Comparison of the chemical composition and biological activities of essential oils from two Satureja species: Molecular docking studies

Authors

  • Behrouz Ezatpour
  • Niloufar Dorosti Associate
  • Elham Rezaee
  • Fatemeh Ghaziani

DOI:

https://doi.org/10.29356/jmcs.v67i1.1816

Keywords:

S. khuzistanica, S. rechingeri, anticholinesterase activity, molecular docking, anticancer activity

Abstract

The Satureja species (family Lamiaceae) are economically important plants; they have been used as medicinal plants, flavoring in food, and cosmetic material for centuries. The volatile oils of two Satureja species, S. khuzistanica and S. rechingeri, were obtained by hydrodistillation method with Clevenger-type apparatus. The chemical composition of oils was analyzed by gas chromatography coupled with mass spectrometry (GC-MS). The major constituent of S. khuzistanica oil was Carvacrol (68.7%) and those of S. rechingeri oil were Thymol (51.28%) and Carvacrol (22.08%). Anticholinesterase and anticancer activities were screened by Ellman’s method and MTT assay, respectively. Besides, the role of non-covalent interactions in cholinesterase enzyme (ChE) inhibition by the main ingredient, Carvacrol, was studied through docking calculations. The inhibitory activity of S. khuzistanica oil was higher than those of S. rechingeri oil with IC50: 377.14±2.36 and 251.37±1.88 µg/ml against acetylcholinesterase enzyme (AChE) and butyrylcholinesterase enzyme (BChE). S. rechingeri essential oil was found to possess relatively moderate cytotoxic activity with IC50 values of 488.96±3.19 µg/ml and 767.22±3.19 µg/ml on A2780 and PC-3 cells, respectively. The role of hydrogen bonding and π…π stacking interactions in enzyme inhibition by a common ingredient, Carvacrol, was characterized.

 

Resumen. Las especies Satureja (familia Lamiaceae) son plantas económicamente relevantes; durante siglos se han utilizado como plantas medicinales, saborizantes en alimentos y material cosmético. Se obtuvieron los aceites volátiles de dos especies de Satureja, S. khuzistanica y S. rechingeri, empleando el método de hidrodestilación con un aparato tipo Clevenger. La composición química de los aceites se analizó mediante cromatografía de gases acoplada a espectrometría de masas (GC-MS). El componente principal del aceite de S. khuzistanica fue el carvacrol (68,7 %) y los del aceite de S. rechingeri fueron el timol (51,28 %) y el carvacrol (22,08 %). Se evaluó la actividad anticolinesterasa y anticancerígena emplenado el método de Ellman y el ensayo MTT, respectivamente. Además, se estudió el papel de las interacciones no covalentes en la inhibición de la enzima colinesterasa (ChE) por parte del ingrediente principal, Carvacrol, mediante cálculos de acoplamiento. La actividad inhibidora del aceite de S. khuzistanica fue superior a la del aceite de S. rechingeri con IC50: 377,14±2,36 y 251,37±1,88 µg/ml frente a la enzima acetilcolinesterasa (AChE) y la enzima butirilcolinesterasa (BChE). Se encontró que el aceite esencial de S. rechingeri posee una actividad citotóxica relativamente moderada con valores IC50 de 488,96±3,19 µg/ml y 767,22±3,19 µg/ml en células A2780 y PC-3, respectivamente. Se caracterizó el papel de los enlaces de hidrógeno y las interacciones de apilamiento π…π en la inhibición enzimática por el Carvacrol.

Downloads

Download data is not yet available.

References

Bachurin, S.O.; Bovina, E.V.; Ustyugov, A.A. Med. Res. Rev. 2017, 37, 1186-1225. DOI: https://doi.org/10.1002/med.21434

Klimova, B.; Kuca, K. J. Appl. Biomed. 2015, 3, 257-261. DOI: https://doi.org/10.1016/j.jab.2015.07.004

Klafki, H-W.; Staufenbiel M.; Kornhuber, J.; Wiltfang, J. Brain. 2006, 129, 2840-2855. DOI: https://doi.org/10.1093/brain/awl280

