Information-Theoretic Concepts to Elucidate Local and Non-Local Aspects of Chemical Phenomena
DOI:
https://doi.org/10.29356/jmcs.v69i1.2307Keywords:
Information theory, Shannon entropy, Fisher information, complexity, atoms in molecules, chemical space, electron correlation, quantum entanglementAbstract
This review explores the application of information theory in understanding chemical reactions, focusing on concepts like Shannon entropy, Fisher information, and complexity measures. By analyzing elementary chemical reactions, significant patterns in reactivity were identified, revealing chemically important regions and providing insights into reaction mechanisms. Further investigation extends to amino acids and pharmacological molecules, classifying them based on information-theoretic measures such as Shannon entropy and Fisher information. The proposed Information-Theoretic Space unveils unique aspects of many-electron systems, suggesting a universal 3D chemical space. Furthermore, we investigate the partitioning of molecules into constituent parts using Atoms-In-Molecules (AIM) schemes and their information-theoretic justifications. We validated popular AIM schemes like Hirshfeld, Bader's topological dissection, and the quantum approach within the Information Theory framework. Additionally, the study delves into the quantum origin of correlation energy, exploring the relationship between correlation energy and quantum entanglement. It also examines quantum entanglement features in dissociation processes of diatomic molecules, shedding light on critical points along reaction paths. Overall, this research highlights the utility of information theory in analyzing molecular complexity, providing insights into chemical processes and molecular behavior across various systems.
Resumen. En esta revisión se examina la aplicación de la Teoría de la información tanto clásica como cuántica para entender las reacciones químicas. Se centra principalmente en el estudio de la entropía de Shannon, la información de Fisher, el Desequilibrio y las distintas medidas de complejidad. Se analizaron algunas reacciones químicas seleccionadas y se identificaron importantes patrones de reactividad, lo que permitió descubrir regiones de relevancia química y comprender mejor los mecanismos de reacción. El estudio se amplía al análisis de aminoácidos y moléculas farmacológicas. Para clasificarlos, se utilizó la entropía de Shannon y la información de Fisher lo cual permitió representar un nuevo espacio teórico-informacional, con el cuál se descubrieron características únicas en sistemas multilectróncos, lo que sugiere la existencia de un espacio químico universal en varias dimensiones. También se exploró la constitución molécular en sus componentes atómicos, empleando esquemas de Átomos en Moléculas (AIM) asociados a sus fundamentos teórico-informacionales. Así, pudimos validar los principales esquemas AIM: el método "stockholder" de Hirshfeld, la disección topológica de Bader y el enfoque informacional de tipo cuántico, todos dentro del marco de la Teoría de la Información. Esta revisión profundiza también en los fundamentos cuánticos de la energía de correlación, estudiando su conexión con el fenómeno del entrelazamiento cuántico. Además, se analizan las características del entrelazamiento cuántico en el proceso de disociación en las moléculas diatómicas, indentificando los puntos críticos de estos procesos. En conclusión, este trabajo demuestra la valía de la teoría de la información para estudiar la complejidad molecular. Los resultados ofrecen importantes perspectivas sobre procesos químicos y el comportamiento de las moléculas en diferentes sistemas.
Downloads
References
Shannon, C.E. Bell Syst. Tech. J. 1948, 27, 379-423, DOI: https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.
