Solar Thermochemistry Overview: An Approach to Solar Thermal Energy Storage and Hydrogen Production
DOI:
https://doi.org/10.29356/jmcs.v68i4.2298Keywords:
Thermochemical energy storage, Concentrated solar power, strontium carbonate, effective conversion, volumetric energy densityAbstract
The solar thermochemistry laboratory of the Metropolitan Autonomous University was created in early 1982 to promote the development of solar technology in our country. A decade ago, the priority objective of designing thermal energy storage systems that allow moderating the effects of intermittent solar radiation was proposed. This not only allows us to reduce the consumption of fossil fuels but also contributes to the mitigation of global warming by reducing carbon dioxide emissions. This paper highlights the benefits of research as a driver for advancing solar thermal technology and research efforts to develop heat storage systems. The work includes an overview of current thermal energy storage methods and their future projection. This work reports research developed with mixtures based on strontium carbonate doped with five compounds. The objective was to reduce agglomeration and sintering problems while significantly increasing the effective conversion and energy storage density. The experimental results demonstrate that the SrCO3+CaCO3 and SrCO3+SnO2 mixtures present better performance and stability than others. Finally, this article emphasizes the potential benefits of research, such as advancing solar technology, reducing carbon emissions, providing cleaner energy, and collaborating to address energy poverty.
Resumen. El laboratorio de termoquímica solar de la Universidad Autónoma Metropolitana fue creado a principios de 1982 para impulsar el desarrollo de la tecnología solar en nuestro país. Hace una década se propuso como objetivo prioritario diseñar sistemas de almacenamiento de energía térmica que permitan moderar los efectos de la radiación solar intermitente. Esto no sólo nos permite reducir el consumo de combustibles fósiles, sino que también contribuye a la mitigación del calentamiento global al reducir las emisiones de dióxido de carbono. Este artículo aborda los beneficios de la investigación como motor para el avance de la tecnología solar térmica y los esfuerzos de investigación para desarrollar sistemas de almacenamiento de calor. El trabajo incluye una revisión general de los métodos actuales de almacenamiento de energía térmica y su proyección futura. Se reportan las investigaciones desarrolladas con mezclas a base de carbonato de estroncio dopado con cinco compuestos. El objetivo es reducir los problemas de aglomeración y sinterización, al mismo tiempo que aumentar significativamente la conversión efectiva y la densidad de almacenamiento de energía. Los resultados experimentales demuestran que las mezclas SrCO3+CaCO3 y SrCO3+SnO2 presentan mejor rendimiento y estabilidad que otras. Finalmente, este trabajo enfatiza los beneficios potenciales de la investigación, como el avance de la tecnología solar, la reducción de las emisiones de carbono, el suministro de energía más limpia y la colaboración para abordar la pobreza energética.
Downloads
References
Zhao, J.; Liu, H.; Sun, W. Sustain. 2020, 12. DOI: https://doi.org/10.3390/su12030763. DOI: https://doi.org/10.3390/su12030763
