Theoretical Investigation Non-covalent Interactions of N-(diphenylphosphinothioyl)-2-pyrazinecarboxamide

Authors

DOI:

https://doi.org/10.29356/jmcs.v68i2.1936

Keywords:

Phosphine chalcogenide, Non-covalent interaction, NCI analysis, Hirshfeld, QTAIM, NBO

Abstract

Abstract. Phosphine chalcogenides can form reliable and reproducible supramolecular synthons through noncovalent interactions that can be employed for designing high dimensional supramolecular architectures. Here, we systematically study the influence of non-covalent interactions in the fabrication of these synthons and the stability of the crystalline structure of (N2C4H3)C(O)NHP(S)(C6H5)2 (1) through non-covalent interactions (NCI) analysis, molecular Hirshfeld surfaces and the corresponding two-dimensional (2D) fingerprint plots. The theoretical studies were employed to further confirm the presence of these synthons by comparing the stabilization energies of the dimers and monomers. The nature and electronic structure of the phosphor-chalcogenid bond in (N2C4H3)C(O)NHP(E)(OC6H5)2(E = S(1), O(2), and Se (3)) have also been evaluated by QTAIM, NBO, MEP, and HOMO-LUMO energy gaps.

 

Resumen. Los calcogenuros de fosfina pueden formar sintones moleculares confiables y reproducibles por medio de interacciones nocovalentes que se pueden utilizar para diseñar arquitecturas supramoleculares de alta dimensionalidad. En este trabajo estudiamos sistemáticamente la influencia de las interacciones nocovalentes en la preparación de estos sintones y en la estabilidad de la estructura cristalina de N2C4H3)C(O)NHP(S)(C6H5)2 (1), usando el análisis NCI de interacciones nocovalentes, las superficies moleculares de Hirshfeld y sus correspondientes gráficas bidimensionales (2D). Los estudios teóricos se usaron para confirmar la presencia de estos sintones al comparar las energías de estabilización de los dímeros y monómeros. La naturaleza y estructura electrónica del enlace fósforo-calcogenuro en (N2C4H3)C(O)NHP(E)(OC6H5)2(E = S(1), O(2), y Se (3)) también se estudiaron con QTAIM, NBO, MEP y el gap de energía HOMO-LUMO.

Downloads

Download data is not yet available.

Author Biographies

Masoud Rashidi, Lorestan University

Department of Chemistry, Faculty of Science

Niloufar Dorosti, Lorestan University

Department of Chemistry, Faculty of Science

Alireza Gholipour, Lorestan University

Department of Chemistry, Faculty of Science

References

Mirzaei, M.; Eshghi, H.; Akhlaghi Bagherjeri, F.; Mirzaei, M.; Farhadipour, A. J. Mol. Struct. 2018, 1163, 316-326. DOI: https://doi.org/10.1016/j.molstruc.2018.03.014

Desiraju, G. R. Angew. Chem. Int. Edit. 1995, 34, 2311-2327. DOI: https://doi.org/10.1002/anie.199523111

Desiraju, G. R. in: The Design of Organic Solids: Elsevier: Amsterdam, 1989.

Desiraju, G. R. Angew. Chem. Int. Edit. 2007, 46, 8342–8356. DOI: https://doi.org/10.1002/anie.200700534

Seth, S. K.; Bauza, A.; Frontera, A. Cryst. Eng. Comm. 2018, 20, 746-754. DOI: https://doi.org/10.1039/C7CE01991B

Khavasi, H. R.; Gholami, A.; Hosseini, M.; Nikpoor, L.; Eskandari, K. Cryst. Growth. Des. 2020, 20, 2266-2274. DOI: https://doi.org/10.1021/acs.cgd.9b01385

Ray Choudhury, S.; Gamez, P.; Robertazzi, A.; Chen, C.Y.; Lee, H. M.; Mukhopadhyay, S. Cryst. Growth. Des. 2008, 8, 3773-3784. DOI: https://doi.org/10.1021/cg800403p

Sathiyaraj, E.; Thirumaran, S.; Selvanayagam, S.; Sridhar, B.; Ciattini, S. J. Mol. Struct. 2018, 1159, 156-166. DOI: https://doi.org/10.1016/j.molstruc.2018.01.038

