.; Brown, C. M.; Neumann, D. A.; Long, J. R. J. Am. Chem. Soc. 2006, 128, 16876-16883. DOI: https://doi.org/10.1021/ja0656853
Peterson, V. K.; Liu, Y.; Brown, C. M.; Kepert, C. J. J. Am. Chem. Soc. 2006, 128, 15578-15579. DOI: https://doi.org/10.1021/ja0660857
Brown, C. M.; Liu, Y.; Yildirim, T.; Peterson, V. K.; Kepert, C. J. Nanotechnology 2009, 20, 204025. DOI: https://doi.org/10.1088/0957-4484/20/20/204025
Zhou, W.; Wu, H.; Yildirim, T. J. Am. Chem. Soc. 2008, 130, 15268-15269. DOI: https://doi.org/10.1021/ja807023q
Wang, X. S.; Ma, S. Q.; Forster, P. M.; Yuan, D. Q.; Eckert, J.; Lopez, J. J.; Murphy, B. J.; Parise, J. B.; Zhou, H. C. Angew. Chem. Int. Ed. 2008, 47, 7263-7266. DOI: https://doi.org/10.1002/anie.200802087
Long, J.; Head-Gordon, M., in: FY 2014 Progress Report for the DOE Hydrogen and Fuel Cells Program. DOE, Washington, D. C. 2014, IV-73-IV-78.
Li, Y. W.; Yang, R. T. J. Am. Chem. Soc. 2006, 128, 8136-8137. DOI: https://doi.org/10.1021/ja061681m
Mulfort, K. L.; Hupp, J. T. J. Am. Chem. Soc. 2007, 129, 9604-9505. DOI: https://doi.org/10.1021/ja0740364
Li, Y.; Yang, R. T. J. Am. Chem. Soc. 2005, 128, 726-727. DOI: https://doi.org/10.1021/ja056831s
Somorjai, G. A. Surf. Sci. 1994, 299, 849-866. DOI: https://doi.org/10.1016/0039-6028(94)90702-1
Gee, A. T.; Hayden, B. E.; Mormiche, C.; Nunney, T. S. J. Chem. Phys. 2000, 112, 7660-7668. DOI: https://doi.org/10.1063/1.481360
Yang, R. T.; Wang, Y. J. Am. Chem. Soc. 2009, 131, 4224-4226. DOI: https://doi.org/10.1021/ja808864r
Murray, L.; Dinc?, M.; Long, J. Chem. Soc. Rev. 2012, 112, 782-835. DOI: https://doi.org/10.1021/cr200274s
Sumida, K.; Rogow, D. L.; Mason, J. a; Mcdonald, T. M.; Bloch,
E. D.; Herm, Z. R.; Bae, T.; Long, J. R. Chem. Rev. 2012, 112, 724-781 DOI: https://doi.org/10.1021/cr2003272
Liu, J.; Wang, Y.; Benin, A. I.; Jakubczak, P.; Willis, R. R.; Le-Van, M. D. Langmuir 2010, 26, 14301-14307. DOI: https://doi.org/10.1021/la102359q
Yang, S. H.; Lin, X.; Dailly, A.; Blake, A. J.; Hubberstey, P.; Champness, N. R.; Schröder, M. Chem. Eur. J. 2009, 15, 4829-4835. DOI: https://doi.org/10.1002/chem.200802292
Fracaroli, A. M.; Furukawa, H.; Suzuki, M.; Dodd, M.; Okajima, S.; Gándara, F.; Reimer, J. a.; Yaghi, O. M. J. Am. Chem. Soc. 2014, 136, 8863-8866. DOI: https://doi.org/10.1021/ja503296c
Cohen, S. M. Chem. Rev. 2012, 112, 970-1000. DOI: https://doi.org/10.1021/cr200179u
Stock, N.; Biswas, S. Chem. Rev. 2012, 112, 933-969. DOI: https://doi.org/10.1021/cr200304e
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