Leunissen, J. Brief. Bioinform. 2002, 3, 321-323. DOI: https://doi.org/10.1093/bib/3.3.321
Steehler, J. K. J. Chem. Educ. 2005, 82, 685. DOI: https://doi.org/10.1021/ed082p685.1
Adami, C. Phys. Life Rev. 2004, 1, 3-22. DOI: https://doi.org/10.1016/j.plrev.2004.01.002
Jaynes, E. T. Phys. Rev. 1957, 106, 620-630. DOI: https://doi.org/10.1103/PhysRev.106.620
Noé, F.; Tkatchenko, A.; Müller, K. R.; Clementi, C. Annu. Rev. Phys. Chem. 2020, 71, 361-390. DOI: https://doi.org/10.1146/annurev-physchem-042018-052331
Gasteiger, J.; Engel, T. in: Chemoinformatics: A Textbook; Wiley-VCH: Weinheim, 2003. DOI: https://doi.org/10.1002/3527601643
Keyl, M. Phys. Rep. 2002, 369, 431-548. DOI: https://doi.org/10.1016/S0370-1573(02)00266-1
Wasielewski, M. R.; Forbes, M. D. E.; Frank, N. L.; Kowalski, K.; Scholes, G. D.; Yuen-Zhou, J.; Baldo, M. A.; Freedman, D. E.; Goldsmith, R. H.; Goodson, T.; Kirk, M. L.; McCusker, J. K.; Ogilvie, J. P.; Shultz, D. A.; Stoll, S.; Whaley, K. B. Nat. Rev. Chem. 2020, 4, 490-504. DOI: https://doi.org/10.1038/s41570-020-0200-5
Zelevinsky, T.; Izmaylov, A. F.; Alexandrova, A. N. J. Phys. Chem. A. 2023, 127, 1183-1196. DOI: https://doi.org/10.1021/acs.jpca.3c07317
Cao, Y.; Romero, J.; Aspuru-Guzik, A. IBM J. Res. Dev. 2018, 62, 6:1-6:20. DOI: https://doi.org/10.1147/JRD.2018.2888987
Reiher, M.; Wiebe, N.; Svore, K. M.; Wecker, D.; Troyer, M. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 7555-7560. DOI: https://doi.org/10.1073/pnas.1619152114
Peruzzo, A.; McClean, J.; Shadbolt, P.; Yung, M. H.; Zhou, X. Q.; Love, P. J.; Aspuru-Guzik, A.; O'Brien, J. L. Nat. Commun. 2014, 5, 4213. DOI: https://doi.org/10.1038/ncomms5213
Shapiro, M.; Brumer, P. in: Quantum Control of Molecular Processes, 2nd ed.; Wiley-VCH: Weinheim, 2012. DOI: https://doi.org/10.1002/9783527639700
Engel, G. S.; Calhoun, T. R.; Read, E. L.; Ahn, T. K.; Mančal, T.; Cheng, Y. C.; Blankenship, R. E.; Fleming, G. R. Nature. 2007, 446, 782-786. DOI: https://doi.org/10.1038/nature05678
Bauer, B.; Bravyi, S.; Motta, M.; Chan, G. K.-L. Chem. Rev. 2020, 120, 12685-12717. DOI: https://doi.org/10.1021/acs.chemrev.9b00829
Richardson, C. J. K.; Lordi, V.; Misra, S.; Shabani, J. MRS Bull. 2020, 45, 485-493. DOI: https://doi.org/10.1557/mrs.2020.147
Cao, Y.; Romero, J.; Olson, J. P.; Degroote, M.; Johnson, P. D.; Kieferová, M.; Kivlichan, I. D.; Menke, T.; Peropadre, B.; Sawaya, N. P. D.; Sim, S.; Veis, L.; Aspuru-Guzik, A. Chem. Rev. 2019, 119, 10856-10915. DOI: https://doi.org/10.1021/acs.chemrev.8b00803
Ding, Y.; Wang, C.; Zeng, M.; Fu, L. Adv. Mater. 2023, 35, 2306689. DOI: https://doi.org/10.1007/s10854-023-11759-y
Aspuru-Guzik, A.; Lindh, R.; Reiher, M. ACS Cent. Sci. 2018, 4, 144-152. DOI: https://doi.org/10.1021/acscentsci.7b00550
Preskill, J. Quantum. 2018, 2, 79-96. DOI: https://doi.org/10.22331/q-2018-08-06-79
Ma, H.; Liu, J.; Shang, H.; Fan, Y.; Li, Z.; Yang, J. Chem. Sci. 2023, 14, 5729-5740. DOI: https://doi.org/10.1039/D2SC06875C
Aspuru-Guzik, A.; Dutoi, A. D.; Love, P. J.; Head-Gordon, M. Science. 2005, 309, 1704-1707. DOI: https://doi.org/10.1126/science.1113479