J. C. MacKay, D. Sustainable Energy without the Hot Air. 2008.
Meier, A.; Bonaldi, E.; Cella, G. M.; Lipinski, W.; Wuillemin, D.; Palumbo, R. Energy. 2004, 29 (5–6), 811–821. DOI: https://doi.org/10.1016/S0360-5442(03)00187-7. DOI: https://doi.org/10.1016/S0360-5442(03)00187-7
Chuayboon, S.; Abanades, S. J. Clean. Prod. 2019, 232, 784–795. DOI: https://doi.org/10.1016/j.jclepro.2019.05.371. DOI: https://doi.org/10.1016/j.jclepro.2019.05.371
Zoller, S.; Koepf, E.; Nizamian, D.; Stephan, M.; Patané, A.; Haueter, P.; Romero, M.; González-Aguilar, J.; Lieftink, D.; de Wit, E.; Brendelberger, S.; Sizmann, A.; Steinfeld, A. Joule 2022, 6, 1606–1616. DOI: https://doi.org/10.1016/j.joule.2022.06.012. DOI: https://doi.org/10.1016/j.joule.2022.06.012
Steinmann, W.-D.; Prieto, C. Thermal Storage for Concentrating Solar Power Plants. in: Advances in Thermal Energy Storage Systems; LTD, 2021, 673–697. DOI: https://doi.org/10.1016/b978-0-12-819885-8.00024-3. DOI: https://doi.org/10.1016/B978-0-12-819885-8.00024-3
Zhang, H. L.; Baeyens, J.; Degrève, J.; Cacères, G. Renew. Sustain. Energy Rev. 2013, 22, 466–481. DOI: https://doi.org/10.1016/j.rser.2013.01.032. DOI: https://doi.org/10.1016/j.rser.2013.01.032
Santamaría Padilla, A.; Romero-Paredes Rubio, H. J. Energy Storage 2023, 73, 108906. DOI: https://doi.org/10.1016/j.est.2023.108906. DOI: https://doi.org/10.1016/j.est.2023.108906
IRENA. Concentrating Solar Power. 2012, 1.
Romero, M.; Steinfeld, Energy Environ. Sci. 2012, 5, 9234–9245. DOI: https://doi.org/10.1039/c2ee21275g. DOI: https://doi.org/10.1039/c2ee21275g
Frazzica, A.; Cabeza Editors, L. F. Green Energy and Technology Recent Advancements in Materials and Systems for Thermal Energy Storage; 2019. DOI: https://doi.org/10.1007/978-3-319-96640-3
Palacios, A.; Barreneche, C.; Navarro, M. E.; Ding, Y. Renew. Energy 2020, 156, 1244–1265. DOI: https://doi.org/10.1016/j.renene.2019.10.127. DOI: https://doi.org/10.1016/j.renene.2019.10.127
Li, X.; Jin, J.; Yang, D.; Xu, N.; Wang, Y.; Mi, X. AIP Conf. Proc. 2019, 2126. DOI: https://doi.org/10.1063/1.5117545. DOI: https://doi.org/10.1063/1.5117545
Kang, Q.; Dewil, R.; Degrève, J.; Baeyens, J.; Zhang, H. Energy Convers. Manag. 2018, 163, 292–303. DOI: https://doi.org/10.1016/j.enconman.2018.02.067. DOI: https://doi.org/10.1016/j.enconman.2018.02.067
IRENA. Renewable Power Generation Costs in 2020; 2020.
Kasaeian, A.; Bellos, E.; Shamaeizadeh, A.; Tzivanidis, C. Appl. Energy 2020, 264, 114764. DOI: https://doi.org/10.1016/j.apenergy.2020.114764. DOI: https://doi.org/10.1016/j.apenergy.2020.114764
Silvi, C. 30th ISES Bienn. Sol. World Congr. 2011, SWC 2011 2011, 2, 952–962. DOI: https://doi.org/10.18086/swc.2011.06.12. DOI: https://doi.org/10.18086/swc.2011.06.12
Consejería de Economía y Hacienda, organización Dirección General de Industria, E. y M. F. de la E. de la C. de M. Guía Técnica de La Energía Solar Termoeléctrica; 2012.
US Department of Energy. Solar Research Spotlight: Concentrating Solar- Thermal Power; 2018. https://www.energy.gov/sites/prod/files/2018/09/f55/Concentrating-Solar-Thermal-Power-FactSheet.pdf.
