A DFT Study of the Hydrogen Storage Potentials and Properties of Ca, Fe, and Ti Deposited NaSi20 Fullerenes
DOI:
https://doi.org/10.29356/jmcs.v68i3.2073Keywords:
NaSi20 fullerenes, DFT methods, hydrogen storageAbstract
Abstract. In this work, the hydrogen storage materials of Ca, Fe, and Ti deposited NaSi20 clusters were investigated utilizing DFT methods (B3LYP and M06-2X) combined with the 6-311++G(d, p) basis set. The results show that Ca, Fe, and Ti atoms tend to bind with two adjacent Si atoms. The Ca@NaSi20, Fe@NaSi20, and Ti@NaSi20 can adsorb up to three, four, and six hydrogen molecules, respectively. The adsorption energy (Eads) per hydrogen molecule meets the United States Department of Energy (DOE) target for hydrogen storage materials for nH2-Ti@NaSi20 (n = 2-6) and nH2-Fe@NaSi20 (n = 1- 4), implying that NaSi20 fullerene could be a potentially suitable material for hydrogen storage.
Resumen. Utilizando métodos de la DFT (B3LYP y M06-2X) combinados con las bases 6-311++G(d, p), en este trabajo se investigaron materiales para el almacenamiento de hidrógeno a base de Ca, Fe, y Ti depositados en cúmulos de NaSi20. Los resultados muestran que los átomos de Ca, Fe, y Ti tienden a unirse a dos átomos adyacentes de Si. Los cúmulos Ca@NaSi20, Fe@NaSi20, y Ti@NaSi20 pueden adsorber hasta tres, cuatro y seis moléculas de hidrógeno, respectivamente. Las energías de adsorción por molécula de hidrógeno (Eads) de nH2-Ti@NaSi20 (n = 2-6) y nH2-Fe@NaSi20 (n = 1- 4) cumplen con el objetivo del Departamento de Energía de los Estados Unidos (DOE) lo que implica que el fullereno NaSi20 puede ser un material potencialmente adecuado para el almacenamiento de hidrógeno.
Downloads
References
Hoel, M.; Kverndok, K. Resour Energy Econ. 1996, 18, 115-136. DOI: https://doi.org/10.1016/0928-7655(96)00005-X
Kale, P. Int J Hydrogen Energy. 2012, 37, 3741-3747. DOI: https://doi.org/10.1016/j.ijhydene.2011.04.054
Bailleux, C. Int J Hydrogen Energy. 1981, 6, 461. DOI: https://doi.org/10.1016/0360-3199(81)90078-1
Mazloomi, K. Renew Sust Energ Rev. 2012, 16, 3024-3033. DOI: https://doi.org/10.1016/j.rser.2012.02.028
Anafcheh, M. Int J Hydrogen Energy. 2018, 43, 12271-12277. DOI: https://doi.org/10.1016/j.ijhydene.2018.05.027
Xu, W. Prog Chem. 2006, 18, 200-201. DOI: https://doi.org/10.1521/aeap.2006.18.supp.200
Gong, J. M. Natural Gas Chem. Indus. 2010, 5, 71.
Sahaym, U. J Mater Sci. 2008, 43, 5395. DOI: https://doi.org/10.1007/s10853-008-2749-0
Wang, Q.; Sun, Q.; Jena, P.; Kawazoe, Y. J Chem Theory Comput. 2009, 5, 374-379. DOI: https://doi.org/10.1021/ct800373g
Zhang, D. J.; Ma, C.; Liu, C. B. J Phys Chem C. 2007, 111, 17099. DOI: https://doi.org/10.1021/jp076263y
Khanna, S. N.; Rao, B. K.; Jena, P. Phys Rev Lett. 2002, 89, 016803. DOI: https://doi.org/10.1103/PhysRevLett.89.016803
Kumar, V.; Kawazoe, Y. Phys Rev Lett. 2003, 90, 055502. DOI: https://doi.org/10.1103/PhysRevLett.90.055502
Ryou, J.; Hong, S.; Kim, G. Solid State Commun. 2008, 148, 469-471. DOI: https://doi.org/10.1016/j.ssc.2008.08.034
Kumar, V.; Kawazoe, Y. Phys Rev B. 2007, 75, 155425. DOI: https://doi.org/10.1103/PhysRevB.75.155425
Sporea, C.; Rabilloud, F. J Chem Phys. 2007, 127, 164306. DOI: https://doi.org/10.1063/1.2790018
Ammar, H. Y.; Badran, H. M. Int J Hydrogen. Energy. 2021, 46, 14565-14580. DOI: https://doi.org/10.1016/j.ijhydene.2021.01.231
Williamson, A. J.; Reboredo, F. A.; Galli, G. Appl Phys Lett. 2004, 85, 2917-2919. DOI: https://doi.org/10.1063/1.1800274
Yoon, M.; Yang, S.Y.; Hicke, C.; Wang, E. Phys Rev Lett. 2008, 100, 206806. DOI: https://doi.org/10.1103/PhysRevLett.100.206806
Wang, C. J.; Tang, C. M.; Zhang, Y. J.; Gao, F. Z. Chem Res Chin Univ. 2014, 35, 2131-2137.
Kohn, W.; Sham, L. J. Phys Rev. 1965, 140, 1133-1138. DOI: https://doi.org/10.1103/PhysRev.140.A1133
Mao, W. L.; Mao, H. K. Proc Natl Acad Sci USA. 2004, 101, 708-710. DOI: https://doi.org/10.1073/pnas.0307449100
Frisch, M. J. Gaussian 09, revision D.01, Wallingford, CT: Gaussian, Inc, 2009.
Guo, C.; Wang, C. Int J Hydrogen Energy. 2019, 44, 10763-10769. DOI: https://doi.org/10.1016/j.ijhydene.2019.02.212
Borshch, N. A.; Pereslavtseva, N. S.; Kurganskiĭ, S. I. Semiconductors. 2006, 40, 1457-1462.
Baei, M. T.; Koohi, M.; Shariati, M. J Mol Struct. 2018, 1159, 118-134. DOI: https://doi.org/10.1016/j.molstruc.2018.01.022
Kubas, G. J. Kluwer Academic/Plenum Publishing. 2001.
Padhee, S. P.; Roy, A.; Pati, S. Int J Hydrogen Energy. 2021, 46, 906-921. DOI: https://doi.org/10.1016/j.ijhydene.2020.09.221
Liu, Z. C.; Ruan, Y. M.; Li, F.; Zhang, G. F.; Zhao, M. Int J Hydrogen Energy. 2021, 46, 4201-4210. DOI: https://doi.org/10.1016/j.ijhydene.2020.10.195
Pluengphon, P.; Tsuppayakorn-aek, P.; Inceesungvorn, B. Int J Hydrogen Energy. 2020, 45, 25065-25074. DOI: https://doi.org/10.1016/j.ijhydene.2020.06.267


Downloads
Published
Issue
Section
License
Copyright (c) 2024 Huixi Yang; Hongjiang Ren

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
