Determination of Pharmaceuticals Discharged in Wastewater from a Public Hospital Using LC-MS/MS Technique

Keywords: Emerging contaminants, pharmaceuticals, hospital effluent, solid phase extraction, LC-MS/MS

Abstract

Abstract. The presence of pharmaceuticals classified as emerging contaminants (EC) in surface water, groundwater, and drinking water generates uncertainty concerning the interactions that could be occurred with aquatic organisms and living beings. Thus, the monitoring of hospital wastewater is of great importance to identify the main classes of pharmaceuticals that could be discharged to the municipal sewage system and wastewater treatment plants (WWTPs). This work described the implementation and validation of a highly selective and sensitive analytical method using solid-phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the detection and quantification of these emerging compounds. The solid-phase extraction (SPE) method was employed using Oasis HLB cartridges. For LC-MS/MS analysis, the chromatographic separation was conducted in a C-18 Kinetex column (Phenomenex), and detection was achieved in an AB SCIEX QTrap 3200 tandem mass spectrometer (MS/MS) in the multiple reaction monitoring (MRM) mode. The quantitative analysis was performed by using the internal standard (IS) method with isotopically labeled analogs. The implemented method presented good linearity within the concentration range of 0.1–400 µg L-1 showing correlation coefficients (R2) ranged from 0.991 to 0.999. The limits of detection (LODs) were from 0.02 to 0.59 µg L-1, while the limits of quantification (LOQs) ranged from 0.07 to 1.80 µg L-1. The analytical method was successfully applied to the analysis of wastewater samples discharged by a public hospital in San Nicolas de los Garza, Nuevo Leon, Mexico, in two sampling periods: May 2017 and March 2018.

 

Resumen. La presencia de fármacos, clasificados como contaminantes emergentes, en agua superficial, subterránea y potable, genera incertidumbre sobre las interacciones que podrían ocurrir con organismos acuáticos y los seres vivos. Por lo tanto, el monitoreo del agua residual hospitalaria es de gran importancia para identificar los principales productos farmacéuticos que podrían descargarse al sistema de alcantarillado municipal y por lo tanto, estar presentes en el agua a tratar en las plantas de tratamiento de agua residual (PTAR). Este trabajo describe la implementación y validación de un método analítico altamente selectivo y sensible utilizando extracción en fase sólida (SPE) y cromatografía líquida acoplada a espectrometría de masas tándem (LC-MS/MS) para la detección y cuantificación de estos compuestos emergentes. Se empleó el método de extracción en fase sólida utilizando cartuchos Oasis HLB. Para el análisis LC-MS/MS, la separación cromatográfica se realizó en una columna Kinetex C-18 (Phenomenex), y la detección se realizó en un espectrómetro de masas en tándem AB SCIEX QTrap 3200 (MS/MS) en el modo de monitoreo de reacciones múltiples (MRM). El análisis cuantitativo se llevó a cabo utilizando el método de estándar interno (IS) con análogos marcados isotópicamente. El método presentó una buena linealidad dentro del rango de concentración de 0.1 a 400 µg L-1, con coeficientes de correlación (R2) que oscilaron entre 0.991 y 0.999. Los límites de detección (LOD) fueron de 0.02 a 0.59 µg L-1, mientras que los límites de cuantificación (LOQ) variaron de 0.07 a 1.80 µg L-1. El método analítico se aplicó con éxito al análisis de muestras de agua residual vertidas por un hospital público de San Nicolás de los Garza, Nuevo León, México, en dos períodos de muestreo: mayo de 2017 y marzo de 2018.

Author Biographies

Aracely Hernández-Ramírez, Universidad Autónoma de Nuevo León

Facultad de Ciencias Químicas

Rafael Hernández-Tenorio, Universidad Autónoma de Nuevo León

Facultad de Ciencias Químicas

Laura Hinojosa-Reyes, Universidad Autónoma de Nuevo León

Facultad de Ciencias Químicas

Norma Ramos-Delgado, Instituto Tecnológico de Nuevo León

Centro de Investigación e Innovación Tecnológica

References

Tran, N.H.; Reinhard M.; Gin K.Y.H., Water Res. 2018, 133, 182-207. DOI: https://doi.org/10.1016/j.watres.2017.12.029

Verlicchi, P. Hospital Wastewaters. Ed. Springer, 2018.