Esquivel, R. O.; Flores-Gallegos, N.; Iuga, C.; Carrera, E.; Angulo, J. C.; Antolín, J. Theor. Chem. Acc. 2009, 124, 445-460. DOI: https://doi.org/10.1007/s00214-009-0641-x
Esquivel, R. O.; Flores-Gallegos, N.; Iuga, C.; Carrera, E.; Angulo, J. C.; Antolín, J. Phys. Lett. A. 2010, 374, 948-951. DOI: https://doi.org/10.1016/j.physleta.2009.12.018
Esquivel, R. O.; Flores-Gallegos, N.; Sánchez-Dehesa, J.; Angulo, J. C.; Antolín, J.; Sen, K. J. Phys. Chem. A. 2010, 114, 1906-1916. DOI: https://doi.org/10.1021/jp908898w
López-Rosa, S.; Esquivel, R. O.; Angulo, J. C.; Antolin, J.; Dehesa, J. S.; Flores-Gallegos, N. J. Chem. Theory Comput. 2010, 6, 145-154. DOI: https://doi.org/10.1021/ct900544m
Esquivel, R. O.; Liu, S.; Angulo, J. C.; Dehesa, J. S.; Antolin, J.; Molina-Espíritu, M. J. Phys. Chem. A. 2011, 115, 4406-4415. DOI: https://doi.org/10.1021/jp1095272
Esquivel, R. O.; Molina-Espíritu, M.; Angulo, J. C.; Antolín, J.; Flores-Gallegos, N.; Dehesa, J. S. Mol. Phys. 2011, 109, 2353-2365. DOI: https://doi.org/10.1080/00268976.2011.607780
Hoffman, R.; Shaik, S.; Hiberty, P. C. Acc. Chem. Res. 2003, 36, 750-756. DOI: https://doi.org/10.1021/ar030162a
Schlegel, H. B. Adv. Chem. Phys. 1987, 67, 249-286. DOI: https://doi.org/10.1002/9780470142936.ch4
Eyring, H. J. Chem. Phys. 1935, 3, 107-115. DOI: https://doi.org/10.1063/1.1749604
Wigner, E. Faraday Soc. 1938, 34, 29-41. DOI: https://doi.org/10.1039/tf9383400029
Fukui, K. T. Acc. Chem. Res. 1981, 14, 363-368. DOI: https://doi.org/10.1021/ar00072a001
González, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523-5527. DOI: https://doi.org/10.1021/j100377a021
Shaik, S.; Ioffe, A.; Reddy, A. C.; Pross, A. J. Am. Chem. Soc. 1994, 116, 262-213. DOI: https://doi.org/10.1021/ja00080a030
Hammond, G. S. J. Am. Chem. Soc. 1955, 77, 334-338. DOI: https://doi.org/10.1021/ja01607a027
Zewail, A. H. Science. 1988, 242, 1645-1653. DOI: https://doi.org/10.1126/science.242.4886.1645
Bradforth, S. E.; Arnold, D. W.; Neumark, D. M.; Manolopoulos, D. E. J. Chem. Phys. 1993, 99, 6345-6359. DOI: https://doi.org/10.1063/1.465873
Shi, Z.; Boyd, R. J. J. Am. Chem. Soc. 1991, 113, 1072-1076. DOI: https://doi.org/10.1021/ja00004a002
Bader, R. F. W.; MacDougall, P. J. J. Am. Chem. Soc. 1985, 107, 6788-6795. DOI: https://doi.org/10.1021/ja00310a007
Balakrishnan, N.; Sathyamurthy, N. Chem. Phys. Lett. 1989, 164, 267-269. DOI: https://doi.org/10.1016/0009-2614(89)85027-4
Ho, M.; Schmider, H.; Weaver, D. F.; Smith, V. H.; Sagar, R. P.; Esquivel, R. O. Int. J. Quantum Chem. 2000, 77, 376-382. DOI: https://doi.org/10.1002/(SICI)1097-461X(2000)77:1<376::AID-QUA37>3.0.CO;2-3
Shaik, S. S.; Schlegel, H. B.; Wolfe, S. in: Theoretical Aspects of Physical Organic Chemistry: The SN2 Reaction; Wiley: New York, 1992.
Knoerr, E. H.; Eberhart, M. E. J. Phys. Chem. A. 2001, 105, 880-884. DOI: https://doi.org/10.1021/jp0028711
Tachibana, A. J. Chem. Phys. 2001, 115, 3497-3518. DOI: https://doi.org/10.1063/1.1384012
Coulson, C. A. in: Valence, 2nd ed.; Oxford University Press: Oxford, 1961.
