Computational Study of New Isatin Molecules as Potential Thymidine Phosphorylase (TP) Inhibitors Against Cancer Activity. 3D-QSAR, Molecular Docking, ADME-Tox, And Molecular Dynamics Simulation Analysis

Authors

  • Reda EL-Mernissi University of Moulay Ismail
  • Marwa Alaqarbeh Applied Science Private University https://orcid.org/0000-0002-0879-5077
  • Ayoub Khaldan University of Moulay Ismail
  • Abdelouahid Sbai University of Moulay Ismail
  • Mohammed Aziz Ajana University of Moulay Ismail
  • Tahar Lakhlifi University of Moulay Ismail
  • Mohammed Bouachrine University of Moulay Ismail

DOI:

https://doi.org/10.29356/jmcs.v69i4.2150

Keywords:

Cancer, isatin, molecular modeling, thymidine phosphorylase (TP)

Abstract

Abstract. The quenching of TP enzyme activity helps treat and control diseases. In this research, computational methods investigated a series of thirty isatin-based oxadiazoles as potential TP inhibitors. 3D-QSAR was used to design four isatins (A, B, C, and D) derivatives with high anticancer activity. Molecular Docking was used to investigate interaction types between designed isatin derivatives (A, B, C, and D) and the TP enzyme (PDB: 4EAD); the results show that all compounds have several types of exciting interactions with no unfavorable interactions, but only compounds A and B have conventional hydrogen bond interactions as promising inhibition activity. The Binding Energy between (A, B, C, and D) compounds with TP enzyme were obtained by molecular dynamic simulation at 100 ns. A and B compounds had a more substantial binding free energy than C and D compounds, with binding energies of-20.1374 +/- 0.1189 kJ/mol, -20.1897 +/- 0.1333 kJ/mol, -18.1344 +/-0.1604 kJ/mol, and 19.077 +/-0.1549 kJ/mol, respectively. The pharmacokinetics of (A, B, C, and D) molecules were obtained by using ADMET predictions. Based on the above findings, the current work recommends four compounds as potential TP enzyme inhibitors that activate colorectal and breast cancers.

 

Resumen. La inhibición de la actividad de la enzima TP ayuda a tratar y controlar las enfermedades. En esta investigación, se utilizaron métodos computacionales para investigar una serie de treinta oxadiazoles basados en isatina como posibles inhibidores de TP. Se utilizó 3D-QSAR para diseñar cuatro derivados de isatinas (A, B, C y D) con alta actividad anticancerígena. Se utilizó el acoplamiento molecular para investigar los tipos de interacción entre los derivados de isatina diseñados (A, B, C y D) y la enzima TP (PDB: 4EAD); los resultados muestran que todos los compuestos tienen varios tipos de interacciones excitantes sin interacciones desfavorables, pero solo los compuestos A y B tienen interacciones de enlace de hidrógeno convencionales como actividad de inhibición prometedora. La energía de enlace entre los compuestos (A, B, C y D) y la enzima TP se obtuvo mediante simulación dinámica molecular a 100 ns. Los compuestos A y B tenían una energía libre de enlace más sustancial que los compuestos C y D, con energías de enlace de -20,1374 +/- 0,1189 kJ/mol, -20,1897 +/- 0,1333 kJ/mol, -18,1344 +/- 0,1604 kJ/mol y 19,077 +/- 0,1549 kJ/mol, respectivamente. La farmacocinética de las moléculas (A, B, C y D) se obtuvo mediante predicciones ADMET. Con base en los hallazgos anteriores, recomendamos considerar cuatro compuestos como posibles inhibidores de la enzima TP que activan los cánceres colorrectales y de mama.

Downloads

Download data is not yet available.

Author Biographies

Reda EL-Mernissi, University of Moulay Ismail

Molecular Chemistry and Natural Substances Laboratory, Faculty of Science

Marwa Alaqarbeh, Applied Science Private University

Applied Science Research Center

Ayoub Khaldan, University of Moulay Ismail

Molecular Chemistry and Natural Substances Laboratory, Faculty of Science

Abdelouahid Sbai, University of Moulay Ismail

Molecular Chemistry and Natural Substances Laboratory, Faculty of Science

Mohammed Aziz Ajana, University of Moulay Ismail

Molecular Chemistry and Natural Substances Laboratory, Faculty of Science

Tahar Lakhlifi, University of Moulay Ismail

Molecular Chemistry and Natural Substances Laboratory, Faculty of Science

Mohammed Bouachrine, University of Moulay Ismail

Molecular Chemistry and Natural Substances Laboratory, Faculty of Science

References

References

Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D. M.; Forman, D.; Bray, F.. Int. J. Cancer 2015, 136 (5), E359–E386. https://doi.org/10.1002/ijc.29210.

Nagai, H.; Kim, Y. H. J. Thorac. Dis. 2017, 9 (3), 448–451. https://doi.org/10.21037/jtd.2017.02.75.

Bronckaers, A.; Gago, F.; Balzarini, J.; Liekens, S. Med. Res. Rev. 2009, 29 (6), 903–953. https://doi.org/10.1002/med.20159.