Gavrilescu, M.; Demnerová, K.; Aamand, J.; Agathos, S.; Fava, F., New Biotechnol. 2015, 32, 147-156. DOI: https://doi.org/10.1016/j.nbt.2014.01.001

Richardson, S.D.; Kimura, S.Y. Environmental Technology & Innovation 2017, 8, 40-56. DOI: 10.1016/j.eti.2017.04.002

Lapworth, D.J.; Baran, N.; Stuart, M.E.; Manamsa, K.; Talbot, J. Environ. Pollut. 2015, 203, 214-225. DOI:10.1016/j.envpol.2015.02.030

Meador, J.P.; Yeh, A.; Young, G.; Gallagher, E.P. Environ. Pollut. 2016, 213, 254-267. DOI: 10.1016/j.envpol.2016.01.088

Loos, R.; Carvalho, R.; António, D.; Comero, S.; Locoro, G.; Tavazzi, S.; Paracchini ,B.; Ghiani, M.; Lettieri,T.; Blaha, L.; Jarosova, B.; Voorspoels, S.; Servaes ,K.; Haglund, P; Fick, J.; Lindberg, R.; Schwesing, D.; Gawlik, B. Water Res. 2013, 47, 6475-6487. DOI: 10.1016/j.watres.2013.08.024

Archer, E.; Petrie, B.; Kasprzyk-Hordern, B.; Wolfaardt, G.M. Chemosphere 2017 174, 437-446. DOI:10.1016/j.chemosphere.2017.01.101

Halling-Sørensen, B.; Nielsen, S.N.; Lanzky, P.F.; Ingerslev, F.; Lützhøft, H.H; Jørgensen, S, Chemosphere 1998, 36, 357-393. DOI: 10.1016/s0045-6535(97)00354-8

Ternes, T.A. Water Res. 1998, 32, 3245-3260. DOI: https://doi.org/10.1016/S0043-1354(98)00099-2

Kummerer, K.; Erbe, T.; Gartiser, S.; Brinker, L. Chemosphere 1998, 36, 2437-2445. DOI: 10.1016/s0045-6535(97)10200-4.

Sui,Q.; Cao, X.; Lu, S.; Zhao, W.; Qiu, Z.; Yu, G. Emerging Contaminants 2015, 1, 14-24. DOI: https://doi.org/10.1016/j.emcon.2015.07.001

Sangion, A.; Gramatica, P. Environ. Res. 2016, 147, 297-306. DOI: 10.1016/j.envres.2016.02.021

Perrodin, Y.; Christine, B.; Sylvie, B.; Alain, D; Jean-Luc, B.K.; Cécile, C.O.; Elodie, B. Chemosphere 2013, 90, 1037-1046. DOI: https://doi.org/10.1016/j.chemosphere.2012.08.049

Yuan, S.; Jiang, X.; Xia, X.; Zhang, H.; Zheng, S. Chemosphere 2013, 90, 2520-2525. DOI: https://doi.org/10.1016/j.chemosphere.2012.10.089

Kovalova, L.; Siegrist, H.; Von Gunten, U.; Eugster, J.; Hagenbuch, M.; Wittmer, A.; McArdell, C.S. Sci.Total Environ. 2013, 47,7899-7908. DOI: 10.1021/es400708w

Gros, M.; Rodríguez-Mozaz, S.; Barceló, D. J. Chromatogr. A 2013, 1292, 173-188. DOI: 10.1016/j.chroma.2012.12.072

Santos, L.H.; Gros, M.; Rodriguez-Mozaz, S.; Delerue-Matos, C.; Pena, A.; Barceló, D.; Montenegro, M.C.B. Sci. Total Environ. 2013, 461, 302-316. DOI: 10.1016/j.scitotenv.2013.04.077