Kildahl, H.; Jiang, Z.; Palacios, A.; Song, C.; Zhang, X.; Zheng, H.; Cao, H.; He, Z.; Liu, X.; Wang, L.; Tong, L.; Li, Y.; Xuan, Y.; Ding, Y. T. ACS Symp. Ser. 2020, 1364, 257–301. DOI: https://doi.org/10.1021/bk-2020-1364.ch010. DOI: https://doi.org/10.1021/bk-2020-1364.ch010
Boretti, A.; Castelletto, S. J. Energy Storage 2021, 42, 103143. DOI: https://doi.org/10.1016/j.est.2021.103143. DOI: https://doi.org/10.1016/j.est.2021.103143
Ghalambaz, M.; Sheremet, M.; Fauzi, M. A.; Fteiti, M.; Younis, O. J. Energy Storage 2023, 66. DOI: https://doi.org/10.1016/j.est.2023.107266. DOI: https://doi.org/10.1016/j.est.2023.107266
Yan, Y.; Wang, K.; Clough, P. T.; Anthony, E. J. Fuel Process. Technol. 2020, 199 (June 2019), 106280. DOI: https://doi.org/10.1016/j.fuproc.2019.106280. DOI: https://doi.org/10.1016/j.fuproc.2019.106280
Kato, Y.; Nomura, T. Issues Environ. Sci. Technol. 2019, 2019, 210–227. DOI: https://doi.org/10.1039/9781788015530-00210. DOI: https://doi.org/10.1039/9781788015530-00210
Khamlich, I.; Zeng, K.; Flamant, G.; Baeyens, J.; Zou, C.; Li, J.; Yang, X.; He, X.; Liu, Q.; Yang, H.; Yang, Q.; Chen, H. Renew. Sustain. Energy Rev. 2021, 139, 110583. DOI: https://doi.org/10.1016/j.rser.2020.110583. DOI: https://doi.org/10.1016/j.rser.2020.110583
Zhang, H.; Baeyens, J.; Cáceres, G.; Degrève, J.; Lv, Y. Energy Combust. Sci. 2016, 53, 1–40. DOI: https://doi.org/10.1016/j.pecs.2015.10.003. DOI: https://doi.org/10.1016/j.pecs.2015.10.003
Fernandes, D.; Pitié, F.; Cáceres, G.; Baeyens, J. Energy 2012, 39, 246–257. DOI: https://doi.org/10.1016/j.energy.2012.01.024. DOI: https://doi.org/10.1016/j.energy.2012.01.024
Zhang, H.; Kong, W.; Tan, T.; Baeyens, J. Energy 2017, 139, 52–64. DOI: https://doi.org/10.1016/j.energy.2017.07.129. DOI: https://doi.org/10.1016/j.energy.2017.07.129
Ding, W.; Bauer, T. Engineering 2021, 7, 334–347. DOI: https://doi.org/10.1016/j.eng.2020.06.027. DOI: https://doi.org/10.1016/j.eng.2020.06.027
Chen, R.; Romero, M.; González-Aguilar, J.; Rovense, F.; Rao, Z.; Liao, S. Energy Convers. Manag. 2021, 232. DOI: https://doi.org/10.1016/j.enconman.2021.113870. DOI: https://doi.org/10.1016/j.enconman.2021.113870
Sun, E.; Xu, J.; Li, M.; Li, H.; Liu, C.; Xie, J. Energy Convers. Manag. X 2020, 7, 100042. DOI: https://doi.org/10.1016/j.ecmx.2020.100042. DOI: https://doi.org/10.1016/j.ecmx.2020.100042
Linares, J. I.; Montes, M. J.; Cantizano, A.; Sánchez, C. Appl. Energy 2020, 263, 114644. DOI: https://doi.org/10.1016/j.apenergy.2020.114644. DOI: https://doi.org/10.1016/j.apenergy.2020.114644
Crespi, F.; Sánchez, D.; Rodríguez, J. M.; Gavagnin, G. Renew. Energy 2020, 147, 2905–2912. DOI: https://doi.org/10.1016/j.renene.2018.08.023. DOI: https://doi.org/10.1016/j.renene.2018.08.023
Pitz-Paal, R. Concentrating Solar Power; Elsevier Ltd, 2020. DOI: https://doi.org/10.1016/b978-0-08-102886-5.00019-0. DOI: https://doi.org/10.1016/B978-0-08-102886-5.00019-0
Solar PayBack. Calor solar para la industria méxico. 2018.
Instituto Mexicano del Petróleo. Energía Termosolar 2018. Sener 2018, I, 83.