Nakhjiri, M.; Safavi, M.; Alipour, E.; Emami, S. Eur. J. Med. Chem. 2012, 50, 113-123. DOI: https://doi.org/10.1016/j.ejmech.2012.01.045

Nabavi, M.; Esmaeilzadeh, H.; Arshi, S.; Fallahpour, M.; Rezaei, N. Allergol Immunopathol. (Madr). 2014, 42, 85-7. DOI: https://doi.org/10.1016/j.aller.2012.10.003

Newman, D.J.; Cragg, G.M. J. Nat. Prod. 2020, 83, 770-803. DOI: https://doi.org/10.1021/acs.jnatprod.9b01285

Al-Rimawi, F.; Jaradat, N.; Qneibi, M.; Hawash, M.; Emwas, N. Eur. J. Integr. Med. 2020, 38, 101196. DOI: https://doi.org/10.1016/j.eujim.2020.101196

Lane, R.M.; Potkin, S.G.; Enz, A. Int. J. Neuropsychopharmacol. 2006, 9, 101-124. DOI: https://doi.org/10.1017/S1461145705005833

Karakaya, S.; Özdemir, Ö; Koka, M.; Demirci, B; Aksakal, Ö; Turkez, H; Baser, K. H.C. J. Essent. Oil Res. 2020, 32, 436-448. DOI: https://doi.org/10.1080/10412905.2020.1787884

Dirtinova, L.; Dobes, P.; Pohanka, M. J. Appl. Biomed. 2014, 12, 285-290. DOI: https://doi.org/10.1016/j.jab.2014.01.010

Wilkinson, D.G.; Francis, P.T.; Schwam, E.; Payne-Parrish, J. Drug Aging. 2004, 21, 453-478. DOI: https://doi.org/10.2165/00002512-200421070-00004

Singh, M.; Kaur, M.; Kukreja, H.; Chugh, R.; Silakari, O.; Singh D. Eur. J. Med. Chem. 2013, 70, 165-188. DOI: https://doi.org/10.1016/j.ejmech.2013.09.050

Inglis, F. Int. J. Clin. Pract. Suppl. 2002, 127, 45-63.

Saab, A.M.; Lampronti, I.; Borgatti, M.; Finotti, A.; Harb, F.; Safi, S.; Gambari, R. Nat. Prod. Res. 2012, 26, 2227-2231. DOI: https://doi.org/10.1080/14786419.2011.643885

Ashour, H. M. Cancer. Biol. Ther. 2008, 7, 399-403. DOI: https://doi.org/10.4161/cbt.7.3.5367

Jeune, M.A.L.; Kumi-Diaka, J.; Brown, J. J. Med. Food. 2005, 8, 469 - 475. DOI: https://doi.org/10.1089/jmf.2005.8.469

Gezici, S. Ann. Phytomed. 2018, 7, 38-45. DOI: https://doi.org/10.21276/ap.2018.7.2.5

Sonboli, A.; Fakhari, A.R.; Kanani, M.R.; Yousefzadi, M. Z. Naturforsch C. 2004, 59, 777-781. DOI: https://doi.org/10.1515/znc-2004-11-1202

Abad, M.J.; Bermejo, P.; Gonzales, E.; Iglesias, I.; Irurzun, A.; Carrasco, L. Gene Pharmacol. 1999, 32, 499-503. DOI: https://doi.org/10.1016/S0306-3623(98)00214-6

Hajhashemi, V.; Ghannadi, A.; Pezeshkian, S.K. J. Ethnopharmacol. 2002, 82, 83-87. DOI: https://doi.org/10.1016/S0378-8741(02)00137-X

Cetojevic-simin, D.D.; Canadanovic-Brunet, J.M.; Bogdanovic, G.M.; Cetkovic, G.S.; Tumbas, V.T.; S.M. Djilas. J. Buon. 2004, 9, 443-449.

Mozafarian, V. Lexicon of Iranian plant names. Publishing contemporary vocabulary. Tehran Press, Tehran, Iran, 1996, 234-251.

Rechinger, K.H. Satureja. In: Rechinger KH and Hedge IC (Eds), Flora Iranica: Labiatae. Akademische Druck und Verlagsanstalt, Graz, Austria, 1982, 150, 495-504.