Mitra, M.; Manna, P.; Bauza, A.; Ballester, P.; Seth, S-k.; Choudhury, S. R.; Frontera, A.; Mukhopadhyay, S. J. Phys. Chem. B. 2014, 118, 14713-14726. DOI: https://doi.org/10.1021/jp510075m

Gholivand, K.; Hosseini, M.; Ebrahimi Valmoozi, A. A.; Farshadfar, K. Cryst. Eng. Comm. 2017, 19, 2536-2548. DOI: https://doi.org/10.1039/C7CE00039A

Khavasi, H. R.; AzhdariTehrani, A. Inorg. Chem. 2013, 52, 2891–2905. DOI: https://doi.org/10.1021/ic3021113

Metrangolo, P.; Resnati, G. in: Halogen bonding, fundamentals and applications, Springer. 2008. DOI: https://doi.org/10.1007/978-3-540-74330-9

Piltan, M.; Farshadfar, K.; Mark Roe, S. Eur. J. Inorg. Chem. 2017, 2017, 2723-2726. DOI: https://doi.org/10.1002/ejic.201700369

(a) Khavasi, H. R.; Azizpoor Fard, M. Cryst. Growth. Des. 2010, 10, 1892-1896. (b) Field J. S.; Munro, Q. Q.; Waldron, B. P. Dalton. Trans. 2012, 41, 5486−5496. (c) He, L.; Ma, D.; Duan, L.; Wei, Y.; Qiao, J.; Zhang, D.; Dong, G.; Wang, L.; Qiu, Y. Inorg. Chem. 2012, 51, 4502−4510. (d) Derikvand, Z.; Azadbakht, A.; AmiriRudbari, H. J. Inorg. Organomet. Polym. Mater. 2019, 29, 502–516.

(a) Janssen, F. F. B. J.; Gelde, R. G. Rowan, A. E. Cryst. Growth. Des. 2011, 11, 4326−4333. (b) Tiekink, E. R. T.; Zukerman-Schpector, J. Cryst.Eng. Comm. 2009, 11, 1176-1186. (c) Hay, B. P.; Bryantsev, V. S. Chem. Commun. 2008, 2417−2428. (d) Mooibroek, T. J.; Gamez, P.; Reedijk, J. Cryst. Eng. Comm. 2008, 10, 1501−1515. (e) Schottel, B. L.; Chifotides, H. T.; Dunbar, K. R. Chem. Soc. Rev. 2008, 37, 68−83. (f) Orvay, F.; Bauza, A.; Barcelo-Oliver, M.; Raso, A. G.; Fiol, J. J.; Costa, A.; Molins, E.; Mata, E.; Frontera, A. Cryst. Eng. Comm. 2014, 16, 9043-9053.

Popescu, A. P.; Laromaine, A.; Teixidor, F.; Sillanpaa, R.; Kivekas, R.; Liambias, J. I.; Vinas, C. Chem. Eur. J. 2011, 17, 4429 - 4443. DOI: https://doi.org/10.1002/chem.201003330

Davies, R. in: Chalcogen-phosphorus (and heavier congeners) chemistry, Chapter 5 of handbook of chalcogen chemistry, RSC Publishing, 2007. DOI: https://doi.org/10.1039/9781847557575-00286

(a) Cook, J. B.; Nicholson, B. K.; Smith, D. W. J. Organomet. Chem. 2004, 689, 860-869 (b) Chutia, P.; Kumari, N.; Sharma, M.; Woollins, J. D.; Slawin, A. M. Z.; Dutta, D. K. Polyhedron. 2004, 23, 1657-1661.

Glueck, D. S. Chem. Eur. J. 2008, 14, 7108 - 7117. DOI: https://doi.org/10.1002/chem.200800267

(a) Koh, W. K.; Yoon,Y.; Murray, C. B. Chem. Mater. 2011, 23, 1825-1829. (b) Evans, C. M.; Evans, M. E.; Krauss, T.D. J. Am. Chem. Soc. 2010, 132, 10973-10975. (c) Liu, H.; Owen, J. S.; Alivisatos, A. P. J. Am. Chem. Soc. 2007, 129, 305-312. (d) Arachchige, I. U.; Brock, S. L. Acc. Chem. Res. 2007, 40, 801 - 809.