Akiyama, S.; Furukawa, T.; Sumizawa, T.; Takebayashi, Y.; Nakajima, Y.; Shimaoka, S.; Haraguchi, M.. Cancer Sci. 2004, 95 (11), 851–857. https://doi.org/10.1111/j.1349-7006.2004.tb02193.x.

Elamin, Y. Y.; Rafee, S.; Osman, N.; O′Byrne, K. J.; Gately, K. Cancer Microenviron. 2016, 9 (1), 33–43. https://doi.org/10.1007/s12307-015-0173-y.

Walko, C. M.; Lindley, C.. Ther. 2005, 27 (1), 23–44.https://doi.org/10.1016/j.clinthera.2005.01.005.

Meropol, N. J.; Gold, P. J.; Diasio, R. B.; Andria, M.; Dhami, M.; Godfrey, T.; Kovatich, A. J.; Lund, K. A.; Mitchell, E.; Schwarting, R. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2006, 24 (25), 4069–4077. https://doi.org/10.1200/JCO.2005.05.2084.

Han, J.-Y.; Hong, E. K.; Lee, S. Y.; Yoon, S. M.; Lee, D. H.; Lee, J. S. J. Clin. Pathol. 2005, 58 (6), 650–654. https://doi.org/10.1136/jcp.2004.022764.

Javid, M. T.; Rahim, F.; Taha, M.; Nawaz, M.; Wadood, A.; Ali, M.; Mosaddik, A.; Shah, S. A. A.; Farooq, R. K. Bioorganic Chem. 2018, 79, 323–333. https://doi.org/10.1016/j.bioorg.2018.05.011.

Sridhar, S. K.; Ramesh, A. Biol. Pharm. Bull. 2001, 24 (10), 1149–1152. https://doi.org/10.1248/bpb.24.1149.

Selvam, P.; Murugesh, N.; Chandramohan, M.; Debyser, Z.; Witvrouw, M. Indian J. Pharm. Sci. 2008, 70 (6), 779–782. https://doi.org/10.4103/0250-474X.49121.

Rohini, R.; Reddy, P. M.; Shanker, K.; Kanthaiah, K.; Ravinder, V.; Hu, A. Arch. Pharm. Res. 2011, 34 (7), 1077–1084. https://doi.org/10.1007/s12272-011-0705-z.

Verma, M.; Pandeya, S. N.; Singh, K. N.; Stables, J. P. Acta Pharm. Zagreb Croat. 2004, 54 (1), 49–56.

Raj, R.; Gut, J.; Rosenthal, P. J.; Kumar, V. Bioorg. Med. Chem. Lett. 2014, 24 (3), 756–759. https://doi.org/10.1016/j.bmcl.2013.12.109.

Bharathi Dileepan, A. G.; Daniel Prakash, T.; Ganesh Kumar, A.; Shameela Rajam, P.; Violet Dhayabaran, V.; Rajaram, R. J. Photochem. Photobiol. B 2018, 183, 191–200. https://doi.org/10.1016/j.jphotobiol.2018.04.029.

Zhang, M.-Z.; Chen, Q.; Yang, G.-F.. Eur. J. Med. Chem. 2015, 89, 421–441. https://doi.org/10.1016/j.ejmech.2014.10.065.

Guo, H. Eur. J. Med. Chem. 2019, 164, 678–688. https://doi.org/10.1016/j.ejmech.2018.12.017.

Ibrahim, H. S.; Abou-Seri, S. M.; Tanc, M.; Elaasser, M. M.; Abdel-Aziz, H. A.; Supuran, C. T Eur. J. Med. Chem. 2015, 103, 583–593. https://doi.org/10.1016/j.ejmech.2015.09.021.

Eldehna, W. M.; Altoukhy, A.; Mahrous, H.; Abdel-Aziz, H. A. Eur. J. Med. Chem. 2015, 90, 684–694. https://doi.org/10.1016/j.ejmech.2014.12.010.

Sharma, P.; Senwar, K. R.; Jeengar, M. K.; Reddy, T. S.; Naidu, V. G. M.; Kamal, A.; Shankaraiah, N. Eur. J. Med. Chem. 2015, 104, 11–24. https://doi.org/10.1016/j.ejmech.2015.09.025.

Kerzare, D.; Khedekar, P. J. Pharm. Biosci. Res. 2016, No. 6, 144–156.

Erdmann, O. L. J. Für Prakt. Chem. 1840, 19 (1), 321–362. https://doi.org/10.1002/prac.18400190161.

Silva, J. F. M. da; Garden, S. J.; Pinto, A. C. J. Braz. Chem. Soc. 2001, 12, 273–324. https://doi.org/10.1590/S0103-50532001000300002.

Bergman, J.; Lindström, J.-O.; Tilstam, U. Tetrahedron 1985, 41 (14), 2879–2881. https://doi.org/10.1016/S0040-4020(01)96609-8.

Klebe, G.; Abraham, U.; Mietzner, T. J. Med. Chem. 1994, 37 (24), 4130–4146. https://doi.org/10.1021/jm00050a010.

