Heat Stress in Different Development Stages of Wheat Modifies the Grain Chemical Composition and Germination Index
DOI:
https://doi.org/10.29356/jmcs.v67i3.2050Keywords:
Heat stress, germination, starch, thousand-grain weight, wheatAbstract
Abstract. Climate change is causing increases in temperature in wheat-producing areas of the world. The global warming conditions put wheat production at risk. In wheat, heat stress causes a decrease in the yield due to retarding grain fill time and maturity. This work aimed to evaluate the grain chemical composition of six wheat genotypes subjected to heat stress during the vegetative and reproductive stages and to relate it to germination. Grains of six wheat genotypes were used in this study, cultivated in the Yaqui Valley, Sonora, in December 2020 and January and October 2021. The flour was obtained from whole grains (40 gr of each genotype and each sowing date). Proximal analyses were done following AACC and AOAC methods. Starch content was determined using a commercial kit from Megazyme. Changes in size, shape, and colour were observed in all the seeds progeny of plants under heat stress during the vegetative and reproductive stages. Heat stress during the reproductive stage reduced the thousand-grain weight, total solids, and protein content in the progeny grains but increased the percentage of moisture, ash, total starch, and germination index. Heat stress during the vegetative stage reduced total solids content and increased thousand-grain weight, moisture, and total starch in the progeny grains. The germination index in seeds from plants subjected to heat stress during the reproductive stage was associated with total starch content and a trend to decrease total protein. That association was not found in seeds from plants under heat stress during the vegetative stage.
Resumen. El cambio climático incrementa la temperatura en áreas productoras de trigo y pone en riesgo su producción mundial. En trigo, el estrés por calor disminuye el rendimiento, tiempo de llenado de grano y días de maduración. El objetivo del presente trabajo fue evaluar la composición química de los granos de seis genotipos de trigo sometidos a estrés por calor durante las etapas vegetativa y reproductiva y su relación con la germinación. Se utilizaron granos de seis genotipos de trigo, cultivados en el Valle del Yaqui, Sonora, en diciembre 2020, enero y octubre 2021. Se obtuvo harina de granos completos (40 g de grano por genotipo y fecha de siembra). El análisis proximal se determinó siguiendo los métodos de la AACC y AOAC. El contenido de almidón se obtuvo utilizando un kit comercial de Megazyme. Se observaron cambios de tamaño, forma y color en semillas progenie de plantas estresadas en las etapas vegetativa y reproductiva. El estrés por calor en la etapa reproductiva disminuyó el peso de mil granos, los sólidos totales y el índice de germinación. El estrés por calor en la etapa vegetativa redujo el contenido de sólidos totales e incrementó el peso de mil granos, humedad y almidón total en los granos progenie. El índice de germinación se asoció al contenido total de almidón y a la tendencia de disminución en proteína total de las semillas de plantas estresadas en la etapa reproductiva. Esta relación no se encontró en semillas de plantas estresadas durante la etapa vegetativa.