(a) Gholivand, K.; Madani Alizadehgan, A.; Mojahed, F.; Soleimani, P. Polyhedron. 2008, 27, 1639-1649 (b) Gholivand, K.; Shariatinia, Z.; Mashhadi, S. M.; Daeepour, F.; Farshidnasab, N.; Mahzouni, H.R.; Taheri, N.; Amiri, S.; Ansar, S. Polyhedron. 2009, 28, 307–321. (c) Shi, M.; Shi, J. W. Tetrahedron: Asymmetry. 2007, 18, 645–650.

Gholivand, K.; Gholami, A.; Ebrahimi, A. A. V.; Abolghasemi, S. T.; Esrafili, M. D.; Fadaei, F. T.; Schenk, K. J. Rsc. Adv. 2015, 5, 17482-17492. DOI: https://doi.org/10.1039/C4RA12925C

Gholivand, K.; Farshadian, S.; Hosseini, Z.; Khajeh, K.; Akbari, N. Appl. Organomet. Chem. 2010, 24, 700–707. DOI: https://doi.org/10.1002/aoc.1669

(a) Eini Roumiani, M.; Dorosti,N. Ultrason. Sonochem. 2019, 55, 207-216. (b) Nikpour, S.; Dorosti, N.; Afshar, F.; Kubicki, M. Appl. Organomet. Chem. 2020, e5724. (c) Gholivand, K.; Hosseini, Z.; Farshadian, S.; Naderi Manesh, H. Eur. J. Med. Chem. 2010, 45, 5130-5139. DOI: https://doi.org/10.1016/j.ejmech.2010.08.025

Manna, P.; Ray Choudhury, S.; Mitraa, M.; Seth, S.K.; Helliwell, M.; Bauza, A.; Frontera, A.; Mukhopadhyay, S. A. J. Solid. State. Chem. 2014, 220, 149-156. (b) Mirzaei, M.; Eshtiagh-Hosseini, H.; Karrabi, Z.; Notash, B.; Bauza, A.; Frontera, A.; Habibi, M.; Ardalani, M.; Shamsipur, M.; J. Mol. Stru. 2015, 1079, 78-86.

(a) Gholivand, K.; Hosseini, M.; Maghsoud, Y.; Valenta, J.; Ebrahimi Valmuzi, A.A.; Owczarzak, A.; Kubicki, M.; Jamshidi, M.; Kahnouji, M. Inorg. Chem. 2019, 58, 9, 5630–5645. (b) Gholivand, K.; Farshadfar, K.; Roe, S.M.; Hosseini, M.; Gholami, A. Cryst. Eng. Comm.2016, 18, 7104-7115. DOI: https://doi.org/10.1021/acs.inorgchem.8b03611

Dorosti, N.; Nikpour, S.; Molaei, F.; Kubicki, M. Chem. Pap. 2021, 75, 2503-2516. DOI: https://doi.org/10.1007/s11696-020-01461-2

Gholivand, K.; Dorosti, N. Monatsh. Chem. 2013, 144, 1417-1425. DOI: https://doi.org/10.1007/s00706-013-0960-4

Alvarado, S. R.; Shortt, I. A.; Fan, H. I.; Vela, J. Organometallics. 2015, 34, 4023-4031. DOI: https://doi.org/10.1021/acs.organomet.5b00428

Yanai, T.; Tew, D. P.; Handy, N. C. Chem. Phys. Lett. 2004, 393, 51–57. DOI: https://doi.org/10.1016/j.cplett.2004.06.011

Boys, S. F.; Bernardi, F. Mol. Phys.1970, 19, 553–566. DOI: https://doi.org/10.1080/00268977000101561

Bader, R. F. W. Chem. Rev.1991, 91, 893-928. DOI: https://doi.org/10.1021/cr00005a013

Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev.1988, 88, 899–926. DOI: https://doi.org/10.1021/cr00088a005

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, M. A.; Robb, J. R.; Cheeseman, G.;et al. Gaussian 09, Revision D.01. Gaussian, Inc. Wallingford, 2009.

Johnson, E. R.; Keinan, S.; Mori-Sanchez, P.; Contreras-Garcia, J.; Cohen, A. J.; Yang, W. J. Am. Chem. Soc. 2010, 132, 6498–6506. DOI: https://doi.org/10.1021/ja100936w

Lu, T.; Chen, F. J. Theor. Comput. Chem. 2012, 11, 163-183. DOI: https://doi.org/10.1142/S0219633612500113

Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics.1996, 14, 33–38. DOI: https://doi.org/10.1016/0263-7855(96)00018-5

Wolff, S. K.; Grimwood, D. J.; McKinnon, J. J.; Turner, M. J.; Jayatilaka, D.; Spackman, M. A. Crystalexplorer 3.0, University of Western Australia, Perth, Australia, 2012.