Wu, S.; Zhou, C.; Doroodchi, E.; Nellore, R.; Moghtaderi, B. Energy Convers. Manag. 2018, 168 (April), 421–453. DOI: https://doi.org/10.1016/j.enconman.2018.05.017. DOI: https://doi.org/10.1016/j.enconman.2018.05.017
Sadeghi, G. Energy Storage Mater. 2022, 46, 192–222. DOI: https://doi.org/10.1016/j.ensm.2022.01.017. DOI: https://doi.org/10.1016/j.ensm.2022.01.017
Pielichowska, K.; Pielichowski, K. Prog. Mater. Sci. 2014, 65, 67–123. DOI: https://doi.org/10.1016/j.pmatsci.2014.03.005. DOI: https://doi.org/10.1016/j.pmatsci.2014.03.005
González-Roubaud, E.; Pérez-Osorio, D.; Prieto, C. Renew. Sustain. Energy Rev. 2017, 80, 133–148. DOI: https://doi.org/10.1016/j.rser.2017.05.084. DOI: https://doi.org/10.1016/j.rser.2017.05.084
Fereres, S. Solar Thermal Energy Systems, 2018. DOI: https://doi.org/10.2174/9781681087191118030003. DOI: https://doi.org/10.2174/9781681087191118030003
Moens, L.; Blake, D. M. J. Sol. Energy Eng. Trans. ASME 2010, 132, 0310061–0310065. DOI: https://doi.org/10.1115/1.4001402. DOI: https://doi.org/10.1115/1.4001402
Harald Mehling, L. F. C. PCM, 2008, 3.
Barrasso, M.; Langella, G.; Amoresano, A.; Iodice, P. Processes. 2023, 11. DOI: https://doi.org/10.3390/pr11061832. DOI: https://doi.org/10.3390/pr11061832
Alva, G.; Lin, Y.; Fang, G. Energy 2018, 144, 341–378. DOI: https://doi.org/10.1016/j.energy.2017.12.037. DOI: https://doi.org/10.1016/j.energy.2017.12.037
Farid, M. M.; Khudhair, A. M.; Razack, S. A. K.; Al-Hallaj, S. Energy Convers. Manag. 2004, 45, 1597–1615. DOI: https://doi.org/10.1016/j.enconman.2003.09.015. DOI: https://doi.org/10.1016/j.enconman.2003.09.015
Raud, R.; Jacob, R.; Bruno, F.; Will, G.; Steinberg, T. A. Renew. Sustain. Energy Rev. 2017, 70, 936–944. DOI: https://doi.org/10.1016/j.rser.2016.11.274. DOI: https://doi.org/10.1016/j.rser.2016.11.274
Koohi-Fayegh, S.; Rosen, M. A. J. Energy Storage 2020, 27, 101047. DOI: https://doi.org/10.1016/j.est.2019.101047. DOI: https://doi.org/10.1016/j.est.2019.101047
Tareen, W. U. K.; Dilbar, M. T.; Farhan, M.; Nawaz, M. A.; Durrani, A. W.; Memon, K. A.; Mekhilef, S.; Seyedmahmoudian, M.; Horan, B.; Amir, M.; Aamir, M. Sustain. 2020, 12. DOI: https://doi.org/10.3390/su12010249. DOI: https://doi.org/10.3390/su12010249
Samylingam, I.; Kadirgama, K.; Aslfattahi, N.; Samylingam, L.; Ramasamy, D.; Harun, W. S. W.; Samykano, M.; Saidur, R. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1078, 012034. DOI: https://doi.org/10.1088/1757-899x/1078/1/012034. DOI: https://doi.org/10.1088/1757-899X/1078/1/012034
Tripathi, B. M.; Shukla, S. K.; Rathore, P. K. S. J. Energy Storage 2023, 72, 108280. DOI: https://doi.org/10.1016/j.est.2023.108280. DOI: https://doi.org/10.1016/j.est.2023.108280
Sun, M.; Liu, T.; Sha, H.; Li, M.; Liu, T.; Wang, X.; Chen, G.; Wang, J.; Jiang, D. J. Energy Storage 2023, 68, 107713. DOI: https://doi.org/10.1016/j.est.2023.107713. DOI: https://doi.org/10.1016/j.est.2023.107713
Shanmugavalli, P.; Rajaraman, R. Materials Today. 2023.