Downloads
References
Hernandez-Ochoa, I. M.; Asseng, S.; Kassie, B. T.; Xiong, W.; Robertson, R., Luz Pequeno, D. N.; Sonder, K.; Reynolds, M.; Babar, M. A.; Molero Milan, A.; Hoogenboom, G. Agric. For. Meteorol. 2018, 263, 373–387. DOI: https://doi.org/10.1016/j.agrformet.2018.09.008. DOI: https://doi.org/10.1016/j.agrformet.2018.09.008
Fleitas, M. C.; Mondal, S.; Gerard, G. S.; Hernández-Espinosa, N.; Singh, R. P.; Crossa, J.; Guzmán, C. J. Cereal Sci. 2020, 93, 102981. DOI: https://doi.org/10.1016/j.jcs.2020.102981. DOI: https://doi.org/10.1016/j.jcs.2020.102981
Fatima, Z.; Ahmed, M.; Hussain, M.; Abbas, G.; Ul-Allah, S.; Ahmad, S.; Ahmed, N.; Ali, M. A.; Sarwar, G.; Haque, E.; Iqbal, P.; Hussain, S. Sci. Rep. 2020, 10. DOI: https://doi.org/10.1038/s41598-020-74740-3. DOI: https://doi.org/10.1038/s41598-020-74740-3
Rifna, E.J.; Ratish Ramanan K.; Mahendran, R. Trends Food Sci. Technol. 2019, 86, 95-108. DOI: https://doi.org/10.1016/j.tifs.2019.02.029. DOI: https://doi.org/10.1016/j.tifs.2019.02.029
Kader MA. Journal and Proceeding of the R. Soc. New South Wales. 2005, 138, 65–75. DOI: https://doi.org/10.5962/p.361564
Javaid, M.M.; Florentine, S.; Ali, H.H.; Weller, S. PLoS ONE. 2018, 13, e0194319. DOI: https://doi.org/10.1371/journal.pone.0194319. DOI: https://doi.org/10.1371/journal.pone.0194319
Hurkman, W. J.; Tanaka, C. K.; Vensel, W. H.; Thilmony, R.; Altenbach, S. B. Proteome Sci. 2013, 11, 1-15. DOI: https://doi.org/10.1186/1477-5956-10-22. DOI: https://doi.org/10.1186/1477-5956-11-8
Zhao, K.; Tao, Y.; Liu, M.; Yang, D.; Zhu, M.; Ding, J.; Zhu, X.; Guo, W.; Zhou, G.; Li, C. J. Cereal Sci. 2022, 103, 103408. DOI: https://doi.org/10.1016/j.jcs.2021.103408. DOI: https://doi.org/10.1016/j.jcs.2021.103408
Valdés, C.; Estrada, G.; Domínguez, A.; Martínez, C. G.; Morales-Rosales, E. J. Rev. Mexicana de Cienc. Agric., 2019, 10, 615-627. DOI: https://doi.org/10.29312/remexca.v10i3.1540. DOI: https://doi.org/10.29312/remexca.v10i3.1540
Wang, X.; Cai, J.; Liu, F.; Jin, M.; Yu, H.; Jiang, D.; Wollenweber, B.; Dai, T.; Cao, W. J. Cereal Sci. 2012, 55, 331–336. DOI: https://doi.org/10.1016/j.jcs.2012.01.004 DOI: https://doi.org/10.1016/j.jcs.2012.01.004
Olán, M. D. L. O.; Espitia, E.; López, H.; Villaseñor, H. E.; Peña, R. J.; Herrera, J. Rev. Mexicana Cienc. Agric. 2012, 3, 271-283. DOI: https://doi.org/10.29312/remexca.v3i2.1462. DOI: https://doi.org/10.29312/remexca.v3i2.1462
AACC Approved Methods. American Association of Cereal Chemists, St. Paul, MN, USA. 2000, Methods, 46-13.
AOAC Official Methods of Analysis. 17th Edition, The Association of Official Analytical Chemists, Gaithersburg, MD, USA. 2000, Methods, 925.10, 65.17, 974.24, 992.16.
AOAC Official Methods of Analysis. 16th Edition, Official Association of Official Analytical Chemists, Maryland, USA. 1998, Method 968.08.