Toro-Labbé, A.; Gutiérrez-Oliva, S.; Murray, J. S.; Politzer, P. J. Mol. Model. 2009, 15, 707-710. DOI: https://doi.org/10.1007/s00894-008-0431-8
Borgoo, A.; Jaque, P.; Toro-Labbé, A.; Van Alsenoy, C.; Geerlings, P. Phys. Chem. Chem. Phys. 2009, 11, 476-482. DOI: https://doi.org/10.1039/B814533D
Gadre, S. R. in: Information Theoretical Approaches to Quantum Chemistry. In Reviews of Modern Quantum Chemistry; Sen, K. D., Ed.; World Scientific: Singapore, 2003; 1, 108-147. DOI: https://doi.org/10.1142/9789812775702_0006
Rawlings, D. C.; Davidson, E. R. J. Phys. Chem. 1985, 89, 969-971. DOI: https://doi.org/10.1021/j100252a016
Kaijser, P.; Smith, V. H., Jr. Adv. Quantum Chem. 1997, 10, 37-76.
Bialynicky-Birula, I.; Mycielski, J. Commun. Math. Phys. 1975, 44, 129-132. DOI: https://doi.org/10.1007/BF01608825
Politzer, P.; Truhlar, D. G. in: Chemical Applications of Atomic and Molecular Electrostatic Potentials; Academic Press: New York, 1981. DOI: https://doi.org/10.1007/978-1-4757-9634-6
Parr, R. G.; Yang, W. in: Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989.
Koopmans, T. A. Physica. 1933, 1, 104-113. DOI: https://doi.org/10.1152/ajplegacy.1933.104.1.113
Ghanty, T. K.; Ghosh, S. K. J. Phys. Chem. 1993, 97, 4951-4953. DOI: https://doi.org/10.1021/j100121a015
Chattaraj, P. K.; Sarkar, U.; Roy, D. R. Chem. Rev. 2006, 106, 2065-2091. DOI: https://doi.org/10.1021/cr040109f
Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533-3539. DOI: https://doi.org/10.1021/ja00905a001
Tozer, D. J.; De Proft, F. J. Phys. Chem. A. 2005, 109, 8923-8929. DOI: https://doi.org/10.1021/jp053504y
Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. DOI: https://doi.org/10.1063/1.464913
Frisch, M. J.; et al. Gaussian 03, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2004.
Johnson, B. A.; Gonzales, C. A.; Gill, P. M. W.; Pople, J. A. Chem. Phys. Lett. 1994, 221, 100-108. DOI: https://doi.org/10.1016/0009-2614(94)87024-1
Shi, Z.; Boyd, R. J. J. Am. Chem. Soc. 1989, 111, 1575-1579. DOI: https://doi.org/10.1021/ja00187a007
González, C.; Schlegel, H. B. J. Phys. Chem. 1989, 90, 2154-2161. DOI: https://doi.org/10.1063/1.456010
Pérez-Jordá, J. M.; San-Fabián, E. Comput. Phys. Commun. 1993, 77, 46-56. DOI: https://doi.org/10.1016/0010-4655(93)90035-B
Kohout, M. DGrid, Version 4.2, 2007.
Schaftenaar, G.; Noordik, J. H. J. Comput.-Aided Mol. Des. 2000, 14, 123-134. DOI: https://doi.org/10.1023/A:1008193805436
Glukhovtsev, M. N.; Pross, A.; Radom, L. J. Am. Chem. Soc. 1995, 117, 2024-2032. DOI: https://doi.org/10.1021/ja00112a016
Polanyi, J. C.; Zewail, A. H. Acc. Chem. Res. 1995, 28, 119-132. DOI: https://doi.org/10.1021/ar00051a005
Kolmogorov, A. N. Probl. Inf. Transm. 1965, 1, 3-11.
Shannon, C. E.; Weaver, W. in: The Mathematical Theory of Communication; University of Illinois Press: Urbana, 1949.
Frieden, B. R. in: Science from Fisher Information; Cambridge University Press: New York, 2004. DOI: https://doi.org/10.1017/CBO9780511616907
Bennett, C. H. in: In The Universal Turing Machine: A Half-Century Survey; Herken, R., Ed.; Oxford University Press: Oxford, 1988; 227-257.