Li, SW.; Lin, A.Y.C Chemosphere 2015, 139, 190-196. DOI: https://doi.org/10.1016/j.chemosphere.2015.06.010

Oliveira, T.S.; Murphy, M.; Mendola, N.; Wong, V.; Carlson, D.; Waring, L. Sci Total Environ 2015, 518,459-478. DOI: 10.1016/j.scitotenv.2015.02.104

Mendoza, A.; Aceña, J.; Pérez, S.; de Alda, M.L.; Barceló, D.; Gil, A.; Valcárcel, Y. Environ. Res. 2015, 140, 225-241. DOI: 10.1016/j.envres.2015.04.003

Azuma, T.; Arima, N.; Tsukada, A.; Hirami, S.; Matsuoka, R.; Moriwake, R.; Mino, Y. Sci. Total Environ. 2016, 548, 189-197. DOI: 10.1016/j.scitotenv.2015.12.157

Olvera-Néstor, C.G.; Morales-Avila, E.; Gómez-Olivan, L.M.; Galár-Martínez, M.; García-Medina, S.; Neri-Cruz, N. Bull. Environ. Contam. Toxicol. 2016, 96, 326-332. DOI: https://doi.org/10.1007/s00128-015-1721-3

Pérez-Alvarez, I.; Islas-Flores, H.; Gómez-Oliván, L.M.; Barceló, D.; De Alda, M.L.; Solsona, S.P.; Galar-Martínez, M. Environ. Pollut. 2019, 240, 330-341. DOI: 10.1016/j.envpol.2018.04.116

Luja-Mondragón, M.; Gómez-Oliván, L.M.; SanJuan-Reyes, N.; Islas-Flores, H.; Orozco-Hernández, J.M.; Heredia-García, G.; Dublán-García, O. Sci. Total Environ. 2019, 660, 751-764. DOI: 10.1016/j.scitotenv.2019.01.072

Englert, B. US Environ. Prot. Agency Technology OOSA 1-72, 2007.

Ferrer, I.; Zweigenbaum, J.A.; Thurman, E.M. J. Chromatogr. A, 2010, 1217, 5674-5686. DOI: 10.1016/j.chroma.2010.07.002

NMX-AA-030-SCFI-2001. Norma Oficial Mexicana. Determinación de la demanda química de oxígeno en aguas naturales, residuales y residuales tratadas. Procuraduría Federal de Protección al Ambiente. Diario Oficial de la Federación.

accesshttps://assets.thermofisher.com/TFS-Assets/CMD/Application-Notes/AN-LPN-3085-Beverages-Applications-Notebooks-Carbonated-LPN3085.pdf, accesed in October 2020

Jeong, Y.; Schaffer, A.; Smith, K. Chemosphere 2017, 174, 297-305. DOI:10.1016/j.chemosphere.2017.01.116

Bletsou, A.A.; Jeon, J.; Hollender, J.; Archontaki, E.; Thomaidis, N.S. TrAC Trends in Anal. Chem. 2015 ,66, 32-44. DOI: https://doi.org/10.1016/j.trac.2014.11.009

Thompson, M.; Ellison, S.L.; Fajgelj, A.; Willetts, P.; Wood, R. Pure Appl. Chem. 1999, 71, 337-348. DOI:http://dx.doi.org/10.1351/pac199971020337

Kafeenah, H.I.; Osman, R.; Bakar, N.K.A. RSC advances 2018, 8, 40358-40368. DOI: 10.1039/C8RA06885B

Nödler, K.; Licha, T.; Bester, K.; Sauter, M. J. Chromatogr. A 2010, 1217, 6511-6521. DOI: 10.1016/j.chroma.2010.08.048

Tenorio-Chávez, P.; Cerro-López, M.; Castro-Pastrana, L.I.; Ramírez-Rodrigues, M.M.; Orozco-Hernández, J.M.; Gómez-Oliván, L.M. Sci. Total Environ. 2020, 727, 138716. DOI:10.1016/j.scitotenv.2020.138716

Published
01-01-2021