McCleary, B.V.; Solah, V.; Gibson, T. S. J. Cereal Sci. 1994, 20, 51-58. DOI: http://dx.doi.org/10.1006/jcrs.1994.1044. DOI: https://doi.org/10.1006/jcrs.1994.1044
Gibson, T.S.; Solah, V.A; McCleary, B.V. Am. J. Cereal Sci. 1997, 25, 111-119. DOI: http://dx.doi.org/10.1006/jcrs.1996.0086. DOI: https://doi.org/10.1006/jcrs.1996.0086
Begcy, K.; Sandhu, J.; Walia, H. Front. Plant Sci. 2018, 9, 1768. http://dx.doi.org/10.3389/fpls.2018.01768. DOI: https://doi.org/10.3389/fpls.2018.01768
Matsunaga, S.; Yamasaki, Y.; Toda, Y.; Mega, R.; Akashi, K.; Tsujimoto, H. Int. J. Mol. Sci. 2021, 22, 6942. DOI: https://doi.org/10.3390/ijms22136942. DOI: https://doi.org/10.3390/ijms22136942
Lizana, X. C.; Calderini, D. F. J. Agric. Sci. 2013, 151, 209-221. DOI: http://dx.doi.org/10.1017/S0021859612000639. DOI: https://doi.org/10.1017/S0021859612000639
Scotti-Campos, P.; Oliveira, K.; Pais, I. P.; Bagulho, A. S.; Semedo, J. N.; Serra, O.; Simões, F.; Lidon, F. C.; Coutinho, J.; Maçãs, B. Plants. 2022, 11. DOI: https://doi.org/10.3390/PLANTS11030365. DOI: https://doi.org/10.3390/plants11030365
Kim, K. H.; Kim, J. Y. Plants. 2021, 10. DOI: https://doi.org/10.3390/PLANTS10112282. DOI: https://doi.org/10.3390/plants10112282
Broberg, M. C.; Högy, P.; Pleijel, H. Agronomy. 2017, 7, 32. DOI: https://doi.org/10.3390/agronomy7020032. DOI: https://doi.org/10.3390/agronomy7020032
Impa, S. M.; Vennapusa, A. R.; Bheemanahalli, R.; Sabela, D.; Boyle, D.; Walia, H.; Jagadish, S. K. Plant, Cell Environ. 2019, 43, 431-447. DOI: https://doi.org/10.1111/pce.13671. DOI: https://doi.org/10.1111/pce.13671
Asthir, B.; Bala, S.; Bains, N. Cereal Res. Commun. 2013, 41, 230–42. DOI: https://doi.org/10.1556/CRC.2012.0036. DOI: https://doi.org/10.1556/CRC.2012.0036
Sumesh, K. V; Sharma-Natu, P.; Ghildiyal, M. C. Biologia Plantarum, 2008, 52, 749–753. DOI: https://doi.org/10.1007/s10535-008-0145-x. DOI: https://doi.org/10.1007/s10535-008-0145-x
Akter, N.; Rafiqul, M. Agron. Sustain. Dev. 2017, 37. DOI: https://doi.org/10.1007/s13593-017-0443-9. DOI: https://doi.org/10.1007/s13593-017-0443-9
Liu, P.; Guo, W.; Jiang, Z.; Pu, H.; Feng, C.; Zhu, X.; Peng, Y.; Kuang, A.; Little, C. R. J. Agric. Sci. 2011, 149, 159–169. https://doi.org/10.1017/S0021859610001024. DOI: https://doi.org/10.1017/S0021859610001024
Balla, K.; Rakszegi, M.; Li, Z.; Békés, F.; Bencze, S.; Veisz, O. Czech J. Food Sci. 2011, 29, 117–128. DOI: https://doi.org/10.17221/227/2010-CJFS. DOI: https://doi.org/10.17221/227/2010-CJFS
Balla, K.; Karsai, I.; Bencze, S.; Veisz, O. Acta Agron. Hung. 2012, 60, 299-308. DOI: https://doi.org/10.1556/AAgr.60.2012.4.1. DOI: https://doi.org/10.1556/AAgr.60.2012.4.1
Rodríguez, A. J.; Robles, C. A.; Ruíz, R. A.; López, E.; Sedeño, J. E.; Rodríguez, A. Rev. Int. Contam. Ambient. 2014, 30, 307-316. DOI: https://www.revistascca.unam.mx/rica/index.php/rica/article/view/45559.


Downloads
Published
Issue
Section
License
Copyright (c) 2023 Katheryne Fernández-Padilla, Rosabel Vélez-de la Rocha, Elisa M. Valenzuela-Soto

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