Khan, M. I.; Asfand, F.; Al-Ghamdi, S. G. J. Energy Storage 2022, 55, 105860. DOI: https://doi.org/10.1016/j.est.2022.105860. DOI: https://doi.org/10.1016/j.est.2022.105860
Ong, T. C.; Sarvghad, M.; Bell, S.; Will, G.; Steinberg, T. A.; Yin, Y.; Andersson, G.; Lewis, D. Appl. Therm. Eng. 2024, 238, 122034. DOI: https://doi.org/10.1016/j.applthermaleng.2023.122034. DOI: https://doi.org/10.1016/j.applthermaleng.2023.122034
Sharshir, S. W.; Joseph, A.; Elsharkawy, M.; Hamada, M. A.; Kandeal, A. W.; Elkadeem, M. R.; Kumar Thakur, A.; Ma, Y.; Eid Moustapha, M.; Rashad, M.; Arıcı, M. Energy Build. 2023, 285, 112908. DOI: https://doi.org/10.1016/j.enbuild.2023.112908. DOI: https://doi.org/10.1016/j.enbuild.2023.112908
Bayon, A.; Carrillo, A. J.; Mastronardo, E.; Coronado, J. M. in: Advances in Chemical Engineering; Academic Press Inc., 2021, 58, 247–295. DOI: https://doi.org/10.1016/bs.ache.2021.10.004. DOI: https://doi.org/10.1016/bs.ache.2021.10.004
Alvarez Rivero, M.; Rodrigues, D.; Pinheiro, C. I. C.; Cardoso, J. P.; Mendes, L. F. Renew. Sustain. Energy Rev. 2022, 158, 112048. DOI: https://doi.org/10.1016/j.rser.2021.112048. DOI: https://doi.org/10.1016/j.rser.2021.112048
Pardo, P.; Deydier, A.; Anxionnaz-Minvielle, Z.; Rougé, S.; Cabassud, M.; Cognet, P. Renew. Sustain. Energy Rev. 2014, 32, 591–610. DOI: https://doi.org/10.1016/j.rser.2013.12.014. DOI: https://doi.org/10.1016/j.rser.2013.12.014
Carrillo, A. J.; Gonza, J.; Romero, M.; Coronado, J. M. 2018. DOI: https://doi.org/10.1021/acs.chemrev.8b00315. DOI: https://doi.org/10.1021/acs.chemrev.8b00315
André, L.; Abanades, S.; Flamant, G. Renew. Sustain. Energy Rev. 2016, 64, 703–715. DOI: https://doi.org/10.1016/j.rser.2016.06.043. DOI: https://doi.org/10.1016/j.rser.2016.06.043
Zhang, H.; Huys, K.; Baeyens, J.; Degrève, J.; Kong, W.; Lv, Y. Energy Technol. 2016, 4, 341–352. DOI: https://doi.org/10.1002/ente.201500261. DOI: https://doi.org/10.1002/ente.201500261
Rehman, A. U.; Hayat, A.; Munis, A.; Zhao, T.; Israr, M.; Zheng, M. Proc. Inst. Civ. Eng. Energy 2020, 173, 60–67. DOI: https://doi.org/10.1680/jener.19.00018. DOI: https://doi.org/10.1680/jener.19.00018
Abanades, S.; Charvin, P.; Flamant, G.; Neveu, P. Energy 2006, 31, 2805–2822. DOI: https://doi.org/10.1016/j.energy.2005.11.002. DOI: https://doi.org/10.1016/j.energy.2005.11.002
Bulfin, B.; Vieten, J.; Agrafiotis, C.; Roeb, M.; Sattler, C. J. Mater. Chem. A 2017, 5, 18951–18966. DOI: https://doi.org/10.1039/c7ta05025a. DOI: https://doi.org/10.1039/C7TA05025A
Bellan, S.; Kodama, T.; Gokon, N.; Matsubara, K. Wiley Interdiscip. Rev. Energy Environ. 2022, 11, 1–23. https://doi.org/10.1002/wene.440. DOI: https://doi.org/10.1002/wene.440
Wang, K.; Zhang, C. M.; Liu, B. C.; Yang, L.; Min, C. H.; Rao, Z. H. Elsevier B.V. 2024, 480. DOI: https://doi.org/10.1016/j.cej.2023.148118. DOI: https://doi.org/10.1016/j.cej.2023.148118
Guy, E. J. Solid State Chem. 1977, 22, 51–61. DOI: https://doi.org/10.1016/0022-4596(77)90188-8
Prengle, H. W.; Sun, C. H. Sol. Energy 1976, 18, 561–567. DOI: https://doi.org/10.1016/0038-092X(76)90076-1. DOI: https://doi.org/10.1016/0038-092X(76)90076-1
Brown, L. C.; Besenbruch, G. E. G.; Lentsch, R. D. R.; Schultz, K. R. K.; Funk, J. F.; Pickard, P. P. S.; Marshall, A. C. A.; Showalter, S. S. K. Gen. At. 2003, 29–30.