Jamzad, Z. Iran. J. Bot. 1994, 6, 215-218.

Jamzad, Z. Satureja rechingeri (Labiatae) - a new species from Iran, Annalen des Naturhistorischen Museums in Wien. Serie B für Botanik und Zoologie, 98. Bd., Suppl. Festschrift 90 Jahre Karl Heinz Rechinger. 1996, 75-77.

Alizadeh, A. Z. Naturforsch. 2015, 70, 51-58. DOI: https://doi.org/10.1515/znc-2014-4121

Abdollahi, M.; Salehnia, A.; Mortazavi, S.H.; Ebrahimi, M.; Shafiee, A.; Fouladian, F.; Keshavarz, K.; Sorouri, S.; Khorasani, R.; Kazemi, A. Med. Sci. Monit. 2003, 9, BR331-335.

Amanlou, M.; Fazeli, M.R.; Arvin, A.; Amin, H.G.; Farsam, H. Fitoterapia. 2004, 75, 768-70. DOI: https://doi.org/10.1016/j.fitote.2004.09.005

Yousefzadi, M.; Riahi-Madvar, A.; Hadian, J.; Rezaee, F.; Rafiee, R.; Biniaz, M. J. Immunotoxicol. 2014, 11, 50-55. DOI: https://doi.org/10.3109/1547691X.2013.789939

Amanlou, M.; Farsam, H.; Babaei, N; Saheb Jamei, M.; Tohi Dast Akrad, Z.; Salehnia, A. Daru. J. Pharm. Sci. 2007, 15, 231-235.

Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. Biochem. Pharmacol. 1961, 7, 88-90. DOI: https://doi.org/10.1016/0006-2952(61)90145-9

Trott, O.; Olson, A.J. J. Comput. Chem. 2010, 31, 455-461. DOI: https://doi.org/10.1002/jcc.21334

Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. J. Comput. Chem. 1998, 19, 1639 - 1662. DOI: https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B

Weiner, S.J.; Kollman, P.A.; Case, D.A.; Singh, U.C.; Ghio, C.E.; Alagona, G.; Profeta, S.; Weiner, P. J. Am. Chem. Soc. 1984, 106, 765-784. DOI: https://doi.org/10.1021/ja00315a051

Farsam, H.; Amanlou, M.; Radpour, M.R.; Salehinia, A.N.; Shafiee, A. Flavour. Fragr. J. 2004, 19, 308-310. DOI: https://doi.org/10.1002/ffj.1300

Hadian, J.; Esmaeili, H.; Nadjafi, F.; Khadivi-Khubb, A. Ind. Crops. Prod. 2014, 61, 403-409. DOI: https://doi.org/10.1016/j.indcrop.2014.07.034

Sefidkon, F.; Abbasi, K.; Jamzad, Z.; Ahmadi, S. Food Chemistry. 2007, 100, 1054-1058. DOI: https://doi.org/10.1016/j.foodchem.2005.11.016

Farzaneh, M.; Kiani, H.; Sharifi, R.; Reisid, M.; Hadian, J. Postharvest. Biol. Technol. 2015, 109, 145-151. DOI: https://doi.org/10.1016/j.postharvbio.2015.06.014

Taban, A.; Saharkhiz, M.J.; Hadian, J. Biol. Agric. Hortic. 2013, 29, 244-257. DOI: https://doi.org/10.1080/01448765.2013.830275

Nooshkam, A.; Mumivand, H.; Hadian, J.; Alemardan, A.; Morshedloo, M.R. J. Appl. Res. Med. Aromat. Plants. 2017, 6, 126-130. DOI: https://doi.org/10.1016/j.jarmap.2017.04.002

Ozadali-Sari, K.; Küçükkılınç, T.T.; Ayazgok, B.; Balkan, A.; Unsal-Tan, O. Bioorg. Chem. 2017, 72, 208-214. DOI: https://doi.org/10.1016/j.bioorg.2017.04.018

Chaiyana, W.; Okonogi, S. Phytomedicine. 2012, 19, 836-839. DOI: https://doi.org/10.1016/j.phymed.2012.03.010

