A DFT Study of the Hydrogen Storage Potentials and Properties of Ca, Fe, and Ti Deposited NaSi20 Fullerenes

Authors

DOI:

https://doi.org/10.29356/jmcs.v68i3.2073

Keywords:

NaSi20 fullerenes, DFT methods, hydrogen storage

Abstract

Abstract. In this work, the hydrogen storage materials of Ca, Fe, and Ti deposited NaSi20 clusters were investigated utilizing DFT methods (B3LYP and M06-2X) combined with the 6-311++G(d, p) basis set. The results show that Ca, Fe, and Ti atoms tend to bind with two adjacent Si atoms. The Ca@NaSi20, Fe@NaSi20, and Ti@NaSi20 can adsorb up to three, four, and six hydrogen molecules, respectively. The adsorption energy (Eads) per hydrogen molecule meets the United States Department of Energy (DOE) target for hydrogen storage materials for nH2-Ti@NaSi20 (n = 2-6) and nH2-Fe@NaSi20 (n = 1- 4), implying that NaSi20 fullerene could be a potentially suitable material for hydrogen storage.

 

Resumen. Utilizando métodos de la DFT (B3LYP y M06-2X) combinados con las bases 6-311++G(d, p), en este trabajo se investigaron materiales para el almacenamiento de hidrógeno a base de Ca, Fe, y Ti depositados en cúmulos de NaSi20. Los resultados muestran que los átomos de Ca, Fe, y Ti tienden a unirse a dos átomos adyacentes de Si. Los cúmulos Ca@NaSi20, Fe@NaSi20, y Ti@NaSi20 pueden adsorber hasta tres, cuatro y seis moléculas de hidrógeno, respectivamente. Las energías de adsorción por molécula de hidrógeno (Eads) de nH2-Ti@NaSi20 (n = 2-6) y nH2-Fe@NaSi20 (n = 1- 4) cumplen con el objetivo del Departamento de Energía de los Estados Unidos (DOE) lo que implica que el fullereno NaSi20 puede ser un material potencialmente adecuado para el almacenamiento de hidrógeno.

Downloads

Download data is not yet available.

Author Biographies

Huixi Yang, Xi’an Polytechnic University

Xi’an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering

Bin Liu, Xi’an Polytechnic University

Xi’an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering

Hongjiang Ren, Xi’an University

School of Chemical Engineering

References

Hoel, M.; Kverndok, K. Resour Energy Econ. 1996, 18, 115-136. DOI: https://doi.org/10.1016/0928-7655(96)00005-X

Kale, P. Int J Hydrogen Energy. 2012, 37, 3741-3747. DOI: https://doi.org/10.1016/j.ijhydene.2011.04.054

Bailleux, C. Int J Hydrogen Energy. 1981, 6, 461. DOI: https://doi.org/10.1016/0360-3199(81)90078-1

Mazloomi, K. Renew Sust Energ Rev. 2012, 16, 3024-3033. DOI: https://doi.org/10.1016/j.rser.2012.02.028

Anafcheh, M. Int J Hydrogen Energy. 2018, 43, 12271-12277. DOI: https://doi.org/10.1016/j.ijhydene.2018.05.027

Xu, W. Prog Chem. 2006, 18, 200-201. DOI: https://doi.org/10.1521/aeap.2006.18.supp.200

Gong, J. M. Natural Gas Chem. Indus. 2010, 5, 71.

Sahaym, U. J Mater Sci. 2008, 43, 5395. DOI: https://doi.org/10.1007/s10853-008-2749-0

Wang, Q.; Sun, Q.; Jena, P.; Kawazoe, Y. J Chem Theory Comput. 2009, 5, 374-379. DOI: https://doi.org/10.1021/ct800373g

Zhang, D. J.; Ma, C.; Liu, C. B. J Phys Chem C. 2007, 111, 17099. DOI: https://doi.org/10.1021/jp076263y

Khanna, S. N.; Rao, B. K.; Jena, P. Phys Rev Lett. 2002, 89, 016803. DOI: https://doi.org/10.1103/PhysRevLett.89.016803

Kumar, V.; Kawazoe, Y. Phys Rev Lett. 2003, 90, 055502. DOI: https://doi.org/10.1103/PhysRevLett.90.055502

Ryou, J.; Hong, S.; Kim, G. Solid State Commun. 2008, 148, 469-471. DOI: https://doi.org/10.1016/j.ssc.2008.08.034

Kumar, V.; Kawazoe, Y. Phys Rev B. 2007, 75, 155425. DOI: https://doi.org/10.1103/PhysRevB.75.155425

Sporea, C.; Rabilloud, F. J Chem Phys. 2007, 127, 164306. DOI: https://doi.org/10.1063/1.2790018

Ammar, H. Y.; Badran, H. M. Int J Hydrogen. Energy. 2021, 46, 14565-14580. DOI: https://doi.org/10.1016/j.ijhydene.2021.01.231

Williamson, A. J.; Reboredo, F. A.; Galli, G. Appl Phys Lett. 2004, 85, 2917-2919. DOI: https://doi.org/10.1063/1.1800274

Yoon, M.; Yang, S.Y.; Hicke, C.; Wang, E. Phys Rev Lett. 2008, 100, 206806. DOI: https://doi.org/10.1103/PhysRevLett.100.206806

Wang, C. J.; Tang, C. M.; Zhang, Y. J.; Gao, F. Z. Chem Res Chin Univ. 2014, 35, 2131-2137.

Kohn, W.; Sham, L. J. Phys Rev. 1965, 140, 1133-1138. DOI: https://doi.org/10.1103/PhysRev.140.A1133

Mao, W. L.; Mao, H. K. Proc Natl Acad Sci USA. 2004, 101, 708-710. DOI: https://doi.org/10.1073/pnas.0307449100

Frisch, M. J. Gaussian 09, revision D.01, Wallingford, CT: Gaussian, Inc, 2009.

Guo, C.; Wang, C. Int J Hydrogen Energy. 2019, 44, 10763-10769. DOI: https://doi.org/10.1016/j.ijhydene.2019.02.212

Borshch, N. A.; Pereslavtseva, N. S.; Kurganskiĭ, S. I. Semiconductors. 2006, 40, 1457-1462.

Baei, M. T.; Koohi, M.; Shariati, M. J Mol Struct. 2018, 1159, 118-134. DOI: https://doi.org/10.1016/j.molstruc.2018.01.022

Kubas, G. J. Kluwer Academic/Plenum Publishing. 2001.

Padhee, S. P.; Roy, A.; Pati, S. Int J Hydrogen Energy. 2021, 46, 906-921. DOI: https://doi.org/10.1016/j.ijhydene.2020.09.221

Liu, Z. C.; Ruan, Y. M.; Li, F.; Zhang, G. F.; Zhao, M. Int J Hydrogen Energy. 2021, 46, 4201-4210. DOI: https://doi.org/10.1016/j.ijhydene.2020.10.195

Pluengphon, P.; Tsuppayakorn-aek, P.; Inceesungvorn, B. Int J Hydrogen Energy. 2020, 45, 25065-25074. DOI: https://doi.org/10.1016/j.ijhydene.2020.06.267

×

Downloads

Published

2024-04-26

Issue

Section

Regular Articles
x

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Loading...