Spackman, M. A.; McKinnon, J. J. Cryst. Eng. Comm. 2002, 4, 378–392. DOI: https://doi.org/10.1039/B203191B

Nishio, M. Cryst. Eng. Comm. 2004, 6, 130–158. DOI: https://doi.org/10.1039/b313104a

Nishio, M. Phys. Chem. Chem. Phys. 2011, 13, 13873–13900. DOI: https://doi.org/10.1039/c1cp20404a

(a) Umezawa, Y.; Tsuboyama, S.; Takahashi, H.; Uzawa, J.; Nishio, M. Tetrahedron. 1999, 5, 10047–10056. (b) Mirdya, S.; Roy, S.; Chatterjee, S.; Bauza, A.; Frontera, A.; Chattopadhyay, S. Cryst. Growth. Des. 2019, 19, 5869-5881.

Kim, K. S.; Tarakeshwar, P.; Lee, J. Y. Chem. Rev. 2000, 100, 4145-4185. DOI: https://doi.org/10.1021/cr990051i

(a) Gabriele, S.; Gatti, C.; Lo Presti, L.; Garcia, J. C. Chem. Eur. J. 2012, 18, 15523–15536. (b) Lande, D. N.; Bhadane, S. A.; Gejji, S. P. J. Phys. Chem. 2017, 121, 1814–1824.

Spackman, M. A.; Byrom, P. G. Chem. Phys. Lett. 1997, 267, 215–220. DOI: https://doi.org/10.1016/S0009-2614(97)00100-0

Gholivand, K.; Azadbakht, M.; Maghsoud, Y.; Hosseini, M. J. Organomet. Chem. 2019, 879, 27-39. DOI: https://doi.org/10.1016/j.jorganchem.2018.10.012

Taghizadeh, L.; Montazerozohori, M.; Masoudiasl, A.; Joohari, S.; White, J. M. Mater. Sci. Eng. C. 2017, 77, 229–244. (b) Bejaoui, C.; Ameur, I.; Derbel, N.; Linden, A.; Abid, S. J. Mol. Struct. 2018, 1166, 7-14. (c) Binzet, G.; Gumus, I.; Dogen, A.; Florke, U.; Kulku, N.; Arslan, H. J. Mol. Struct. 2018, 1161, 519-529.

Politzer, P.; Murray, J. S. Theor. Chem. Acc. 2002, 108, 134–142 DOI: https://doi.org/10.1007/s00214-002-0363-9

(a) Gholivand, K.; Mahzouni, H. R.; Pourayoubi, M.; Amiri, S. Inorg. Chim. Acta. 2010, 363, 2318–2324. (b) Gholivand, K.; Oroujzadeh, N.; Afshar, F. J. Organomet. Chem. 2010, 695, 1383–1391. (c) Torabi Farkhani, E.; Pourayoubi, M.; Izadyar, M.; Andreev, P. V.; Shchegravina, E. S. Dalton. Trans. 2019, 48, 17908-17918. (d) Taherzadeh, M.; Pourayoubi,M.; Nečas, M. Phosphorus. Sulfur. 2019, 194, 39-46.

Bader, R. F. W. Oxford University Press, New York, 1990.

Dobado, J. A.; Martínez-García, H.; Molina, J.M.; Sundberg, M. R. J. Am. Chem. Soc.1998, 120, 33, 8461-8471. DOI: https://doi.org/10.1021/ja980141p

Jamroz, M. H. in: Vibrational energy distribution analysis, VEDA 4 computer program, Poland, 2004.

Zhou, Z.; Navangul, H. V. J. Phys. Org. Chem. 1990, 3, 784-788. DOI: https://doi.org/10.1002/poc.610031203

Senet, P. Chem. Phys. Lett. 1997, 275, 527-532. DOI: https://doi.org/10.1016/S0009-2614(97)00799-9

Sarıoz, O.; Oznergiz, S.; Kandemirli, F. Syn. React. Inorg. Met. Org. Chem. 2013, 43, 185–195.

×

Downloads

Additional Files

Published

2024-02-09
x

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.

Loading...