Tmar, M.; Bernard, C.; Ducarroir, M. Sol. Energy 1981, 26, 529–536. DOI: https://doi.org/10.1016/0038-092X(81)90165-1. DOI: https://doi.org/10.1016/0038-092X(81)90165-1
Ducarroir, M.; Tmar, M.; Bernard, C.; Ducarroir, M.; Tmar, M.; Possibilités, C. B.; De, D. Possibilités de Stockage de l ’ Énergie Solaire à Partir de Sulfates To Cite This Version : HAL Id : Jpa-00244756. 2008.
Ducarroir, M.; Steinmetzt, D.; Sibieude, F.; Tmar, M.; Ultra-refractaires, L.; No, B. P. On the Kinetics of the Thermal Decomposition of Sulfates Related with Hydrogen Water Spliting Cycles. 1984, 9, 579–585. DOI: https://doi.org/10.1016/0360-3199(84)90237-4
Romero-Paredes, H.; Torres, A.; Ambriz, J. J. Renew. Energy 1997, 10, 231–234. DOI: https://doi.org/10.1016/0960-1481(96)00070-5. DOI: https://doi.org/10.1016/0960-1481(96)00070-5
Prieto, C.; Cooper, P.; Fernández, A. I.; Cabeza, L. F. Renew. Sustain. Energy Rev. 2016, 60, 909–929. DOI: https://doi.org/10.1016/j.rser.2015.12.364. DOI: https://doi.org/10.1016/j.rser.2015.12.364
Kolotygin, V. Materiais à Base de Óxidos Com Estrutura Do Tipo Perovskite e Compósitos Como Ânodos de PCES Propriedades Funcionais e Comportamento Eletroquímico Em Células Com Eletrólitos Sólidos à Base de Galatos e Silicatos. 2015.