Lloyd, S.; Pagels, H. Complexity as Thermodynamic Depth. Ann. Phys. 1988, 188, 186-213. DOI: https://doi.org/10.1016/0003-4916(88)90094-2
Feldman, D. P.; Crutchfield, J. P. Phys. Lett. A. 1998, 238, 244-252. DOI: https://doi.org/10.1016/S0375-9601(97)00855-4
Lamberti, P. W.; Martin, M. T.; Plastino, A.; Rosso, O. A. Physica A. 2004, 334, 119-131. DOI: https://doi.org/10.1016/j.physa.2003.11.005
Anteonodo, C.; Plastino, A. Phys. Lett. A. 1996, 223, 348-354. DOI: https://doi.org/10.1016/S0375-9601(96)00756-6
Catalán, R. G.; Garay, J.; López-Ruiz, R. Phys. Rev. E. 2002, 66, 011102. DOI: https://doi.org/10.1103/PhysRevE.66.011102
Carbó-Dorca, R.; Arnau, J.; Leyda, L. Int. J. Quantum Chem. 1980, 17, 1185-1189. DOI: https://doi.org/10.1002/qua.560170612
Onicescu, O. C. R. Acad. Sci. Paris A. 1966, 263, 25-28.
López-Ruiz, R.; Mancini, H. L.; Calbet, X. Phys. Lett. A. 1995, 209, 321-326. DOI: https://doi.org/10.1016/0375-9601(95)00867-5
Romera, E.; Dehesa, J. S. J. Chem. Phys. 2004, 120, 8906-8912. DOI: https://doi.org/10.1063/1.1697374
López-Rosa, S.; Angulo, J. C.; Antolín, J. Physica A. 2009, 388, 2081-2091. DOI: https://doi.org/10.1016/j.physa.2009.01.037
Fisher, R. A. Proc. Cambridge Philos. Soc. 1925, 22, 700-725. DOI: https://doi.org/10.1017/S0305004100009580
Angulo, J. C.; Antolín, J. J. Chem. Phys. 2008, 128, 164109. DOI: https://doi.org/10.1063/1.2907743
Dembo, A.; Cover, T. M.; Thomas, J. A. IEEE Trans. Inf. Theory. 1991, 37, 1501-1518. DOI: https://doi.org/10.1109/18.104312
Esquivel, R. O.; Molina-Espíritu, M.; Dehesa, J. S.; Angulo, J. C.; Antolín, J. Int. J. Quantum Chem. 2012, 112, 3578-3586. DOI: https://doi.org/10.1002/qua.24219
Molina-Espíritu, M.; Esquivel, R. O.; Angulo, J. C.; Antolín, J.; Dehesa, J. S. J. Math. Chem. 2012, 50, 1882-1900. DOI: https://doi.org/10.1007/s10910-012-0009-7
Esquivel, R. O.; Molina-Espíritu, M.; López-Rosa, S. J. Phys. Chem. A. 2023, 127, 6159-6174. DOI: https://doi.org/10.1021/acs.jpca.3c01957
Esquivel, R. O.; Angulo, J. C.; Antolin, J.; Sánchez-Dehesa, J.; Flores-Gallegos, N.; López-Rosa, S. Phys. Chem. Chem. Phys. 2010, 12, 7108-7116. DOI: https://doi.org/10.1039/b927055h
Esquivel, R. O.; Flores-Gallegos, N.; Carrera, E.; Sánchez-Dehesa, J.; Angulo, J. C.; Antolín, J.; Soriano-Correa, C. Mol. Simul. 2009, 35, 498-511. DOI: https://doi.org/10.1080/08927020902833087
Flores-Gallegos, N.; Esquivel, R. O. J. Mex. Chem. Soc. 2008, 52, 19-30.
Esquivel, R. O.; Flores-Gallegos, N.; Carrera, E.; Soriano-Correa, C. J. Nano Res. 2010, 9, 1-15. DOI: https://doi.org/10.4028/www.scientific.net/JNanoR.9.1
Esquivel, R. O.; Molina-Espíritu, M.; López-Rosa, S.; Soriano-Correa, C.; Barrientos-Salcedo, C.; Kohout, M.; Dehesa, J. S. ChemPhysChem. 2015, 16, 2571-2581. DOI: https://doi.org/10.1002/cphc.201500282
Esquivel, R. O.; López-Rosa, S.; Molina-Espíritu, M.; Angulo, J. C.; Dehesa, J. S. Theor. Chem. Acc. 2016, 135, 253. DOI: https://doi.org/10.1007/s00214-016-2002-x
Esquivel, R. O.; Carrera, E. ChemPhysChem. 2024, e202400030.
Johnson III, R. D. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 22; National Institute of Standards and Technology: Gaithersburg, MD, 2020.