Kivrak, I.; Emin Duru, M.; Ozturk, M.; Mercan, N.; Harmandar, M.; Topçu, G. Food Chem. 2009, 116, 470-479. DOI: https://doi.org/10.1016/j.foodchem.2009.02.069

Belkacem, N.; Khettal, B.; Hudaib, M.; Bustanji, Y.; Abu-Irmaileh, B.; Amrine, C.S.M. Eur. J. Integr. Med. 2021, 42, 101292. DOI: https://doi.org/10.1016/j.eujim.2021.101292

Samaradivakara, S.P.; Samarasekera, R.; Handunnetti, S.M., Weerasena, O.V.D.S. J. Ind. Crops. Prod. 2016; 83: 227-234. DOI: https://doi.org/10.1016/j.indcrop.2015.12.047

Dragland, S.; Senoo, H.; Wake, K.; Holte, K.; Blomhoff, R. J. Nutr. 2003, 133, 1286-1290. DOI: https://doi.org/10.1093/jn/133.5.1286

Alok, S.; Kumar Jain, S.; Verma, A.; Kumar, M.; Mahor, A.; Sabharwal, M. Asian. Pac. J. Trop. Biomed. 2014, 4, 78-84. DOI: https://doi.org/10.1016/S2221-1691(14)60213-6

Marotti, M.; Dellacecca, V.; Piccaglia, R.; Giovanelli, E. Acta Horticulturae. 1993, 331, 63-70. DOI: https://doi.org/10.17660/ActaHortic.1993.331.9

Jukic, M.; Politeo, O.; Maksimovic, M.; Milos, M.; Milos, M. Phytother Res. 2007, 21, 259-261. DOI: https://doi.org/10.1002/ptr.2063

Bhalla, Y.; Gupta, V. K.; Jaitak, V. J. Sci. Food. Agric. 2013, 93, 3643 - 3653. DOI: https://doi.org/10.1002/jsfa.6267

Gautam, N.; Mantha, A.K.; Mittal, S. Biomed. Res. Int. 2014, 2014, 154106. DOI: https://doi.org/10.1155/2014/154106

Fitsiou, E.; Anestopoulos, I.; Chlichlia, K.; Galanis, A.; Kourkoutas, I.; Panayiotidis, M.I.; Pappa, A. Anticancer Res. 2016, 36, 5757-5764. DOI: https://doi.org/10.21873/anticanres.11159

Arcamone, F. Doxorubicin: Anticancer Antibiotics, Elsevier Science, 2012.

(a) Kang, S. H.; Kim, Y.S.; Kim, E.K.; Hwang, J-W.; Jeong, J-H.; Lee, J-W.; Moon, S-H.; Jeon, B-T.; Park, P-J. J. Microbiol. Biotechnol. 2016, 26, 28-37; (b) Arab, H.A.; Fathi, M.; Mortezai, E.; Hosseinimehr, S.J. Pharm. Biomed. Res. 2015, 1, 26-31; (c) Yeh, J.H.; Chou, C.T.; Chen, I.S.; Lu, T.; Lin, K-L.; Yu, C-C.; Liang, W-Z.; Chang, H-T.; Kuo, C-C.; Ho, C-M.; Chang, W-T.; Shieh, P.; Jan, C-R. Chin. J. Physiol. 2017, 60, 32-40.

(a) Fan, K.; Li, X.; Cao, Y.; Qi, H.; Li, L.; Zhang, Q.; Sun, H. Anticancer Drugs. 2015, 26, 813-823; (b) Yin, Q.H.; Yan, F.X.; Zu, X.Y.; Wu, Y-h.; Wu, X-p.; Liao, M-c.; Deng, S-w.; Yin, L-l.; Zhuang, Y-Z. Cytotechnology. 2012, 64, 43-51; (c) Arunasree, K.M. Phytomedicine. 2010, 17, 581-588.

Koparal, A.T.; Zeytinoglu, M. Cytotechnology. 2003, 43, 149-154. DOI: https://doi.org/10.1023/B:CYTO.0000039917.60348.45

Burt, S. Int. J. Food Microbiol, 2004, 94, 223-253. DOI: https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

×

Downloads

Additional Files

Published

2023-01-09

Issue

Section

Regular Articles
x

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...