Chen, X.; Kubota, M.; Yamashita, S.; Kita, H. J. Energy Storage 2021, 38, 102501. DOI: https://doi.org/10.1016/j.est.2021.102501. DOI: https://doi.org/10.1016/j.est.2021.102501
Babiniec, S. M.; Coker, E. N.; Miller, J. E.; Ambrosini, A. Arch. Thermodyn. 2015, 33, 23–40. DOI: https://doi.org/10.1002/er. DOI: https://doi.org/10.1002/er.3467
Silva., R. S.; Ferreira, N. S.; F. D. Fontes, J.; E. H. Maia da Costa, M.; Barrozo, P. Chem. Phys. Lett. 2022, 787, 139278. DOI: https://doi.org/10.1016/j.cplett.2021.139278. DOI: https://doi.org/10.1016/j.cplett.2021.139278
feir, J.; Buffat, P. A.; Mockli, P.; Xanthopoulos, N.; Vasquez, R.; Mathieu, H. J.; Van herle, J.; Thampi, K. R. J. Catal. 2001, 202, 229–244. DOI: https://doi.org/10.1006/jcat.2001.3286. DOI: https://doi.org/10.1006/jcat.2001.3286
Dimesso, L. Handb. Sol-Gel Sci. Technol. 2016. DOI: https://doi.org/10.1007/978-3-319-19454-7. DOI: https://doi.org/10.1007/978-3-319-19454-7
Ammendola, P.; Raganati, F.; Miccio, F.; Murri, A. N.; Landi, E. Renew. Energy 2020, 157, 769–781. DOI: https://doi.org/10.1016/j.renene.2020.05.048. DOI: https://doi.org/10.1016/j.renene.2020.05.048
Vieira, A. P.; Williamson, K.; Humphries, T. D.; Paskevicius, M.; Buckley, C. E. J. Mater. Chem. A 2021, 9, 20585–20594. DOI: https://doi.org/10.1039/d1ta04363c. DOI: https://doi.org/10.1039/D1TA04363C
Amghar, N.; Sánchez-Jiménez, P. E.; Ortiz, C.; Pérez-Maqueda, L. A.; Perejón. Appl. Therm. Eng. 2023, 235. DOI: https://doi.org/10.1016/j.applthermaleng.2023.121411. DOI: https://doi.org/10.1016/j.applthermaleng.2023.121411
Raganati, F.; Ammendola, P. Energy and Fuels 2023, 37, 1777–1808. DOI: https://doi.org/10.1021/acs.energyfuels.2c03853. DOI: https://doi.org/10.1021/acs.energyfuels.2c03853
Valverde, J. M.; Perejon, A.; Perez-Maqueda, L. A. Environ. Sci. Technol. 2012, 46, 6401–6408. DOI: https://doi.org/10.1021/es3002426. DOI: https://doi.org/10.1021/es3002426
Sánchez Jiménez, P. E.; Perejón, A.; Benítez Guerrero, M.; Valverde, J. M.; Ortiz, C.; Pérez Maqueda, L. A. Appl. Energy 2019, 235, 543–552. DOI: https://doi.org/10.1016/j.apenergy.2018.10.131. DOI: https://doi.org/10.1016/j.apenergy.2018.10.131
Møller, K. T.; Ibrahim, A.; Buckley, C. E.; Paskevicius, M. J. Mater. Chem. A. 2020, 8, 9646–9653. DOI: https://doi.org/10.1039/d0ta03080e. DOI: https://doi.org/10.1039/D0TA03080E
Anwar, R.; Navrátil, J.; Vijayaraghavan, R. K.; McNally, P. J.; Otyepka, M.; Błoński, P.; Sofianos, M. V. Mater. Adv. 2023, 4, 1905–1915. DOI: https://doi.org/10.1039/d2ma01083f. DOI: https://doi.org/10.1039/D2MA01083F
Moreno, V.; Arcenegui-Troya, J.; Enrique Sánchez-Jiménez, P.; Perejón, A.; Chacartegui, R.; Manuel Valverde, J.; Allan Pérez-Maqueda, L. Chem. Eng. J. 2022, 440. DOI: https://doi.org/10.1016/j.cej.2022.135707. DOI: https://doi.org/10.1016/j.cej.2022.135707
Zare Ghorbaei, S.; Ale Ebrahim, H. Appl. Energy 2020, 277, 115604. DOI: https://doi.org/10.1016/j.apenergy.2020.115604. DOI: https://doi.org/10.1016/j.apenergy.2020.115604
Rhodes, N. R.; Barde, A.; Randhir, K.; Li, L.; Hahn, D. W.; Mei, R.; Klausner, J. F.; Auyeung, N. ChemSusChem 2015, 8, 3793–3798. DOI: https://doi.org/10.1002/cssc.201501023. DOI: https://doi.org/10.1002/cssc.201501023


Downloads
Published
Issue
Section
License
Copyright (c) 2024 Adriana Santamaria Padilla, Hernando Romero Paredes Rubio, José Miguel Berrío Sánchez, Ana Karina Elizalde Galicia, Juan Daniel Macías

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