Angulo, J. C.; Antolín, J.; Sen, K. D. Phys. Lett. A. 2008, 372, 670-674. DOI: https://doi.org/10.1016/j.physleta.2007.07.077
Sen, K. D.; Antolín, J.; Angulo, J. C. Phys. Rev. A. 2007, 76, 032502. DOI: https://doi.org/10.1103/PhysRevA.76.032502
Kurzer, F. J. Chem. Ed. 2000, 77, 851. DOI: https://doi.org/10.1021/ed077p851
Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, T. N.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. Nucleic Acids Res. 2000, 28, 235.
Livingstone, G.; Barton, J. Comput. Appl. Biosci. 1993, 9, 745. DOI: https://doi.org/10.1093/bioinformatics/9.6.745
Taylor, W. R. J. Theor. Biol. 1986, 119, 205. DOI: https://doi.org/10.1016/S0022-5193(86)80075-3
Dobson, C. Nature. 2004, 432, 824-828. DOI: https://doi.org/10.1038/nature03192
Lipinski, C.; Hopkins, A. Nature. 2004, 432, 855-861. DOI: https://doi.org/10.1038/nature03193
Varnek, A.; Baskin, I. Mol. Inform. 2011, 30, 20-32. DOI: https://doi.org/10.1002/minf.201000100
Balawender, R.; Welearegay, M. A.; Lesiuk, M.; De Proft, F.; Geerlings, P. J. Chem. Theory Comput. 2013, 9, 5327-5340. DOI: https://doi.org/10.1021/ct400706g
Uffink, J. B. M. in: Measures of Uncertainty and the Uncertainty Principle; University of Utrecht: Utrecht, The Netherlands, 1990.
(a) Sharma, B. D.; Mittal, D. P. J. Comb. Inf. Syst. Sci. 1977, 2, 122-132. (b) Heidar-Zadeh, F.; Ayers, P. W.; Bultinck, P. J. Chem. Phys. 2014, 141, 094103. (c) Ayers, P. W. Theor. Chem. Acc. 2006, 115, 370-378.
Nalewajski, R. F.; Parr, R. G. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 8879-8882. DOI: https://doi.org/10.1073/pnas.97.16.8879
(a) Collins, D. M. Z. Naturforsch. A. 1993, 48, 68. Esquivel, R. O.; Rodriguez, A. L.; Sagar, R. P.; Ho, M. H.; Smith, V. H. Phys. Rev. A. 1996, 54, 259-265. Ramirez, J. C.; Soriano, C.; Esquivel, R. O.; Sagar, R. P.; Ho, M. H.; Smith, V. H. Phys. Rev. A. 1997, 56, 4477-4482. Ziesche, P.; Smith, V. H.; Ho, M.; Rudin, S. P.; Gersdorf, P.; Taut, M. J. Chem. Phys. 1999, 110, 6135-6142. Delle Site, L. Int. J. Quantum Chem. 2015, 115, 1396-1404. (b) Dehesa, J. S.; Koga, T.; Yáñez, R. J.; Plastino, A. R.; Esquivel, R. O. J. Phys. B. 2012, 45, 015504. Dehesa, J. S.; Koga, T.; Yáñez, R. J.; Plastino, A. R.; Esquivel, R. O. J. Phys. B. 2012, 45, 239501. Tichy, M. C.; Mintert, F.; Buchleitner, A. J. Phys. B. 2011, 44, 192001.
López-Rosa, S.; Esquivel, R. O.; Plastino, A. R.; Dehesa, J. S. J. Phys. B. 2015, 48, 175002. DOI: https://doi.org/10.1088/0953-4075/48/17/175002
Esquivel, R. O.; López-Rosa, S.; Dehesa, J. S. Europhys. Lett. 2015, 111, 40009. DOI: https://doi.org/10.1209/0295-5075/111/40009
Esquivel, R. O.; Flores-Gallegos, N.; Molina-Espíritu, M.; Plastino, A. R.; Angulo, J. C.; Antolín, J.; Dehesa, J. S. J. Phys. B. 2011, 44, 175101. DOI: https://doi.org/10.1088/0953-4075/44/17/175101
Molina-Espíritu, M.; Esquivel, R. O.; López-Rosa, S.; Dehesa, J. S. J. Chem. Theory Comput. 2015, 11, 5144-5151. DOI: https://doi.org/10.1021/acs.jctc.5b00390
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Rodolfo Esquivel

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