Cramer, R. D.; Patterson, D. E.; Bunce, J. D. J. Am. Chem. Soc. 1988, 110 (18), 5959–5967. https://doi.org/10.1021/ja00226a005.

El-Mernissi, R.; El Khatabi, K.; Khaldan, A.; ElMchichi, L.; Shahinozzaman, M.; Ajana, M. A.; Lakhlifi, T.; Bouachrine, M. J. Mex. Chem. Soc. 2021, 66 (1). https://doi.org/10.29356/jmcs.v66i1.1578.

EL-Mernissi, R.; EL Khatabi, K.; Khaldan, A.; El Mchichi, L.; Ajana, M. A.; Lakhlifi, T.; Bouachrine, M. Mater. Today Proc. 2021, 45, 7608–7614. https://doi.org/10.1016/j.matpr.2021.03.080.

Clark, M.; Cramer, R. D.; Van Opdenbosch, N. Comput. Chem. 1989, 10 (8), 982–1012. https://doi.org/10.1002/jcc.540100804.

Purcell, W. P.; Singer, J. A. J. Chem. Eng. Data 1967, 12 (2), 235–246. https://doi.org/10.1021/je60033a020.

Golbraikh, A.; Tropsha, A. Mol. Graph. Model. 2002, 20 (4), 269–276. https://doi.org/10.1016/S1093-3263(01)00123-1.

Golbraikh, A.; Tropsha, A. Mol. Graph. Model. 2002, 20 (4), 269–276. https://doi.org/10.1016/S1093-3263(01)00123-1.

Roy, P. P.; Leonard, J. T.; Roy, K. Chemom. Intell. Lab. Syst. 2008, 90 (1), 31–42. https://doi.org/10.1016/j.chemolab.2007.07.004.

Edache, E. I.; Uzairu, A.; Mamza, P. A.; Shallangwa, G. A. J. Mex. Chem. Soc. 2022, 66 (4). https://doi.org/10.29356/jmcs.v66i4.1726.

Ibrahim, M. T.; Uzairu, A.; Umar, A. B.; Bello, A. S.; Isyaku, Y. J. Mex. Chem. Soc. 2019, 64 (1). https://doi.org/10.29356/jmcs.v64i1.1025

DeLano, W. L. DeLano. PyMOL Mol. Graph. Syst. DeLano Sci. San Carlos CA USA 2002

Discovery Studio Predictive Science Application | Dassault Systèmes BIOVIA https://www.3dsbiovia.com/products/collaborative-science/biovia-discovery-studio/ (accessed Feb 6,2020).

Daina, A.; Michielin, O.; Zoete, V. Sci. Rep. 2017, 7 (1), 42717. https://doi.org/10.1038/srep42717.

El Khatabi, K.; Kumar, S.; El-Mernissi, R.; Singh, A. K.; Ajana, M. A.; Lakhlifi, T.; Bouachrine, M. J. Biomol. Struct. Dyn. 2022, 0 (0), 1–15. https://doi.org/10.1080/07391102.2022.2134210.

Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C. GROMACS: Fast, Flexible, and Free. J. Comput. Chem. 2005, 26 (16), 1701–1718. https://doi.org/10.1002/jcc.20291.

Boonstra, S.; Onck, P. R.; Giessen, E. van der. CHARMM TIP3P Water Model Suppresses Peptide Folding by Solvating the Unfolded State. J. Phys. Chem. B 2016, 120 (15), 3692–3698. https://doi.org/10.1021/acs.jpcb.6b01316.

El-Mernissi, R.; El Khatabi, K.; Khaldan, A.; Elmchichi, L.; Shahinozzaman, M.; Ajana, M.; Lakhlifi, T.; Bouachrine, M. J. Mex. Chem. Soc. 2021, 66, 79–94. https://doi.org/10.29356/jmcs.v66i1.1578.

Lee, S.; Tran, A.; Allsopp, M.; Lim, J. B.; Hénin, J.; Klauda, J. B. CHARMM36 United Atom Chain Model for Lipids and Surfactants. J. Phys. Chem. B 2014, 118 (2), 547–556. https://doi.org/10.1021/jp410344g.

Hayes, J. M.; Skamnaki, V. T.; Archontis, G.; Lamprakis, C.; Sarrou, J.; Bischler, N.; Skaltsounis, A.-L.; Zographos, S. E.; Oikonomakos, N. G. Funct. Bioinforma. 2011, 79 (3), 703–719. https://doi.org/10.1002/prot.22890.

El-Mernissi, R.; El khatabi, K.; Khaldan, A.; Bouamrane, S.; ElMchichi, L.; Aziz Ajana, M.; Lakhlifi, T.; Bouachrine, M. Orbital Electron. J. Chem. 2022, 14 (1), 24–32. https://doi.org/10.17807/orbital.v14i1.1659.

Tong, J.-B.; Feng, Y.; Wang, T.-H.; Luo, D. Chin. J. Anal. Chem. 2021, 49 (4), e21046–e21054. https://doi.o DOI: https://doi.org/10.1016/S1872-2040(21)60095-6

×

Downloads

Published

2025-10-01

Issue

Section

Regular Articles
x

Most read articles by the same author(s)

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.

Loading...